Fungal Interactions Matter: Tricholoma matsutake Domination Affect Fungal Diversity and Function in Mountain Forest Soils
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods and Materials
2.1. Site Description and Soil Sampling
2.2. Soil and Plant Characterization
2.3. Phospholipid-Fatty Acid Analysis
2.4. DNA Amplicon and Illumina Sequencing of Fungal Communities
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Soil in Tricholoma matsutake Fairy Ring
3.2. Fungal PLFA Biomass
3.3. Fungal Diversity, Species Composition and Functional Profiles
3.4. The Correlation between Tricholoma and Other Soil Fungi in the Shiro Soil
4. Discussion
4.1. Variations of Fungal Community Differences between Shiro and Non-Shiro Soil
4.2. T. matsutake Associated Fungal Community Similarities in the Shiro Soil across Geographic Locations
4.3. Fungal Interaction Shape Fungal Community across Landscape
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ogawa, M. Microbial ecology of mycorrhizal fungus Tricholoma matsutake Ito et Imai (Sing.) in pine forest, I. Fungal colony (Shiro) of T. matsutake. Bull. Gov. For. Exp. Stn. 1975, 272, 79–121, (In Japanese with English Abstract). [Google Scholar]
- Yamanaka, T.; Ota, Y.; Konno, M.; Kawai, M.; Ohta, A.; Neda, H.; Terashima, Y.; Yamada, A. The host ranges of conifer-associated Tricholoma matsutake, Fagaceae-associated T. bakamatsutake and T. fulvocastaneum are wider in vitro than in nature. Mycology 2014, 106, 397–406. [Google Scholar] [CrossRef]
- Lian, C.; Narimatsu, M.; Nara, K.; Hogetsu, T. Tricholoma matsutake in a natural Pinus densiflora forest: Correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol. 2006, 171, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Vaario, L.M.; Fritze, H.; Spetz, P.; Heinonsalo, J.; Hanajik, P.; Pennanen, T. Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl. Environ. Microbiol. 2011, 77, 8523–8531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kataoka, R.; Siddiqui, Z.A.; Kikuchi, J.; Ando, M.; Sriwati, R.; Nozaki, A.; Futai, K. Detecting nonculturable bacteria in the active mycorrhizal zone of the pine mushroom Tricholoma matsutake. J. Microbiol. 2012, 50, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Yoon, H.; You, Y.-H.; Kim, Y.-E.; Woo, J.-R.; Seo, Y.; Lee, G.-M.; Kim, Y.J.; Kong, W.-S.; Kim, J.-G. Metagenomic analysis of fungal communities inhabiting the fairy ring zone of Tricholoma matsutake. J. Microbiol. Biotechnol. 2013, 23, 1347–1356. [Google Scholar] [CrossRef]
- Oh, S.Y.; Fong, J.J.; Park, M.S.; Lim, Y.W. Distinctive feature of microbial communities and bacterial functional profiles in Tricholoma matsutake dominant soil. PLoS ONE 2016, 11, e0168573. [Google Scholar] [CrossRef]
- Vaario, L.-M.; Yang, X.; Yamada, A. Biogeography of the Japanese Gourmet Fungus, Tricholoma matsutake: A Review of the Distribution and Functional Ecology of Matsutake. In Biogeography of Mycorrhizal Symbiosis. Ecological Studies (Analysis and Synthesis); Tedersoo, L., Ed.; Springer: Cham, Switzerland, 2017; Volume 230. [Google Scholar]
- Yamanaka, T.; Yamada, A.; Furukawa, H. Advances in the cultivation of the highly-prized ectomycorrhizal mush-room Tricholoma matsutake. Mycoscience 2020, 61, 49–57. [Google Scholar] [CrossRef]
- Oh, S.Y.; Park, M.S.; Lim, Y.W. The influence of microfungi on the mycelial growth of ectomycorrhizal fungus Tricholoma matsutake. Microorganisms 2019, 7, 169. [Google Scholar] [CrossRef] [Green Version]
- Dudnik, A.; Bigler, L.; Dudler, R. Production of Proteasome Inhibitor Syringolin A by the Endophyte Rhizobium sp. Strain AP16. Appl. Environ. Microbiol. 2014, 80, 3741–3748. [Google Scholar] [CrossRef] [Green Version]
- Leake, J.R.; Donnelly, D.P.; Boddy, L. Interactions between ecto-mycorrhizal and saprotrophic fungi. In Mycorrhizal Ecology; van der Heijden, M.G.A., Sanders, I.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 345–372. [Google Scholar]
