A Systematic Review of the Role of Oxytocin, Cortisol, and Testosterone in Facial Emotional Processing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Method
Search Strategy
3. Results
3.1. Oxytocin
3.2. Cortisol
3.3. Testosterone
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darwin, C. The Expression of the Emotions in Man and Animals; John Murray: London, UK, 1872. [Google Scholar]
- Frank, M.G. Facial expressions. In International Encyclopedia of the Social and Behavioral Sciences; Eisenberg, N., Ed.; Elsevier: Oxford, UK, 2004; pp. 5230–5234. [Google Scholar]
- Smelser, N.J.; Baltes, P.B. (Eds.) International Encyclopedia of the Social & Behavioral Sciences; Elsevier: Amsterdam, The Netherlands, 2001; Volume 11. [Google Scholar]
- Smith, M.L.; Grühn, D.; Bevitt, A.; Ellis, M.; Ciripan, O.; Scrimgeour, S.; Papasavva, M.; Ewing, L. Transmitting and decoding facial expressions of emotion during healthy aging: More similarities than differences. J. Vis. 2018, 18, 10. [Google Scholar] [CrossRef] [Green Version]
- Barrett, L.F.; Adolphs, R.; Marsella, S.; Martinez, A.M.; Pollak, S.D. Emotional Expressions Reconsidered: Challenges to Inferring Emotion from Human Facial Movements. Psychol. Sci. Public Interes. 2019, 20, 1–68. [Google Scholar] [CrossRef] [Green Version]
- Jack, R.E.; Schyns, P.G. The Human Face as a Dynamic Tool for Social Communication. Curr. Biol. 2015, 25, R621–R634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, G.J.; Brown, R.T.; Goonan, L.; Celano, M. The Development of Decoding of Emotions in Children with Externalizing Behavioral Disturbances and Their Normally Developing Peers. Arch. Clin. Neuropsychol. 1998, 13, 383–396. [Google Scholar] [CrossRef]
- Chapman, H.; Gillespie, S.; Mitchell, I.J. Facial affect processing in incarcerated violent males: A systematic review. Aggress. Violent Behav. 2018, 38, 123–138. [Google Scholar] [CrossRef]
- Dalili, M.N.; Penton-Voak, I.; Harmer, C.; Munafo, M. Meta-analysis of emotion recognition deficits in major depressive disorder. Psychol. Med. 2014, 45, 1135–1144. [Google Scholar] [CrossRef] [Green Version]
- Kohler, C.G.; Walker, J.B.; Martin, E.A.; Healey, K.M.; Moberg, P.J. Facial Emotion Perception in Schizophrenia: A Meta-analytic Review. Schizophr. Bull. 2009, 36, 1009–1019. [Google Scholar] [CrossRef]
- Todorov, A. The role of the amygdala in face perception and evaluation. Motiv. Emot. 2012, 31, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costafreda, S.G.; Brammer, M.J.; David, A.; Fu, C. Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies. Brain Res. Rev. 2008, 58, 57–70. [Google Scholar] [CrossRef]
- Somerville, L.H.; Fani, N.; Tone, E. Behavioral and Neural Representation of Emotional Facial Expressions Across the Lifespan. Dev. Neuropsychol. 2011, 36, 408–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Martínez, Á.; González, M.; Lila, M.; Gracia, E.; Martí-Bonmatí, L.; Alberich-Bayarri, Á.; Maldonado-Puig, R.; Ten-Esteve, A.; Moya-Albiol, L. The Brain Resting-State Functional Connectivity Underlying Violence Proneness: Is It a Reliable Marker for Neurocriminology? A Systematic Review. Behav. Sci. 2019, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somerville, L.H.; Jones, R.M.; Casey, B. A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cogn. 2010, 72, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Ebner, N.C.; Johnson, M.K.; Fischer, H. Neural Mechanisms of Reading Facial Emotions in Young and Older Adults. Front. Psychol. 2012, 3, 223. [Google Scholar] [CrossRef] [Green Version]
