Immunomodulatory Potential of Diuretics
Abstract
:Simple Summary
Abstract
1. Background
2. Results and Discussion
2.1. Loop Diuretics
Drug | Immunological Mechanism (Reference) |
---|---|
Furosemide | Reduction in:
|
Torasemide | Reduction in: |
Bumetanide | Reduction in:
|
Ethacrynic acid | Reduction in:
|
2.2. Potassium-Sparing Diuretics
Drug | Immunological Mechanism (Reference) |
---|---|
Spironolactone | Reduction in:
|
Spironolactone and Eplerenone | Reduction in:
|
Eplerenone | Reduction in:
|
Amiloride | Reduction in:
|
2.3. Carbonic Anhydrase Inhibitors
2.4. Thiazide and Thiazide-like Diuretics
2.5. The Most Recent Studies
3. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muntner, P.; Carey, R.M.; Gidding, S.; Jones, D.W.; Taler, S.J.; Wright, J.T.; Whelton, P.K. Potential US Population Impact of the 2017 ACC/AHA High Blood Pressure Guideline. Circulation 2018, 137, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.S.; Gu, Q.; Nwankwo, T.; Wright, J.D.; Hong, Y.; Burt, V. Trends in Blood Pressure among Adults with Hypertension: United States, 2003 to 2012. Hypertension 2015, 65, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, e13–e115. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. J. Hypertens. 2020, 38, 982–1004. [Google Scholar] [CrossRef]
- Sonne-Holm, S.; Sørensen, T.I.; Jensen, G.; Schnohr, P. Independent Effects of Weight Change and Attained Body Weight on Prevalence of Arterial Hypertension in Obese and Non-Obese Men. BMJ 1989, 299, 767–770. [Google Scholar] [CrossRef] [Green Version]
- Forman, J.P.; Stampfer, M.J.; Curhan, G.C. Diet and Lifestyle Risk Factors Associated with Incident Hypertension in Women. JAMA 2009, 302, 401–411. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.-Y.; Young, J.H.; Meoni, L.A.; Ford, D.E.; Erlinger, T.P.; Klag, M.J. Blood Pressure Change and Risk of Hypertension Associated with Parental Hypertension: The Johns Hopkins Precursors Study. Arch. Intern. Med. 2008, 168, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Staessen, J.A.; Wang, J.; Bianchi, G.; Birkenhäger, W.H. Essential Hypertension. Lancet 2003, 361, 1629–1641. [Google Scholar] [CrossRef]
- Ooi, W.L.; Budner, N.S.; Cohen, H.; Madhavan, S.; Alderman, M.H. Impact of Race on Treatment Response and Cardiovascular Disease among Hypertensives. Hypertension 1989, 14, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Otten, M.W.; Teutsch, S.M.; Williamson, D.F.; Marks, J.S. The Effect of Known Risk Factors on the Excess Mortality of Black Adults in the United States. JAMA 1990, 263, 845–850. [Google Scholar] [CrossRef]
- Whelton, P.K.; Appel, L.J.; Espeland, M.A.; Applegate, W.B.; Ettinger, W.H.; Kostis, J.B.; Kumanyika, S.; Lacy, C.R.; Johnson, K.C.; Folmar, S.; et al. Sodium Reduction and Weight Loss in the Treatment of Hypertension in Older Persons: A Randomized Controlled Trial of Nonpharmacologic Interventions in the Elderly (TONE). TONE Collaborative Research Group. JAMA 1998, 279, 839–846. [Google Scholar] [CrossRef]
- Graudal, N.A.; Hubeck-Graudal, T.; Jurgens, G. Effects of Low Sodium Diet versus High Sodium Diet on Blood Pressure, Renin, Aldosterone, Catecholamines, Cholesterol, and Triglyceride. Cochrane Database Syst. Rev. 2017, 4, CD004022. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Fahimi, S.; Singh, G.M.; Micha, R.; Khatibzadeh, S.; Engell, R.E.; Lim, S.; Danaei, G.; Ezzati, M.; Powles, J. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group. Global Sodium Consumption and Death from Cardiovascular Causes. N. Engl. J. Med. 2014, 371, 624–634. [Google Scholar] [CrossRef] [Green Version]
- Roerecke, M.; Kaczorowski, J.; Tobe, S.W.; Gmel, G.; Hasan, O.S.M.; Rehm, J. The Effect of a Reduction in Alcohol Consumption on Blood Pressure: A Systematic Review and Meta-Analysis. Lancet Public Health 2017, 2, e108–e120. [Google Scholar] [CrossRef] [Green Version]
- Carnethon, M.R.; Evans, N.S.; Church, T.S.; Lewis, C.E.; Schreiner, P.J.; Jacobs, D.R.; Sternfeld, B.; Sidney, S. Joint Associations of Physical Activity and Aerobic Fitness on the Development of Incident Hypertension: Coronary Artery Risk Development in Young Adults. Hypertension 2010, 56, 49–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, J.W. Oral Contraceptives and Hypertension. Hypertension 1988, 11 Pt 2, II11-5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warner, T.D.; Mitchell, J.A. COX-2 Selectivity Alone Does Not Define the Cardiovascular Risks Associated with Non-Steroidal Anti-Inflammatory Drugs. Lancet 2008, 371, 270–273. [Google Scholar] [CrossRef]
- Johnson, A.G.; Nguyen, T.V.; Day, R.O. Do Nonsteroidal Anti-Inflammatory Drugs Affect Blood Pressure? A Meta-Analysis. Ann. Intern. Med. 1994, 121, 289–300. [Google Scholar] [CrossRef]
- Pope, J.E.; Anderson, J.J.; Felson, D.T. A Meta-Analysis of the Effects of Nonsteroidal Anti-Inflammatory Drugs on Blood Pressure. Arch. Intern. Med. 1993, 153, 477–484. [Google Scholar] [CrossRef]
- Grover, S.A.; Coupal, L.; Zowall, H. Treating Osteoarthritis with Cyclooxygenase-2-Specific Inhibitors: What Are the Benefits of Avoiding Blood Pressure Destabilization? Hypertension 2005, 45, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Bakris, G.L.; Ritz, E. The Message for World Kidney Day 2009: Hypertension and Kidney Disease: A Marriage That Should Be Prevented. Kidney Int. 2009, 75, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Funder, J.W.; Carey, R.M.; Mantero, F.; Murad, M.H.; Reincke, M.; Shibata, H.; Stowasser, M.; Young, W.F. The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2016, 101, 1889–1916. [Google Scholar] [CrossRef]