- Summerbell, R.C. From Lamarckian fertilizers to fungal castles: Recapturing the pre-1985 literature on endophytic and saprotrophic fungi associated with ectomycorrhizal root systems. Stud. Mycol. 2005, 53, 191–256. [Google Scholar] [CrossRef] [Green Version]
- Leake, J.; Johnson, D.; Donnelly, D.; Muckle, G.; Boddy, L.; Read, D. Networks of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 2004, 82, 1016–1045. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.D.; Van der Putten, W.H. Soil biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Christ, S.; Wubet, T.; Theuerl, S.; Herold, N.; Buscot, F. Fungal communities in bulk soil and stone compartments of different forest and soil types as revealed by a barcoding ITS rDNA and a functional laccase encoding gene marker. Soil Biol. Biochem. 2011, 43, 1292–1299. [Google Scholar] [CrossRef]
- Peay, K.G.; Baraloto, C.; Fine, P.V.A. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 2013, 7, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
- Frostegård, Å.; Bååth, E.; Tunlio, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 1993, 25, 723–730. [Google Scholar] [CrossRef]
- Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fertil. Soils 1999, 29, 111–129. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, Y.; Shi, L.; Marshall, M.R.; Kuzyakov, Y.; Blagodatskaya, E.; Zang, H. Strong priming of soil organic matter induced by frequent input of labile carbon. Soil Biol. Biochem. 2021, 152, 108069. [Google Scholar] [CrossRef]
- Yang, T.; Adams, J.M.; Shi, Y.; He, J.S.; Jing, X.; Chen, L.; Tedersoo, L.; Chu, H. Soil fungal diversity in natural grass-lands of the Tibetan plateau: Associations with plant diversity and productivity. New Phytol. 2017, 215, 756–765. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.E.; Read, D. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008; pp. 1–787. [Google Scholar]
- Zhou, J.; Zang, H.; Loeppmann, S.; Gube, M.; Kuzyakov, Y.; Pausch, J. Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. Soil Biol. Biochem. 2020, 140, 107641. [Google Scholar] [CrossRef]
- Nouri, E.; Breuillin-Sessoms, F.; Feller, U.; Reinhardt, D. Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida. PLoS ONE 2014, 9, e90841. [Google Scholar] [CrossRef]
- Zotti, M.; De Filippis, F.; Cesarano, G.; Ercolini, D.; Tesei, G.; Allegrezza, M.; Giannino, F.; Mazzoleni, S.; Bonanomi, G. One ring to rule them all: An ecosystem engineer fungus fosters plant and microbial diversity in a Mediterranean grassland. New Phytol. 2020, 227, 884–898. [Google Scholar] [CrossRef]
- Cairney, J.W.; Meharg, A.A. Interactions between ectomycorrhizal fungi and soil saprotrophs: Implications for decomposition of organic matter in soils and degradation of organic pollutants in the rhizosphere. Can. J. Bot. 2002, 80, 803–809. [Google Scholar] [CrossRef]
- Bödeker, I.T.M.; Lindahl, B.D.; Olson, Å.; Clemmensen, K.E. Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Funct. Ecol. 2016, 30, 1967–1978. [Google Scholar] [CrossRef] [Green Version]
- Takakura, Y. Tricholoma matsutake fruit bodies secrete hydrogen peroxide as a potent inhibitor of fungal growth. Can. J. Microbiol. 2015, 61, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Jairus, T.; Horton, B.M.; Abarenkov, K.; Suvi, T.; Saar, I.; Kõljalg, U. Strong host preference of ectomy-corrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol. 2008, 180, 479–490. [Google Scholar] [CrossRef]
- Bennett, L.T.; Kasel, S.; Tibbits, J. Woodland trees modulate soil resources and conserve fungal diversity in fragmented landscapes. Soil Biol. Biochem. 2009, 41, 2162–2169. [Google Scholar] [CrossRef]
- Millard, P.; Singh, B.K. Does grassland vegetation drive soil microbial diversity? Nutr. Cycl. Agroecosyst. 2009, 88, 147–158. [Google Scholar] [CrossRef]