- Gur, R.C.; Schroeder, L.; Turner, T.; Mc Grath, C.; Chan, R.M.; Turetsky, B.I.; Alsop, D.; Maldjian, J.; Gur, R.E. Brain Activation during Facial Emotion Processing. NeuroImage 2002, 16, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Dalgleish, T. The emotional brain. Nat. Rev. Neurosci. 2004, 5, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, K.A.; Wager, T.D.; Kober, H.; Bliss-Moreau, E.; Barrett, L.F. The brain basis of emotion: A meta-analytic review. Behav. Brain Sci. 2012, 35, 121–143. [Google Scholar] [CrossRef] [Green Version]
- van Wingen, G.; Ossewaarde, L.; Bäckström, T.; Hermans, E.; Fernandez, G. Gonadal hormone regulation of the emotion circuitry in humans. Neuroscience 2011, 191, 38–45. [Google Scholar] [CrossRef]
- Di Simplicio, M.; Harmer, C.J. Oxytocin and emotion processing. J. Psychopharmacol. 2016, 30, 1156–1159. [Google Scholar] [CrossRef]
- Osório, F.L.; Cassis, J.M.D.P.; De Sousa, J.P.M.; Poli-Neto, O.; Martín-Santos, R. Sex Hormones and Processing of Facial Expressions of Emotion: A Systematic Literature Review. Front. Psychol. 2018, 9, 529. [Google Scholar] [CrossRef] [Green Version]
- Born, J.; Lange, T.; Kern, W.; McGregor, G.P.; Bickel, U.; Fehm, H.L. Sniffing neuropeptides: A transnasal approach to the human brain. Nat. Neurosci. 2002, 5, 514–516. [Google Scholar] [CrossRef]
- Striepens, N.; Matusch, A.; Kendrick, K.M.; Mihov, Y.; Elmenhorst, D.; Becker, B.; Lang, M.; Coenen, H.H.; Maier, W.; Hurlemann, R.; et al. Oxytocin enhances attractiveness of unfamiliar female faces independent of the dopamine reward system. Psychoneuroendocrinology 2014, 39, 74–87. [Google Scholar] [CrossRef]
- Veening, J.G.; Olivier, B. Intranasal administration of oxytocin: Behavioral and clinical effects, a review. Neurosci. Biobehav. Rev. 2013, 37, 1445–1465. [Google Scholar] [CrossRef]
- Campbell, A.; Ruffman, T.; Murray, J.E.; Glue, P. Oxytocin improves emotion recognition for older males. Neurobiol. Aging 2014, 35, 2246–2248. [Google Scholar] [CrossRef]
- Cardoso, C.; Ellenbogen, M.A.; Linnen, A.M. The effect of intranasal oxytocin on perceiving and understanding emotion on the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Emotion 2014, 14, 43–50. [Google Scholar] [CrossRef]
- Colonnello, V.; Domes, G.; Heinrichs, M. As time goes by: Oxytocin influences the subjective perception of time in a social context. Psychoneuroendocrinology 2016, 68, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Di Simplicio, M.; Massey-Chase, R.; Cowen, P.; Harmer, C.J. Oxytocin enhances processing of positive versus negative emotional information in healthy male volunteers. J. Psychopharmacol. 2009, 23, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Domes, G.; Heinrichs, M.; Michel, A.; Berger, C.; Herpertz, S.C. Oxytocin Improves “Mind-Reading” in Humans. Biol. Psychiatry 2007, 61, 731–733. [Google Scholar] [CrossRef] [PubMed]
- Domes, G.; Lischke, A.; Berger, C.; Grossmann, A.; Hauenstein, K.; Heinrichs, M.; Herpertz, S.C. Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology 2010, 35, 83–93. [Google Scholar] [CrossRef]
- Domes, G.; Sibold, M.; Schulze, L.; Lischke, A.; Herpertz, S.C.; Heinrichs, M. Intranasal oxytocin increases covert attention to positive social cues. Psychol. Med. 2013, 43, 1747–1753. [Google Scholar] [CrossRef]
- Domes, G.; Steiner, A.; Porges, S.W.; Heinrichs, M. Oxytocin differentially modulates eye gaze to naturalistic social signals of happiness and anger. Psychoneuroendocrinology 2013, 38, 1198–1202. [Google Scholar] [CrossRef]