- Young, W.F. Diagnosis and Treatment of Primary Aldosteronism: Practical Clinical Perspectives. J. Intern. Med. 2019, 285, 126–148. [Google Scholar] [CrossRef] [Green Version]
- Käyser, S.C.; Dekkers, T.; Groenewoud, H.J.; van der Wilt, G.J.; Carel Bakx, J.; van der Wel, M.C.; Hermus, A.R.; Lenders, J.W.; Deinum, J. Study Heterogeneity and Estimation of Prevalence of Primary Aldosteronism: A Systematic Review and Meta-Regression Analysis. J. Clin. Endocrinol. Metab. 2016, 101, 2826–2835. [Google Scholar] [CrossRef] [PubMed]
- Monticone, S.; Burrello, J.; Tizzani, D.; Bertello, C.; Viola, A.; Buffolo, F.; Gabetti, L.; Mengozzi, G.; Williams, T.A.; Rabbia, F.; et al. Prevalence and Clinical Manifestations of Primary Aldosteronism Encountered in Primary Care Practice. J. Am. Coll. Cardiol. 2017, 69, 1811–1820. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, L.D.; Cooper, C.J. Clinical Practice. Renal-Artery Stenosis. N. Engl. J. Med. 2009, 361, 1972–1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Textor, S.C.; Lerman, L. Renovascular Hypertension and Ischemic Nephropathy. Am. J. Hypertens. 2010, 23, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- Peppard, P.E.; Young, T.; Palta, M.; Skatrud, J. Prospective Study of the Association between Sleep-Disordered Breathing and Hypertension. N. Engl. J. Med. 2000, 342, 1378–1384. [Google Scholar] [CrossRef]
- Punjabi, N.M.; Caffo, B.S.; Goodwin, J.L.; Gottlieb, D.J.; Newman, A.B.; O’Connor, G.T.; Rapoport, D.M.; Redline, S.; Resnick, H.E.; Robbins, J.A.; et al. Sleep-Disordered Breathing and Mortality: A Prospective Cohort Study. PLoS Med. 2009, 6, e1000132. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, D.J.; Yenokyan, G.; Newman, A.B.; O’Connor, G.T.; Punjabi, N.M.; Quan, S.F.; Redline, S.; Resnick, H.E.; Tong, E.K.; Diener-West, M.; et al. Prospective Study of Obstructive Sleep Apnea and Incident Coronary Heart Disease and Heart Failure: The Sleep Heart Health Study. Circulation 2010, 122, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Cadby, G.; McArdle, N.; Briffa, T.; Hillman, D.R.; Simpson, L.; Knuiman, M.; Hung, J. Severity of OSA Is an Independent Predictor of Incident Atrial Fibrillation Hospitalization in a Large Sleep-Clinic Cohort. Chest 2015, 148, 945–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redline, S.; Yenokyan, G.; Gottlieb, D.J.; Shahar, E.; O’Connor, G.T.; Resnick, H.E.; Diener-West, M.; Sanders, M.H.; Wolf, P.A.; Geraghty, E.M.; et al. Obstructive Sleep Apnea-Hypopnea and Incident Stroke: The Sleep Heart Health Study. Am. J. Respir. Crit. Care Med. 2010, 182, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Young, W.F. Adrenal Causes of Hypertension: Pheochromocytoma and Primary Aldosteronism. Rev. Endocr. Metab. Disord. 2007, 8, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Pacak, K.; Linehan, W.M.; Eisenhofer, G.; Walther, M.M.; Goldstein, D.S. Recent Advances in Genetics, Diagnosis, Localization, and Treatment of Pheochromocytoma. Ann. Intern. Med. 2001, 134, 315–329. [Google Scholar] [CrossRef]
- Stein, P.P.; Black, H.R. A Simplified Diagnostic Approach to Pheochromocytoma. A Review of the Literature and Report of One Institution’s Experience. Medicine 1991, 70, 46–66. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, J.A. Adrenocorticotrophin and Steroid-Induced Hypertension in Humans. Kidney Int. Suppl. 1992, 37, S34–S37. [Google Scholar]
- Saruta, T.; Suzuki, H.; Handa, M.; Igarashi, Y.; Kondo, K.; Senba, S. Multiple Factors Contribute to the Pathogenesis of Hypertension in Cushing’s Syndrome. J. Clin. Endocrinol. Metab. 1986, 62, 275–279. [Google Scholar] [CrossRef]
- Gumieniak, O.; Perlstein, T.S.; Hopkins, P.N.; Brown, N.J.; Murphey, L.J.; Jeunemaitre, X.; Hollenberg, N.K.; Williams, G.H. Thyroid Function and Blood Pressure Homeostasis in Euthyroid Subjects. J. Clin. Endocrinol. Metab. 2004, 89, 3455–3461. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, P.; Acosta, M.; Sánchez, R.; Fernández-Reyes, M.J.; Mon, C.; Díez, J.J. Ambulatory Blood Pressure Monitoring in Patients with Hyperthyroidism before and after Control of Thyroid Function. Clin. Endocrinol. 2005, 63, 66–72. [Google Scholar] [CrossRef]
- Lind, L.; Hvarfner, A.; Palmér, M.; Grimelius, L.; Akerström, G.; Ljunghall, S. Hypertension in Primary Hyperparathyroidism in Relation to Histopathology. Eur. J. Surg. 1991, 157, 457–459. [Google Scholar] [PubMed]
- Lind, L.; Ljunghall, S. Pre-Operative Evaluation of Risk Factors for Complications in Patients with Primary Hyperparathyroidism. Eur. J. Clin. Investig. 1995, 25, 955–958. [Google Scholar] [CrossRef]
- Yener Ozturk, F.; Erol, S.; Canat, M.M.; Karatas, S.; Kuzu, I.; Dogan Cakir, S.; Altuntas, Y. Patients with Normocalcemic Primary Hyperparathyroidism May Have Similar Metabolic Profile as Hypercalcemic Patients. Endocr. J. 2016, 63, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Xue, Y.; Zhang, Q.; Xue, T.; Yao, J.; Huang, H.; Liang, J.; Li, L.; Lin, W.; Lin, L.; et al. Is Normocalcemic Primary Hyperparathyroidism Harmful or Harmless? J. Clin. Endocrinol. Metab. 2015, 100, 2420–2424. [Google Scholar] [CrossRef]