- Voronina, E.Y. Effect of the mycorrhizosphere on soil micromycete biodiversity and community structure and its relation to the rhizosphere and hyphosphere effects. Microbiology 2011, 80, 584–590. [Google Scholar] [CrossRef]
- Halsey, J.A.; de Cássia Pereira e Silva Silva, M.; Andreote, F.D. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms. Antonie Van Leeuwenhoek 2016, 109, 1353–1365. [Google Scholar] [CrossRef]
- Marí, T.; Castaño, C.; Rodríguez, A.; Ibáñez, M.; Lobo, A.; Sebastià, M. Fairy rings harbor distinct soil fungal com-munities and high fungal diversity in a montane grassland. Fungal Ecol. 2020, 47, 100962. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, F.; Liu, N.; Hu, J.; Zhang, Y. Changes in soil bacterial communities in response to the fairy ring fungus Agaricus gennadii in the temperate steppes of China. Pedobiologia 2018, 69, 34–40. [Google Scholar] [CrossRef]
- Li, B.; Ravnskov, S.; Xie, G.; Larsen, J. Differential effects of Paenibacillus spp. on cucumber mycorrhizas. Mycol. Prog. 2008, 7, 277–284. [Google Scholar] [CrossRef]
- Gobran, G.; Clegg, S.; Courchesne, F. Rhizospheric Processes Influencing the Biogeochemistry of Forest Ecosystems. Biogeochemistry 1998, 42, 107–120. [Google Scholar] [CrossRef]
- Mitchell, R.; Campbell, C.D.; Chapman, S.J.; Osler, G.H.R.; Vanbergen, A.J.; Ross, L.C.; Cameron, C.M.; Cole, L. The cascading effects of birch on heather moorland: A test for the top-down control of an ecosystem engineer. J. Ecol. 2007, 95, 540–554. [Google Scholar] [CrossRef]
- Agerer, R.; Taylor, A.F.S.; Treu, R. Effects of acid irrigation and liming on the production of fruit bodies by ectomy-corrhizal fungi. Plant Soil 1998, 199, 83–89. [Google Scholar] [CrossRef]
- Courty, P.-E.; Pritsch, K.; Schloter, M.; Hartmann, A.; Garbaye, J. Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol. 2005, 167, 309–319. [Google Scholar] [CrossRef]
- McAfee, B.; Fortin, J.A. The influence of pH on the competitive interactions of ectomycorrhizal mycobionts under field conditions. Can. J. For. Res. 1987, 17, 859–864. [Google Scholar] [CrossRef]
- Shi, L.-L.; Mortimer, P.E.; Slik, J.W.F.; Zou, X.-M.; Xu, J.; Feng, W.-T.; Qiao, L. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers. 2014, 64, 305–315. [Google Scholar] [CrossRef]
- Bending, G.D.; Poole, E.J.; Whipps, J.M. Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol. Ecol. 2002, 39, 219–227. [Google Scholar] [CrossRef]
- Li, Q.; Chen, C.; Penttinen, P.; Xiong, C.; Zheng, L.; Huang, W. Microbial diversity associated with Tricholoma matsutake fruiting bodies. Microbiology 2016, 85, 531–539. [Google Scholar] [CrossRef]
- Grelet, G.A.; Johnson, D.; Paterson, E.; Anderson, I.C.; Alexander, I.J. Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytol. 2009, 182, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, P.G.; Hortal, S.; Bergemann, S.E.; Bruns, T.D. Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance. J. Ecol. 2007, 95, 1338–1345. [Google Scholar] [CrossRef]
- Wang, Z.; Binder, M.; Schoch, C.; Johnston, P.R.; Spatafora, J.W.; Hibbett, D.S. Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): A nuclear rDNA phylogeny. Mol. Phylogenet. Evol. 2006, 41, 295–312. [Google Scholar] [CrossRef]
- Bending, G.; Read, D.J. Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol. Res. 1997, 101, 1348–1354. [Google Scholar] [CrossRef]
- Vandenkoornhuyse, P.; Mahe, S.; Ineson, P.; Staddon, P.; Ostle, N.; Cliquet, J.-B.; Francez, A.-J.; Fitter, A.H.; Young, P. Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc. Natl. Acad. Sci. USA 2007, 104, 16970–16975. [Google Scholar] [CrossRef] [Green Version]
- Nehls, U.; Grunze, N.; Willman, M.; Reich, M.; Kuster, H. Sugar for my honey: Carbohydrate partitioning inectomy-corrhizal symbiosis. Phytochemistry 2007, 68, 82–91. [Google Scholar] [CrossRef]