- Domes, G.; Heinrichs, M.; Gläscher, J.; Büchel, C.; Braus, D.F.; Herpertz, S.C. Oxytocin Attenuates Amygdala Responses to Emotional Faces Regardless of Valence. Biol. Psychiatry 2007, 62, 1187–1190. [Google Scholar] [CrossRef] [PubMed]
- Ellenbogen, M.A.; Linnen, A.-M.; Cardoso, C.; Joober, R. Intranasal oxytocin impedes the ability to ignore task-irrelevant facial expressions of sadness in students with depressive symptoms. Psychoneuroendocrinology 2013, 38, 387–398. [Google Scholar] [CrossRef]
- Ellenbogen, M.A.; Linnen, A.; Grumet, R.; Cardoso, C.; Joober, R. The acute effects of intranasal oxytocin on automatic and effortful attentional shifting to emotional faces. Psychophysiology 2012, 49, 128–137. [Google Scholar] [CrossRef]
- Ellingsen, D.-M.; Wessberg, J.; Chelnokova, O.; Olausson, H.; Laeng, B.; Leknes, S. In touch with your emotions: Oxytocin and touch change social impressions while others’ facial expressions can alter touch. Psychoneuroendocrinology 2014, 39, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Feeser, M.; Fan, Y.; Weigand, A.; Hahn, A.; Gärtner, M.; Aust, S.; Böker, H.; Bajbouj, M.; Grimm, S. The beneficial effect of oxytocin on avoidance-related facial emotion recognition depends on early life stress experience. Psychopharmacology 2014, 231, 4735–4744. [Google Scholar] [CrossRef] [PubMed]
- Fischer-Shofty, M.; Shamay-Tsoory, S.; Harari, H.; Levkovitz, Y. The effect of intranasal administration of oxytocin on fear recognition. Neuropsychologia 2010, 48, 179–184. [Google Scholar] [CrossRef]
- Gamer, M.; Zurowski, B.; Buchel, C. Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proc. Natl. Acad. Sci. USA 2010, 107, 9400–9405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamer, M.; Büchel, C. Oxytocin specifically enhances valence-dependent parasympathetic responses. Psychoneuroendocrinology 2012, 37, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Grainger, S.A.; Henry, J.D.; Steinvik, H.R.; Vanman, E.J. Intranasal oxytocin does not alter initial perceptions of facial trustworthiness in younger or older adults. J. Psychopharmacol. 2018, 33, 250–254. [Google Scholar] [CrossRef]
- Guastella, A.J.; Mitchell, P.; Mathews, F. Oxytocin Enhances the Encoding of Positive Social Memories in Humans. Biol. Psychiatry 2008, 64, 256–258. [Google Scholar] [CrossRef]
- Hirosawa, T.; Kikuchi, M.; Higashida, H.; Okumura, E.; Ueno, S.; Shitamichi, K.; Yoshimura, Y.; Munesue, T.; Tsubokawa, T.; Haruta, Y.; et al. Oxytocin attenuates feelings of hostility depending on emotional context and individuals’ characteristics. Sci. Rep. 2012, 2, 384. [Google Scholar] [CrossRef]
- Hoge, E.A.; Anderson, E.; Lawson, E.A.; Bui, E.; Fischer, L.E.; Khadge, S.; Barrett, L.F.; Simon, N.M. Gender moderates the effect of oxytocin on social judgments. Hum. Psychopharmacol. Clin. Exp. 2014, 29, 299–304. [Google Scholar] [CrossRef]
- Horta, M.; Ziaei, M.; Lin, T.; Porges, E.C.; Fischer, H.; Feifel, D.; Spreng, R.N.; Ebner, N.C. Oxytocin alters patterns of brain activity and amygdalar connectivity by age during dynamic facial emotion identification. Neurobiol. Aging 2019, 78, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Hubble, K.; Daughters, K.; Manstead, A.; Rees, A.; Thapar, A.; Van Goozen, S.H. Oxytocin Reduces Face Processing Time but Leaves Recognition Accuracy and Eye-Gaze Unaffected. J. Int. Neuropsychol. Soc. 2016, 23, 23–33. [Google Scholar] [CrossRef]
- Leknes, S.; Wessberg, J.; Ellingsen, D.-M.; Chelnokova, O.; Olausson, H.; Laeng, B. Oxytocin enhances pupil dilation and sensitivity to ‘hidden’ emotional expressions. Soc. Cogn. Affect. Neurosci. 2012, 8, 741–749. [Google Scholar] [CrossRef] [Green Version]