- The Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Arch. Intern. Med. 1997, 157, 2413–2446. [CrossRef]
- Katz, A.I. Distribution and Function of Classes of ATPases along the Nephron. Kidney Int. 1986, 29, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Wright, F.S. Flow-Dependent Transport Processes: Filtration, Absorption, Secretion. Am. J. Physiol. 1982, 243, F1–F11. [Google Scholar] [CrossRef] [PubMed]
- Greger, R.; Velázquez, H. The Cortical Thick Ascending Limb and Early Distal Convoluted Tubule in the Urinary Concentrating Mechanism. Kidney Int. 1987, 31, 590–596. [Google Scholar] [CrossRef] [Green Version]
- Loon, N.R.; Wilcox, C.S.; Unwin, R.J. Mechanism of Impaired Natriuretic Response to Furosemide during Prolonged Therapy. Kidney Int. 1989, 36, 682–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hropot, M.; Fowler, N.; Karlmark, B.; Giebisch, G. Tubular Action of Diuretics: Distal Effects on Electrolyte Transport and Acidification. Kidney Int. 1985, 28, 477–489. [Google Scholar] [CrossRef] [Green Version]
- Velázquez, H.; Wright, F.S. Effects of Diuretic Drugs on Na, Cl, and K Transport by Rat Renal Distal Tubule. Am. J. Physiol. 1986, 250 Pt 2, F1013–F1023. [Google Scholar] [CrossRef] [PubMed]
- Kunau, R.T.; Weller, D.R.; Webb, H.L. Clarification of the Site of Action of Chlorothiazide in the Rat Nephron. J. Clin. Investig. 1975, 56, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Plotkin, M.D.; Kaplan, M.R.; Verlander, J.W.; Lee, W.S.; Brown, D.; Poch, E.; Gullans, S.R.; Hebert, S.C. Localization of the Thiazide Sensitive Na-Cl Cotransporter, RTSC1 in the Rat Kidney. Kidney Int. 1996, 50, 174–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellison, D.H.; Velázquez, H.; Wright, F.S. Adaptation of the Distal Convoluted Tubule of the Rat. Structural and Functional Effects of Dietary Salt Intake and Chronic Diuretic Infusion. J. Clin. Investig. 1989, 83, 113–126. [Google Scholar] [CrossRef]
- Scherzer, P.; Wald, H.; Popovtzer, M.M. Enhanced Glomerular Filtration and Na+-K+-ATPase with Furosemide Administration. Am. J. Physiol. 1987, 252 Pt 2, F910–F915. [Google Scholar] [CrossRef]
- Stanton, B.A.; Kaissling, B. Regulation of Renal Ion Transport and Cell Growth by Sodium. Am. J. Physiol. 1989, 257 Pt 2, F1–F10. [Google Scholar] [CrossRef]
- Sheikhi, A.; Jaberi, Y.; Esmaeilzadeh, A.; Khani, M.; Moosaeefard, M.; Shafaqatian, M. The Effect of Cardiovascular Drugs on Pro-Inflammatory Cytokine Secretion and Natural Killer Activity of Peripheral Blood Mononuclear Cells of Patients with Chronic Heart Failure in Vitro. Pak. J. Biol. Sci. 2007, 10, 1580–1587. [Google Scholar] [CrossRef]
- Prandota, J. Furosemide: Progress in Understanding Its Diuretic, Anti-Inflammatory, and Bronchodilating Mechanism of Action, and Use in the Treatment of Respiratory Tract Diseases. Am. J. Ther. 2002, 9, 317–328. [Google Scholar] [CrossRef]
- Xu, B.; Makris, A.; Thornton, C.; Ogle, R.; Horvath, J.S.; Hennessy, A. Antihypertensive Drugs Clonidine, Diazoxide, Hydralazine and Furosemide Regulate the Production of Cytokines by Placentas and Peripheral Blood Mononuclear Cells in Normal Pregnancy. J. Hypertens. 2006, 24, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Yuengsrigul, A.; Chin, T.W.; Nussbaum, E. Immunosuppressive and Cytotoxic Effects of Furosemide on Human Peripheral Blood Mononuclear Cells. Ann. Allergy Asthma Immunol. 1999, 83 Pt 1, 559–566. [Google Scholar] [CrossRef]
- Muniz-Junqueira, M.I.; Mota, L.M.; Aires, R.B.; Junqueira, L.F. Digitalis Inhibits and Furosemide Does Not Change the in Vitro Phagocytic Function of Neutrophils of Healthy Subjects. Int. Immunopharmacol. 2003, 3, 1439–1445. [Google Scholar] [CrossRef]
- Soloperto, M.; Marini, M.; Brasca, C.; Fasoli, A.; Mattoli, S. The Protective Effect of Frusemide on the Generation of Superoxide Anions by Human Bronchial Epithelial Cells and Pulmonary Macrophages in Vitro. Pulm Pharmacol. 1991, 4, 80–84. [Google Scholar] [CrossRef]
- Bianco, S.; Pieroni, M.G.; Refini, R.M.; Robuschi, M.; Vaghi, A.; Sestini, P. Inhaled Loop Diuretics as Potential New Anti-Asthmatic Drugs. Eur. Respir. J. 1993, 6, 130–134. [Google Scholar]
- Wang, S.; Xiang, Y.-Y.; Ellis, R.; Wattie, J.; Feng, M.; Inman, M.D.; Lu, W.-Y. Effects of Furosemide on Allergic Asthmatic Responses in Mice. Clin. Exp. Allergy 2011, 41, 1456–1467. [Google Scholar] [CrossRef] [PubMed]
- Murad, H.; Ghabrah, T.; Rafeeq, M.; Ali, S. Subdiuretic Dose of Furosemide Enhances Albuterol Effects in Asthmatic Mice Rather than Bumetanide. Allergol. Immunopathol. 2018, 46, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, R.; Frass, M.; Pasching, E.; Gmeiner, B.; Kaye, A.D.; Kapiotis, S. Furosemide and Spironolactone Reduce Transmigration of Leukocytes through Endothelial Cell Monolayers. J. Toxicol. Environ. Health A 2002, 65, 685–693. [Google Scholar] [CrossRef]
- Qu, Q.; Liu, J.; Zhou, H.-H.; Klaassen, C.D. Nrf2 Protects against Furosemide-Induced Hepatotoxicity. Toxicology 2014, 324, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Li, S.-Z.; Ohlemiller, K.K.; Ransohoff, R.M. Systemic Lipopolysaccharide Induces Cochlear Inflammation and Exacerbates the Synergistic Ototoxicity of Kanamycin and Furosemide. J. Assoc. Res. Otolaryngol. 2014, 15, 555–570. [Google Scholar] [CrossRef]