- Blenis, P.V.; Chow, P.S.; Duncan, I.; Knowles, N.R. Cyanide levels near fairy rings affect the growth of grasses and fungi. Can. J. Bot. 2004, 82, 1324–1329. [Google Scholar] [CrossRef]
- Frey-Klett, P.; Garbaye, J.; Tarkka, M. The mycorrhiza helper bacteria revisited. New Phytol. 2007, 176, 22–36. [Google Scholar] [CrossRef]
- Lisboa, F.J.G.; Chaer, G.; Fernandes, M.F.; Berbara, R.L.L.; Madari, B. The match between microbial community structure and soil properties is modulated by land use types and sample origin within an integrated agroecosystem. Soil Biol. Biochem. 2014, 78, 97–108. [Google Scholar] [CrossRef] [Green Version]
Stand Parameters | DQ1 | DQ2 | LJ | BS | CX |
---|---|---|---|---|---|
Coordinates | 28°05′ N, 99°37′ E | 28°04′ N, 99°38′ E | 27°00′ N, 100°10′ E | 25°16′ N, 99°18′ E | 25°10′ N, 101°00′ E |
Altitude (m a.s.l) | 3747 | 3452 | 3346 | 2452 | 2486 |
Annual mean temperature (°C) | 7.3 | 7.3 | 9.0 | 17.3 | 17.6 |
Annual mean Precipitation (mm) | 638 | 638 | 1275 | 600 | 1125 |
Tree species | Quercus Semecarpifolia | Pinus densata | Pinus yunnanensis, Quercus guyavefolia | Pinus armandii Franch, Pinus yunnanensis | Pinus yunnanensis |
Mortierella − | Helotiales − | Oidiodendron + | |
---|---|---|---|
BS | Mortierella amoeboidea | OTU_97 | Oidiodendron chlamydosporicum |
Mortierella humilis | |||
CX | Mortierella humilis | OTU_957 | Oidiodendron griseum |
Mortierella cystojenkinii | OTU_597 | Oidiodendron sp GK_2010 | |
OTU_119 | OTU_787 | ||
DQ1 | Mortierella humilis | OTU_33 | |
Mortierella sp WD32A | |||
OTU_454 | |||
DQ2 | Mortierella amoeboidea | OTU_33 | Oidiodendron griseum |
Mortierella humilis | |||
LJ | OTU_3 | OTU_475 |
Variables | Shiro Soil | Non-Shiro Soil | ||||||
---|---|---|---|---|---|---|---|---|
NMDS1 | NMDS2 | R2 | P | NMDS1 | NMDS2 | R2 | P | |
pH | 0.181 | 0.983 | 0.497 | 0.001 | 0.449 | −0.893 | 0.067 | 0.241 |
TC | 0.994 | −0.112 | 0.274 | 0.001 | 0.199 | 0.979 | 0.326 | 0.002 |
TN | 0.969 | −0.245 | 0.282 | 0.001 | 0.163 | 0.986 | 0.297 | 0.003 |
TP | 0.617 | 0.786 | 0.251 | 0.002 | 0.139 | 0.990 | 0.036 | 0.482 |
Tree_H | −0.434 | −0.901 | 0.173 | 0.017 | −0.074 | 0.997 | 0.001 | 0.665 |
Tree_S | −0.466 | −0.885 | 0.188 | 0.012 | 0.600 | −0.799 | 0.001 | 0.972 |
dbh | 0.077 | −0.997 | 0.003 | 0.950 | −0.291 | 0.956 | 0.019 | 0.665 |
high | 0.479 | 0.877 | 0.022 | 0.626 | 0.434 | −0.901 | 0.008 | 0.803 |
Shrub_H | −0.269 | −0.962 | 0.041 | 0.408 | 0.322 | 0.946 | 0.039 | 0.401 |
Shrub_S | −0.494 | −0.869 | 0.054 | 0.832 | 0.009 | 0.999 | 0.046 | 0.337 |
Grass_H | −0.135 | 0.991 | 0.009 | 0.832 | 0.133 | 0.991 | 0.056 | 0.279 |
Grass_S | −0.017 | 0.999 | 0.108 | 0.076 | −0.026 | 0.999 | 0.109 | 0.087 |
ECMtree_H | −0.319 | −0.947 | 0.259 | 0.001 | −0.981 | 0.195 | 0.001 | 0.978 |
ECMtre_S | −0.316 | −0.948 | 0.335 | 0.002 | −0.230 | 0.973 | 0.002 | 0.966 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Gui, H.; Yang, S.; Yang, X.; Shi, L. Fungal Interactions Matter: Tricholoma matsutake Domination Affect Fungal Diversity and Function in Mountain Forest Soils. Biology 2021, 10, 1051. https://doi.org/10.3390/biology10101051
Zhou J, Gui H, Yang S, Yang X, Shi L. Fungal Interactions Matter: Tricholoma matsutake Domination Affect Fungal Diversity and Function in Mountain Forest Soils. Biology. 2021; 10(10):1051. https://doi.org/10.3390/biology10101051
Chicago/Turabian StyleZhou, Jie, Heng Gui, Shujiao Yang, Xuefei Yang, and Lingling Shi. 2021. "Fungal Interactions Matter: Tricholoma matsutake Domination Affect Fungal Diversity and Function in Mountain Forest Soils" Biology 10, no. 10: 1051. https://doi.org/10.3390/biology10101051
APA StyleZhou, J., Gui, H., Yang, S., Yang, X., & Shi, L. (2021). Fungal Interactions Matter: Tricholoma matsutake Domination Affect Fungal Diversity and Function in Mountain Forest Soils. Biology, 10(10), 1051. https://doi.org/10.3390/biology10101051