- Lischke, A.; Berger, C.; Prehn, K.; Heinrichs, M.; Herpertz, S.C.; Domes, G. Intranasal oxytocin enhances emotion recognition from dynamic facial expressions and leaves eye-gaze unaffected. Psychoneuroendocrinology 2012, 37, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Becker, B.; Geng, Y.; Zhao, Z.; Gao, S.; Zhao, W.; Yao, S.; Zheng, X.; Ma, X.; Gao, Z.; et al. Sex-dependent neural effect of oxytocin during subliminal processing of negative emotion faces. NeuroImage 2017, 162, 127–137. [Google Scholar] [CrossRef]
- Lynn, S.K.; Hoge, E.A.; Fischer, L.E.; Barrett, L.F.; Simon, N.M. Gender differences in oxytocin-associated disruption of decision bias during emotion perception. Psychiatry Res. 2014, 219, 198–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, A.; Scheele, D.; Spengler, F.B.; Menba, T.; Mohr, F.; Güntürkün, O.; Stoffel-Wagner, B.; Kinfe, T.M.; Maier, W.; Khalsa, S.S.; et al. Oxytocin reduces a chemosensory-induced stress bias in social perception. Neuropsychopharmacology 2018, 44, 281–288. [Google Scholar] [CrossRef]
- Marsh, A.A.; Yu, H.; Pine, D.S.; Blair, R.J.R. Oxytocin improves specific recognition of positive facial expressions. Psychopharmacologia 2010, 209, 225–232. [Google Scholar] [CrossRef]
- Perry, A.; Aviezer, H.; Goldstein, P.; Palgi, S.; Klein, E.; Shamay-Tsoory, S.G. Face or body? Oxytocin improves perception of emotions from facial expressions in incongruent emotional body context. Psychoneuroendocrinology 2013, 38, 2820–2825. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, P.; Kalisch, R.; Singer, T.; Dolan, R. Oxytocin Attenuates Affective Evaluations of Conditioned Faces and Amygdala Activity. J. Neurosci. 2008, 28, 6607–6615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prehn, K.; Kazzer, P.; Lischke, A.; Heinrichs, M.; Herpertz, S.C.; Domes, G. Effects of intranasal oxytocin on pupil dilation indicate increased salience of socioaffective stimuli. Psychophysiology 2013, 50, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Quintana, D.S.; Westlye, L.T.; Rustan, G.; Tesli, N.; Poppy, C.L.; Smevik, H.; Tesli, M.; Røine, M.; Mahmoud, R.A.; Smerud, K.T.; et al. Low-dose oxytocin delivered intranasally with Breath Powered device affects social-cognitive behavior: A randomized four-way crossover trial with nasal cavity dimension assessment. Transl. Psychiatry 2015, 5, e602. [Google Scholar] [CrossRef] [PubMed]
- Radke, S.; Roelofs, K.; De Bruijn, E.R.A. Acting on Anger. Psychol. Sci. 2013, 24, 1573–1578. [Google Scholar] [CrossRef]
- Riem, M.M.; Bakermans-Kranenburg, M.J.; Voorthuis, A.; van Ijzendoorn, M.H. Oxytocin effects on mind-reading are moderated by experiences of maternal love withdrawal: An fMRI study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 51, 105–112. [Google Scholar] [CrossRef]
- Savaskan, E.; Ehrhardt, R.; Schulz, A.; Walter, M.; Schächinger, H. Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology 2008, 33, 368–374. [Google Scholar] [CrossRef]
- Schulze, L.; Lischke, A.; Greif, J.; Herpertz, S.C.; Heinrichs, M.; Domes, G. Oxytocin increases recognition of masked emotional faces. Psychoneuroendocrinology 2011, 36, 1378–1382. [Google Scholar] [CrossRef]
- Shin, N.Y.; Park, H.Y.; Jung, W.H.; Kwon, J.S. Effects of Intranasal Oxytocin on Emotion Recognition in Korean Male: A Dose-Response Study. Psychiatry Investig. 2018, 15, 710–716. [Google Scholar] [CrossRef]
- Skvortsova, A.; Veldhuijzen, D.S.; de Rover, M.; Pacheco-Lopez, G.; Bakermans-Kranenburg, M.; van IJzendoorn, M.; Chavannes, N.H.; van Middendorp, H.; Evers, A.W.M. Effects of oxytocin administration and conditioned oxytocin on brain activity: An fMRI study. PLoS ONE 2020, 15, e0229692. [Google Scholar] [CrossRef] [Green Version]