- Kroflic, B.; Coer, A.; Baudoin, T.; Kalogjera, L. Topical Furosemide versus Oral Steroid in Preoperative Management of Nasal Polyposis. Eur. Arch. Otorhinolaryngol. 2006, 263, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Levasseur-Acker, G.M.; Molimard, M.; Regnard, J.; Naline, E.; Freche, C.; Lockhart, A. Effect of Furosemide on Prostaglandin Synthesis by Human Nasal and Bronchial Epithelial Cells in Culture. Am. J. Respir. Cell Mol. Biol. 1994, 10, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.M. Update on the Molecular Biology of Nasal Polyposis. Otolaryngol. Clin. N. Am. 2005, 38, 1243–1255. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; Liu, B. Advances in Pathogenesis and Current Therapeutic Strategies for Cardiorenal Syndrome. Life Sci. 2014, 99, 1–6. [Google Scholar] [CrossRef]
- Youssef, M.I.; Mahmoud, A.A.A.; Abdelghany, R.H. A New Combination of Sitagliptin and Furosemide Protects against Remote Myocardial Injury Induced by Renal Ischemia/Reperfusion in Rats. Biochem. Pharmacol. 2015, 96, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A.; Pinto, A.; Di Raimondo, D.; Corrao, S.; Di Sciacca, R.; Scaglione, R.; Caruso, C.; Licata, G. Changes in Natriuretic Peptide and Cytokine Plasma Levels in Patients with Heart Failure, after Treatment with High Dose of Furosemide plus Hypertonic Saline Solution (HSS) and after a Saline Loading. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A.; Di Raimondo, D.; Bellia, C.; Clemente, G.; Pecoraro, R.; Maida, C.; Simonetta, I.; Vassallo, V.; Di Bona, D.; Gulotta, E.; et al. Immune-Inflammatory and Metabolic Effects of High Dose Furosemide plus Hypertonic Saline Solution (HSS) Treatment in Cirrhotic Subjects with Refractory Ascites. PLoS ONE 2016, 11, e0165443. [Google Scholar] [CrossRef] [Green Version]
- Tröger, B.; Heidemann, M.; Osthues, I.; Knaack, D.; Göpel, W.; Herting, E.; Knobloch, J.K.-M.; Härtel, C. Modulation of S. Epidermidis-Induced Innate Immune Responses in Neonatal Whole Blood. J. Microbiol. Immunol. Infect. 2020, 53, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Rödler, S.; Roth, M.; Nauck, M.; Tamm, M.; Block, L.H. Ca2+-Channel Blockers Modulate the Expression of Interleukin-6 and Interleukin-8 Genes in Human Vascular Smooth Muscle Cells. J. Mol. Cell. Cardiol. 1995, 27, 2295–2302. [Google Scholar] [CrossRef]
- Nieminen, L.; Pyy, K.; Hirsimäki, Y. The Effect of Furosemide on the Renal Damage Induced by Toxic Mushroom Cortinarius Speciosissimus in the Rat. Br. J. Exp. Pathol. 1976, 57, 400–403. [Google Scholar]
- Zverev, I.F.; Shelemba, M.V.; Belomestnykh, V.G. Effect of diuretics on vascular permeability and proliferative inflammation in rats. Farmakol. Toksikol. 1985, 48, 47–48. [Google Scholar]
- Brennecke, A.; Villar, L.; Wang, Z.; Doyle, L.M.; Meek, A.; Reed, M.; Barden, C.; Weaver, D.F. Is Inhaled Furosemide a Potential Therapeutic for COVID-19? Am. J. Med. Sci. 2020, 360, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Veeraveedu, P.T.; Watanabe, K.; Ma, M.; Palaniyandi, S.S.; Yamaguchi, K.; Suzuki, K.; Kodama, M.; Aizawa, Y. Torasemide, a Long-Acting Loop Diuretic, Reduces the Progression of Myocarditis to Dilated Cardiomyopathy. Eur. J. Pharmacol. 2008, 581, 121–131. [Google Scholar] [CrossRef]
- Veeraveedu, P.T.; Watanabe, K.; Ma, M.; Thandavarayan, R.A.; Palaniyandi, S.S.; Yamaguchi, K.; Suzuki, K.; Kodama, M.; Aizawa, Y. Comparative Effects of Torasemide and Furosemide in Rats with Heart Failure. Biochem. Pharmacol. 2008, 75, 649–659. [Google Scholar] [CrossRef]
- Arumugam, S.; Sreedhar, R.; Miyashita, S.; Karuppagounder, V.; Thandavarayan, R.A.; Giridharan, V.V.; Pitchaimani, V.; Afrin, R.; Harima, M.; Suzuki, K.; et al. Comparative Evaluation of Torasemide and Furosemide on Rats with Streptozotocin-Induced Diabetic Nephropathy. Exp. Mol. Pathol. 2014, 97, 137–143. [Google Scholar] [CrossRef]
- Hung, C.-M.; Peng, C.-K.; Wu, C.-P.; Huang, K.-L. Bumetanide Attenuates Acute Lung Injury by Suppressing Macrophage Activation. Biochem. Pharmacol. 2018, 156, 60–67. [Google Scholar] [CrossRef]
- Wang, M.; Gorasiya, S.; Antoine, D.J.; Sitapara, R.A.; Wu, W.; Sharma, L.; Yang, H.; Ashby, C.R.; Vasudevan, D.; Zur, M.; et al. The Compromise of Macrophage Functions by Hyperoxia Is Attenuated by Ethacrynic Acid via Inhibition of NF-ΚB-Mediated Release of High-Mobility Group Box-1. Am. J. Respir. Cell Mol. Biol. 2015, 52, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Englert, J.A.; Delude, R.L.; Fink, M.P. Ethacrynic Acid Inhibits Multiple Steps in the NF-KappaB Signaling Pathway. Shock 2005, 23, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Fink, M.; Cruz, R.J. Ethacrynic Acid Decreases Expression of Proinflammatory Intestinal Wall Cytokines and Ameliorates Gastrointestinal Stasis in Murine Postoperative Ileus. Clinics 2018, 73, e332. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.R.; Rieneck, K.; Bendtzen, K. Spironolactone Inhibits Production of Proinflammatory Cytokines by Human Mononuclear Cells. Immunol. Lett. 2004, 91, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Miura, R.; Nakamura, K.; Miura, D.; Miura, A.; Hisamatsu, K.; Kajiya, M.; Nagase, S.; Morita, H.; Fukushima Kusano, K.; Ohe, T.; et al. Anti-Inflammatory Effect of Spironolactone on Human Peripheral Blood Mononuclear Cells. J. Pharmacol. Sci. 2006, 101, 256–259. [Google Scholar] [CrossRef] [Green Version]