- Skvortsova, A.; Veldhuijzen, D.S.; Pacheco-Lopez, G.; Bakermans-Kranenburg, M.; van Ijzendoorn, M.; Smeets, M.A.; Wilderjans, T.F.; Dahan, A.; Bergh, O.V.D.; Chavannes, N.; et al. Placebo Effects in the Neuroendocrine System: Conditioning of the Oxytocin Responses. Psychosom. Med. 2019, 82, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Spengler, F.B.; Schultz, J.; Scheele, D.; Essel, M.; Maier, W.; Heinrichs, M.; Hurlemann, R. Kinetics and Dose Dependency of Intranasal Oxytocin Effects on Amygdala Reactivity. Biol. Psychiatry 2017, 82, 885–894. [Google Scholar] [CrossRef]
- Teed, A.R.; Han, K.; Rakic, J.; Mark, D.B.; Krawczyk, D.C. The influence of oxytocin and vasopressin on men’s judgments of social dominance and trustworthiness: An fMRI study of neutral faces. Psychoneuroendocrinology 2019, 106, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Theodoridou, A.; Penton-Voak, I.S.; Rowe, A.C. A Direct Examination of the Effect of Intranasal Administration of Oxytocin on Approach-Avoidance Motor Responses to Emotional Stimuli. PLoS ONE 2013, 8, e58113. [Google Scholar] [CrossRef] [Green Version]
- Thienel, M.; Heinrichs, M.; Fischer, S.; Ott, V.; Born, J.; Hallschmid, M. Oxytocin’s impact on social face processing is stronger in homosexual than heterosexual men. Psychoneuroendocrinology 2014, 39, 194–203. [Google Scholar] [CrossRef]
- Tollenaar, M.S.; Chatzimanoli, M.; van der Wee, N.J.; Putman, P. Enhanced orienting of attention in response to emotional gaze cues after oxytocin administration in healthy young men. Psychoneuroendocrinology 2013, 38, 1797–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Ma, X.; Zhao, W.; Luo, L.; Yao, S.; Kendrick, K.M. Oxytocin enhances attentional bias for neutral and positive expression faces in individuals with higher autistic traits. Psychoneuroendocrinology 2015, 62, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, J.; Chen, Z.; Kendrick, K.M.; Becker, B. Oxytocin reduces top-down control of attention by increasing bottom-up attention allocation to social but not non-social stimuli—A randomized controlled trial. Psychoneuroendocrinology 2019, 108, 62–69. [Google Scholar] [CrossRef]
- Yue, T.; Yue, C.; Liu, G.; Huang, X. Effects of Oxytocin on Facial Expression and Identity Working Memory Are Found in Females but Not Males. Front. Neurosci. 2018, 12, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Averbeck, B.B.; Bobin, T.; Evans, S.; Shergill, S.S. Emotion recognition and oxytocin in patients with schizophrenia. Psychol. Med. 2012, 42, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Bach, P.; Koopmann, A.; Bumb, J.M.; Zimmermann, S.; Bühler, S.; Reinhard, I.; Witt, S.H.; Rietschel, M.; Vollstädt-Klein, S.; Kiefer, F. Oxytocin attenuates neural response to emotional faces in social drinkers: An fMRI study. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 271, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Bate, S.; Cook, S.J.; Duchaine, B.; Tree, J.J.; Burns, E.J.; Hodgson, T.L. Intranasal inhalation of oxytocin improves face processing in developmental prosopagnosia. Cortex 2014, 50, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertsch, K.; Gamer, M.; Schmidt, B.; Schmidinger, I.; Walther, S.; Kästel, T.; Schnell, K.; Büchel, C.; Domes, G.; Herpertz, S.C. Oxytocin and Reduction of Social Threat Hypersensitivity in Women with Borderline Personality Disorder. Am. J. Psychiatry 2013, 170, 1169–1177. [Google Scholar] [CrossRef]