- Haas, M.J.; Jurado-Flores, M.; Hammoud, R.; Feng, V.; Gonzales, K.; Onstead-Haas, L.; Mooradian, A.D. The Effects of Known Cardioprotective Drugs on Proinflammatory Cytokine Secretion from Human Coronary Artery Endothelial Cells. Am. J. Ther. 2019, 26, e321–e332. [Google Scholar] [CrossRef]
- Kato, Y.; Kamiya, H.; Koide, N.; Odkhuu, E.; Komatsu, T.; Dagvadorj, J.; Watarai, A.; Kondo, M.; Kato, K.; Nakamura, J.; et al. Spironolactone Inhibits Production of Proinflammatory Mediators in Response to Lipopolysaccharide via Inactivation of Nuclear Factor-ΚB. Immunopharmacol. Immunotoxicol. 2014, 36, 237–241. [Google Scholar] [CrossRef]
- Bendtzen, K.; Hansen, P.R.; Rieneck, K.; Spironolactone/Arthritis Study Group. Spironolactone Inhibits Production of Proinflammatory Cytokines, Including Tumour Necrosis Factor-Alpha and Interferon-Gamma, and Has Potential in the Treatment of Arthritis. Clin. Exp. Immunol. 2003, 134, 151–158. [Google Scholar] [CrossRef]
- Ji, W.-J.; Ma, Y.-Q.; Zhang, X.; Zhang, L.; Zhang, Y.-D.; Su, C.-C.; Xiang, G.-A.; Zhang, M.-P.; Lin, Z.-C.; Wei, L.-Q.; et al. Inflammatory Monocyte/Macrophage Modulation by Liposome-Entrapped Spironolactone Ameliorates Acute Lung Injury in Mice. Nanomedicine 2016, 11, 1393–1406. [Google Scholar] [CrossRef] [Green Version]
- Sabbadin, C.; Calò, L.A.; Armanini, D. The Story of Spironolactones from 1957 to Now: From Sodium Balance to Inflammation. G. Ital. Nefrol. 2016, 33 (Suppl. S66), 12. [Google Scholar]
- Cuppone, R.; Del Vecchio, S.; Zanninelli, G.; Delle Monache, M.; Ulissi, A.; Tavanti, A.; Angeloni, A.; Ricci, G.L. Lymphocyte Function Tests in Cirrhotic Patients under Treatment with Spironolactone and Potassium Canrenoate. J. Int. Med. Res. 1988, 16, 436–442. [Google Scholar] [CrossRef]
- Besedovsky, L.; Born, J.; Lange, T. Blockade of Mineralocorticoid Receptors Enhances Naïve T-Helper Cell Counts during Early Sleep in Humans. Brain Behav. Immun. 2012, 26, 1116–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Hao, J.-B.; Ren, L.-S.; Ding, J.-L.; Hao, L.-R. The Aldosterone Receptor Antagonist Spironolactone Prevents Peritoneal Inflammation and Fibrosis. Lab. Investig. 2014, 94, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Martín-Fernández, B.; Rubio-Navarro, A.; Cortegano, I.; Ballesteros, S.; Alía, M.; Cannata-Ortiz, P.; Olivares-Álvaro, E.; Egido, J.; de Andrés, B.; Gaspar, M.L.; et al. Aldosterone Induces Renal Fibrosis and Inflammatory M1-Macrophage Subtype via Mineralocorticoid Receptor in Rats. PLoS ONE 2016, 11, e0145946. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, L.A.; Bistrup, C.; Stubbe, J.; Carlström, M.; Checa, A.; Wheelock, C.E.; Palarasah, Y.; Bladbjerg, E.M.; Thiesson, H.C.; Jensen, B.L. Effect of Spironolactone for 1 Yr on Endothelial Function and Vascular Inflammation Biomarkers in Renal Transplant Recipients. Am. J. Physiol. Renal Physiol. 2019, 317, F529–F539. [Google Scholar] [CrossRef]
- Targoński, R.; Sadowski, J.; Price, S.; Targoński, R. Sodium-Induced Inflammation-An Invisible Player in Resistant Hypertension. Hypertens. Res. 2020, 43, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Mareev, V.Y.; Orlova, Y.A.; Plisyk, A.G.; Pavlikova, E.P.; Matskeplishvili, S.T.; Akopyan, Z.A.; Seredenina, E.M.; Potapenko, A.V.; Agapov, M.A.; Asratyan, D.A.; et al. Results of Open-Label Non-Randomized Comparative Clinical Trial: “BromhexIne and Spironolactone for CoronаvirUs Infection Requiring HospiTalization (BISCUIT). Kardiologiia 2020, 60, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Esposito, C.T.; Varahan, S.; Jeyaraj, D.; Lu, Y.; Stambler, B.S. Spironolactone Improves the Arrhythmogenic Substrate in Heart Failure by Preventing Ventricular Electrical Activation Delays Associated with Myocardial Interstitial Fibrosis and Inflammation. J. Cardiovasc. Electrophysiol. 2013, 24, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Elinoff, J.M.; Rame, J.E.; Forfia, P.R.; Hall, M.K.; Sun, J.; Gharib, A.M.; Abd-Elmoniem, K.; Graninger, G.; Harper, B.; Danner, R.L.; et al. A Pilot Study of the Effect of Spironolactone Therapy on Exercise Capacity and Endothelial Dysfunction in Pulmonary Arterial Hypertension: Study Protocol for a Randomized Controlled Trial. Trials 2013, 14, 91. [Google Scholar] [CrossRef] [Green Version]
- Dinh, Q.N.; Young, M.J.; Evans, M.A.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Aldosterone-Induced Oxidative Stress and Inflammation in the Brain Are Mediated by the Endothelial Cell Mineralocorticoid Receptor. Brain Res. 2016, 1637, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Lieber, G.B.; Fernandez, X.; Mingo, G.G.; Jia, Y.; Caniga, M.; Gil, M.A.; Keshwani, S.; Woodhouse, J.D.; Cicmil, M.; Moy, L.Y.; et al. Mineralocorticoid Receptor Antagonists Attenuate Pulmonary Inflammation and Bleomycin-Evoked Fibrosis in Rodent Models. Eur. J. Pharmacol. 2013, 718, 290–298. [Google Scholar] [CrossRef]
- Nielsen, S.E.; Schjoedt, K.J.; Rossing, K.; Persson, F.; Schalkwijk, C.G.; Stehouwer, C.D.A.; Parving, H.-H.; Rossing, P. Levels of NT-ProBNP, Markers of Low-Grade Inflammation, and Endothelial Dysfunction during Spironolactone Treatment in Patients with Diabetic Kidney Disease. J. Renin Angiotensin Aldosterone Syst. 2013, 14, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Biyashev, D.; Onay, U.V.; Dalal, P.; Demczuk, M.; Evans, S.; Techner, J.-M.; Lu, K.Q. A Novel Treatment for Skin Repair Using a Combination of Spironolactone and Vitamin D3. Ann. N. Y. Acad. Sci. 2020, 1480, 170–182. [Google Scholar] [CrossRef]
- Lin, M.; Heizati, M.; Wang, L.; Nurula, M.; Yang, Z.; Wang, Z.; Abudoyreyimu, R.; Wu, Z.; Li, N. A Systematic Review and Meta-Analysis of Effects of Spironolactone on Blood Pressure, Glucose, Lipids, Renal Function, Fibrosis and Inflammation in Patients with Hypertension and Diabetes. Blood Press. 2021, 30, 145–153. [Google Scholar] [CrossRef]
- Myhre, P.L.; Vaduganathan, M.; O’Meara, E.; Claggett, B.L.; de Denus, S.; Jarolim, P.; Anand, I.S.; Pitt, B.; Rouleau, J.L.; Solomon, S.D.; et al. Mechanistic Effects of Spironolactone on Cardiovascular and Renal Biomarkers in Heart Failure with Preserved Ejection Fraction: A TOPCAT Biorepository Study. Circ. Heart Fail. 2020, 13, e006638. [Google Scholar] [CrossRef]
- Barrera-Chimal, J.; Rocha, L.; Amador-Martínez, I.; Pérez-Villalva, R.; González, R.; Cortés-González, C.; Uribe, N.; Ramírez, V.; Berman, N.; Gamba, G.; et al. Delayed Spironolactone Administration Prevents the Transition from Acute Kidney Injury to Chronic Kidney Disease through Improving Renal Inflammation. Nephrol. Dial. Transplant. 2019, 34, 794–801. [Google Scholar] [CrossRef]
- Di Raimondo, D.; Tuttolomondo, A.; Buttà, C.; Miceli, S.; Licata, G.; Pinto, A. Effects of ACE-Inhibitors and Angiotensin Receptor Blockers on Inflammation. Curr. Pharm. Des. 2012, 18, 4385–4413. [Google Scholar] [CrossRef]
- Patel, V.; Joharapurkar, A.; Jain, M. Role of Mineralocorticoid Receptor Antagonists in Kidney Diseases. Drug Dev. Res. 2021, 82, 341–363. [Google Scholar] [CrossRef]
- Johnson, L.A.; Govani, S.M.; Joyce, J.C.; Waljee, A.K.; Gillespie, B.W.; Higgins, P.D.R. Spironolactone and Colitis: Increased Mortality in Rodents and in Humans. Inflamm. Bowel Dis. 2012, 18, 1315–1324. [Google Scholar] [CrossRef] [Green Version]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. ESC Scientific Document Group. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Fraccarollo, D.; Galuppo, P.; Schraut, S.; Kneitz, S.; van Rooijen, N.; Ertl, G.; Bauersachs, J. Immediate Mineralocorticoid Receptor Blockade Improves Myocardial Infarct Healing by Modulation of the Inflammatory Response. Hypertension 2008, 51, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Sun, F.; Zhong, X.; Shao, Y.; Yoshimura, A.; Liu, Y. Eplerenone-Mediated Aldosterone Blockade Prevents Renal Fibrosis by Reducing Renal Inflammation, Interstitial Cell Proliferation and Oxidative Stress. Kidney Blood Press. Res. 2013, 37, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Łabuzek, K.; Liber, S.; Bułdak, Ł.; Machnik, G.; Liber, J.; Okopień, B. Eplerenone Promotes Alternative Activation in Human Monocyte-Derived Macrophages. Pharmacol. Rep. 2013, 65, 226–234. [Google Scholar] [CrossRef]
- Xiong, Y.; Chang, Y.; Hao, J.; Zhang, C.; Yang, F.; Wang, Z.; Liu, Y.; Wang, X.; Mu, S.; Xu, Q. Eplerenone Attenuates Fibrosis in the Contralateral Kidney of UUO Rats by Preventing Macrophage-to-Myofibroblast Transition. Front. Pharmacol. 2021, 12, 620433. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Qin, M.; Yi, Y.; Chen, X.; Jiang, W.; Zhou, L.; Zhang, D.; Xu, K.; Yang, Y.; Li, C.; et al. Eplerenone Prevents Atrial Fibrosis via the TGF-β Signaling Pathway. Cardiology 2017, 138, 55–62. [Google Scholar] [CrossRef]
- Wada, T.; Ishikawa, A.; Watanabe, E.; Nakamura, Y.; Aruga, Y.; Hasegawa, H.; Onogi, Y.; Honda, H.; Nagai, Y.; Takatsu, K.; et al. Eplerenone Prevented Obesity-Induced Inflammasome Activation and Glucose Intolerance. J. Endocrinol. 2017, 235, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.F.; Uzui, H.; Guo, H.Y.; Ueda, T.; Lee, J.D. Effects of Eplerenone on the Activation of Matrix Metalloproteinase-2 Stimulated by High Glucose and Interleukin-1β in Human Cardiac Fibroblasts. Genet. Mol. Res. 2014, 13, 4845–4855. [Google Scholar] [CrossRef]
- Satoh, M.; Ishikawa, Y.; Minami, Y.; Akatsu, T.; Nakamura, M. Eplerenone Inhibits Tumour Necrosis Factor Alpha Shedding Process by Tumour Necrosis Factor Alpha Converting Enzyme in Monocytes from Patients with Congestive Heart Failure. Heart 2006, 92, 979–980. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Johansson, U.; Peng, X.-R.; Bamberg, K.; Huang, Y. An Additive Effect of Eplerenone to ACE Inhibitor on Slowing the Progression of Diabetic Nephropathy in the Db/Db Mice. Am. J. Transl. Res. 2016, 8, 1339–1354. [Google Scholar] [PubMed]
- Lax, A.; Sanchez-Mas, J.; Asensio-Lopez, M.C.; Fernandez-Del Palacio, M.J.; Caballero, L.; Garrido, I.P.; Pastor-Perez, F.J.; Januzzi, J.L.; Pascual-Figal, D.A. Mineralocorticoid Receptor Antagonists Modulate Galectin-3 and Interleukin-33/ST2 Signaling in Left Ventricular Systolic Dysfunction after Acute Myocardial Infarction. JACC Heart Fail. 2015, 3, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Geng, J.; Gao, S.-X.; Yue, W.-W.; Liu, Q. Eplerenone Modulates Interleukin-33/SST2 Signaling and IL-1β in Left Ventricular Systolic Dysfunction After Acute Myocardial Infarction. J. Interferon Cytokine Res. 2018, 38, 137–144. [Google Scholar] [CrossRef]
- Rafatian, N.; Westcott, K.V.; White, R.A.; Leenen, F.H.H. Cardiac Macrophages and Apoptosis after Myocardial Infarction: Effects of Central MR Blockade. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R879–R887. [Google Scholar] [CrossRef] [Green Version]
- Elinoff, J.M.; Chen, L.-Y.; Dougherty, E.J.; Awad, K.S.; Wang, S.; Biancotto, A.; Siddiqui, A.H.; Weir, N.A.; Cai, R.; Sun, J.; et al. Spironolactone-Induced Degradation of the TFIIH Core Complex XPB Subunit Suppresses NF-ΚB and AP-1 Signalling. Cardiovasc. Res. 2018, 114, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa, S.; Fitch, K.V.; Wong, K.; O’Malley, T.K.; Maehler, P.; Branch, K.L.; Looby, S.E.; Burdo, T.H.; Martinez-Salazar, E.L.; Torriani, M.; et al. Randomized, Placebo-Controlled Trial to Evaluate Effects of Eplerenone on Metabolic and Inflammatory Indices in HIV. J. Clin. Endocrinol. Metab. 2018, 103, 2376–2384. [Google Scholar] [CrossRef]
- Sun, X.-N.; Li, C.; Liu, Y.; Du, L.-J.; Zeng, M.-R.; Zheng, X.-J.; Zhang, W.-C.; Liu, Y.; Zhu, M.; Kong, D.; et al. T-Cell Mineralocorticoid Receptor Controls Blood Pressure by Regulating Interferon-Gamma. Circ. Res. 2017, 120, 1584–1597. [Google Scholar] [CrossRef]
- Terada, Y.; Ueda, S.; Hamada, K.; Shimamura, Y.; Ogata, K.; Inoue, K.; Taniguchi, Y.; Kagawa, T.; Horino, T.; Takao, T. Aldosterone Stimulates Nuclear Factor-Kappa B Activity and Transcription of Intercellular Adhesion Molecule-1 and Connective Tissue Growth Factor in Rat Mesangial Cells via Serum- and Glucocorticoid-Inducible Protein Kinase-1. Clin. Exp. Nephrol. 2012, 16, 81–88. [Google Scholar] [CrossRef]
- Tschöpe, C.; Van Linthout, S.; Jäger, S.; Arndt, R.; Trippel, T.; Müller, I.; Elsanhoury, A.; Rutschow, S.; Anker, S.D.; Schultheiss, H.-P.; et al. Modulation of the Acute Defence Reaction by Eplerenone Prevents Cardiac Disease Progression in Viral Myocarditis. ESC Heart Fail. 2020, 7, 2838–2852. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, J.; Pang, X.; Zhao, J.; Wang, S.; Wu, D. Aldosterone Induces C-Reactive Protein Expression via MR-ROS-MAPK-NF-ΚB Signal Pathway in Rat Vascular Smooth Muscle Cells. Mol. Cell. Endocrinol. 2014, 395, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Al-Kadi, A.; El-Daly, M.; El-Tahawy, N.F.G.; Khalifa, M.M.A.; Ahmed, A.-S.F. Angiotensin Aldosterone Inhibitors Improve Survival and Ameliorate Kidney Injury Induced by Sepsis through Suppression of Inflammation and Apoptosis. Fundam. Clin. Pharmacol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Jover, E.; Matilla, L.; Garaikoetxea, M.; Fernández-Celis, A.; Muntendam, P.; Jaisser, F.; Rossignol, P.; López-Andrés, N. Beneficial Effects of Mineralocorticoid Receptor Pathway Blockade against Endothelial Inflammation Induced by SARS-CoV-2 Spike Protein. Biomedicines 2021, 9, 639. [Google Scholar] [CrossRef]
- Maron, B.A.; Leopold, J.A. The Role of the Renin-Angiotensin-Aldosterone System in the Pathobiology of Pulmonary Arterial Hypertension (2013 Grover Conference Series). Pulm. Circ. 2014, 4, 200–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, K.; Lin, C.; Ma, D.; Chen, M.; Zhou, X.; He, Y.; Moqbel, S.A.A.; Ma, C.; Wu, L. Spironolactone Ameliorates Senescence and Calcification by Modulating Autophagy in Rat Tendon-Derived Stem Cells via the NF-ΚB/MAPK Pathway. Oxid. Med. Cell. Longev. 2021, 2021, 5519587. [Google Scholar] [CrossRef]
- Amador, C.A.; Barrientos, V.; Peña, J.; Herrada, A.A.; González, M.; Valdés, S.; Carrasco, L.; Alzamora, R.; Figueroa, F.; Kalergis, A.M.; et al. Spironolactone Decreases DOCA-Salt-Induced Organ Damage by Blocking the Activation of T Helper 17 and the Downregulation of Regulatory T Lymphocytes. Hypertension 2014, 63, 797–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Németh, Z.H.; Mabley, J.G.; Deitch, E.A.; Szabó, C.; Haskó, G. Inhibition of the Na+/H+ Antiporter Suppresses IL-12 P40 Production by Mouse Macrophages. Biochim. Biophys. Acta 2001, 1539, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Soliman, M.M. Na+-H+ Exchange Blockade, Using Amiloride, Decreases the Inflammatory Response Following Hemorrhagic Shock and Resuscitation in Rats. Eur. J. Pharmacol. 2011, 650, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Mastronarde, J.G.; Monick, M.M.; Gross, T.J.; Hunninghake, G.W. Amiloride Inhibits Cytokine Production in Epithelium Infected with Respiratory Syncytial Virus. Am. J. Physiol. 1996, 271 Pt 1, L201–L207. [Google Scholar] [CrossRef]
- Rolfe, M.W.; Kunkel, S.L.; Rowens, B.; Standiford, T.J.; Cragoe, E.J.; Strieter, R.M. Suppression of Human Alveolar Macrophage-Derived Cytokines by Amiloride. Am. J. Respir. Cell Mol. Biol. 1992, 6, 576–582. [Google Scholar] [CrossRef] [PubMed]
- West, M.A.; LeMieur, T.L.; Hackam, D.; Bellingham, J.; Claire, L.; Rodriguez, J.L. Acetazolamide Treatment Prevents in Vitro Endotoxin-Stimulated Tumor Necrosis Factor Release in Mouse Macrophages. Shock 1998, 10, 436–441. [Google Scholar] [CrossRef]
- Hudalla, H.; Michael, Z.; Christodoulou, N.; Willis, G.R.; Fernandez-Gonzalez, A.; Filatava, E.J.; Dieffenbach, P.; Fredenburgh, L.E.; Stearman, R.S.; Geraci, M.W.; et al. Carbonic Anhydrase Inhibition Ameliorates Inflammation and Experimental Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 2019, 61, 512–524. [Google Scholar] [CrossRef]
- Julian, C.G.; Subudhi, A.W.; Wilson, M.J.; Dimmen, A.C.; Pecha, T.; Roach, R.C. Acute Mountain Sickness, Inflammation, and Permeability: New Insights from a Blood Biomarker Study. J. Appl. Physiol. 2011, 111, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Chen, W.-N.; Li, R.; Hu, C.-M.; Lei, C.; Li, C.-M. Therapeutic Effect of Acetazolamide, an Aquaporin 1 Inhibitor, on Adjuvant-Induced Arthritis in Rats by Inhibiting NF-ΚB Signal Pathway. Immunopharmacol. Immunotoxicol. 2018, 40, 117–125. [Google Scholar] [CrossRef]
- Cai, L.; Chen, W.-N.; Li, R.; Liu, M.-M.; Lei, C.; Li, C.-M.; Qiu, Y.-Y. Acetazolamide Protects Rat Articular Chondrocytes from IL-1β-Induced Apoptosis by Inhibiting the Activation of NF-ΚB Signal Pathway. Can. J. Physiol. Pharmacol. 2018, 96, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Oliveira, V.; Foresto-Neto, O.; Watanabe, I.K.M.; Zatz, R.; Câmara, N.O.S. Inflammation in Renal Diseases: New and Old Players. Front. Pharmacol. 2019, 10, 1192. [Google Scholar] [CrossRef] [PubMed]
- Siragy, H.M.; Xue, C.; Webb, R.L. Beneficial Effects of Combined Benazepril-Amlodipine on Cardiac Nitric Oxide, CGMP, and TNF-Alpha Production after Cardiac Ischemia. J. Cardiovasc. Pharmacol. 2006, 47, 636–642. [Google Scholar] [CrossRef]
- Fukuzawa, M.; Satoh, J.; Ohta, S.; Takahashi, K.; Miyaguchi, S.; Qiang, X.; Sakata, Y.; Nakazawa, T.; Takizawa, Y.; Toyota, T. Modulation of Tumor Necrosis Factor-Alpha Production with Anti-Hypertensive Drugs. Immunopharmacology 2000, 48, 65–74. [Google Scholar] [CrossRef]
- Nemati, F.; Rahbar-Roshandel, N.; Hosseini, F.; Mahmoudian, M.; Shafiei, M. Anti-Inflammatory Effects of Anti-Hypertensive Agents: Influence on Interleukin-1β Secretion by Peripheral Blood Polymorphonuclear Leukocytes from Patients with Essential Hypertension. Clin. Exp. Hypertens. 2011, 33, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Itani, H.A.; McMaster, W.G.; Saleh, M.A.; Nazarewicz, R.R.; Mikolajczyk, T.P.; Kaszuba, A.M.; Konior, A.; Prejbisz, A.; Januszewicz, A.; Norlander, A.E.; et al. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans. Hypertension 2016, 68, 123–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marvar, P.J.; Thabet, S.R.; Guzik, T.J.; Lob, H.E.; McCann, L.A.; Weyand, C.; Gordon, F.J.; Harrison, D.G. Central and Peripheral Mechanisms of T-Lymphocyte Activation and Vascular Inflammation Produced by Angiotensin II-Induced Hypertension. Circ. Res. 2010, 107, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.-S.; Schulman, I.H.; Jaimes, E.A.; Raij, L. Thiazide Diuretics, Endothelial Function, and Vascular Oxidative Stress. J. Hypertens. 2008, 26, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Au, E.; Krazit, S.T.; Pandey, K.N. Targeted Disruption of Guanylyl Cyclase-A/Natriuretic Peptide Receptor-A Gene Provokes Renal Fibrosis and Remodeling in Null Mutant Mice: Role of Proinflammatory Cytokines. Endocrinology 2010, 151, 5841–5850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orejudo, M.; García-Redondo, A.B.; Rodrigues-Diez, R.R.; Rodrigues-Díez, R.; Santos-Sanchez, L.; Tejera-Muñoz, A.; Egido, J.; Selgas, R.; Salaices, M.; Briones, A.M.; et al. Interleukin-17A Induces Vascular Remodeling of Small Arteries and Blood Pressure Elevation. Clin. Sci. 2020, 134, 513–527. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, Y.; Sun, Z.; Yang, T. Effects of Valsartan and Indapamide on Plasma Cytokines in Essential Hypertension. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2006, 31, 629–634. [Google Scholar]
- Ma, F.; Lin, F.; Chen, C.; Cheng, J.; Zeldin, D.C.; Wang, Y.; Wang, D.W. Indapamide Lowers Blood Pressure by Increasing Production of Epoxyeicosatrienoic Acids in the Kidney. Mol. Pharmacol. 2013, 84, 286–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryniarski, P.; Nazimek, K.; Marcinkiewicz, J. Anti-Inflammatory Activities of Captopril and Diuretics on Macrophage Activity in Mouse Humoral Immune Response. Int. J. Mol. Sci. 2021, 22, 11374. [Google Scholar] [CrossRef] [PubMed]
Drug | Immunological Mechanism (Reference) |
---|---|
Acethazolamide | Reduction in:
|
Drug Group | Immunological Mechanism (Reference) |
---|---|
Thiazide diuretics | Reduction in:
|
Dichlorothiazide | Reduction in:
|
Hydrochlorotihiazide | Non-significant effect on:
|
Chlorthalidone | Non-significant effect on:
|
Bendroflumethiazide | Reduction in:
|
Indapamide | Reduction of: |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryniarski, P.; Nazimek, K.; Marcinkiewicz, J. Immunomodulatory Potential of Diuretics. Biology 2021, 10, 1315. https://doi.org/10.3390/biology10121315
Bryniarski P, Nazimek K, Marcinkiewicz J. Immunomodulatory Potential of Diuretics. Biology. 2021; 10(12):1315. https://doi.org/10.3390/biology10121315
Chicago/Turabian StyleBryniarski, Paweł, Katarzyna Nazimek, and Janusz Marcinkiewicz. 2021. "Immunomodulatory Potential of Diuretics" Biology 10, no. 12: 1315. https://doi.org/10.3390/biology10121315
APA StyleBryniarski, P., Nazimek, K., & Marcinkiewicz, J. (2021). Immunomodulatory Potential of Diuretics. Biology, 10(12), 1315. https://doi.org/10.3390/biology10121315