- Bradley, E.R.; Seitz, A.; Niles, A.N.; Rankin, K.P.; Mathalon, D.H.; O’Donovan, A.; Woolley, J.D. Oxytocin increases eye gaze in schizophrenia. Schizophr. Res. 2019, 212, 177–185. [Google Scholar] [CrossRef]
- Brüne, M.; Ebert, A.; Kolb, M.; Tas, C.; Edel, M.-A.; Roser, P. Oxytocin influences avoidant reactions to social threat in adults with borderline personality disorder. Hum. Psychopharmacol. Clin. Exp. 2013, 28, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Clark-Elford, R.; Nathan, P.J.; Auyeung, B.; Mogg, K.; Bradley, B.P.; Sule, A.; Müller, U.; Dudas, R.B.; Sahakian, B.J.; Baron-Cohen, S. Effects of Oxytocin on Attention to Emotional Faces in Healthy Volunteers and Highly Socially Anxious Males. Int. J. Neuropsychopharmacol. 2014, 18, pyu012. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.C.; Green, M.F.; Lee, J.; Horan, W.P.; Şentürk, D.; Clarke, A.D.; Marder, S.R. Oxytocin-Augmented Social Cognitive Skills Training in Schizophrenia. Neuropsychopharmacology 2014, 39, 2070–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, M.; Lee, J.; Horan, W.P.; Clarke, A.D.; McGee, M.R.; Green, M.F.; Marder, S.R. Effects of single dose intranasal oxytocin on social cognition in schizophrenia. Schizophr. Res. 2013, 147, 393–397. [Google Scholar] [CrossRef]
- Domes, G.; Normann, C.; Heinrichs, M. The effect of oxytocin on attention to angry and happy faces in chronic depression. BMC Psychiatry 2016, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fang, A.; Hoge, E.A.; Heinrichs, M.; Hofmann, S.G. Attachment Style Moderates the Effects of Oxytocin on Social Behaviors and Cognitions During Social Rejection. Clin. Psychol. Sci. 2014, 2, 740–747. [Google Scholar] [CrossRef]
- Fischer-Shofty, M.; Shamay-Tsoory, S.G.; Levkovitz, Y. Characterization of the effects of oxytocin on fear recognition in patients with schizophrenia and in healthy controls. Front. Neurosci. 2013, 7, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, M.B.; Gomes, A.M.; Carter, C.S.; Lee, R. Divergent effects of two different doses of intranasal oxytocin on facial affect discrimination in schizophrenic patients with and without polydipsia. Psychopharmacology 2011, 216, 101–110. [Google Scholar] [CrossRef]
- Gorka, S.M.; Fitzgerald, D.A.; Labuschagne, I.; Hosanagar, A.; Wood, A.; Nathan, P.J.; Phan, K.L. Oxytocin Modulation of Amygdala Functional Connectivity to Fearful Faces in Generalized Social Anxiety Disorder. Neuropsychopharmacology 2015, 40, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Guastella, A.J.; Einfeld, S.L.; Gray, K.; Rinehart, N.; Tonge, B.; Lambert, T.J.; Hickie, I.B. Intranasal Oxytocin Improves Emotion Recognition for Youth with Autism Spectrum Disorders. Biol. Psychiatry 2010, 67, 692–694. [Google Scholar] [CrossRef]
- Guastella, A.J.; Gray, K.; Rinehart, N.; Alvares, G.; Tonge, B.; Hickie, I.; Keating, C.M.; Cacciotti-Saija, C.; Einfeld, S.L. The effects of a course of intranasal oxytocin on social behaviors in youth diagnosed with autism spectrum disorders: A randomized controlled trial. J. Child Psychol. Psychiatry 2015, 56, 444–452. [Google Scholar] [CrossRef]
- Labuschagne, I.; Phan, K.L.; Wood, A.; Angstadt, M.; Chua, P.; Heinrichs, M.; Stout, J.; Nathan, P.J. Oxytocin Attenuates Amygdala Reactivity to Fear in Generalized Social Anxiety Disorder. Neuropsychopharmacology 2010, 35, 2403–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labuschagne, I.; Phan, K.L.; Wood, A.; Angstadt, M.; Chua, P.; Heinrichs, M.; Stout, J.C.; Nathan, P.J. Medial frontal hyperactivity to sad faces in generalized social anxiety disorder and modulation by oxytocin. Int. J. Neuropsychopharmacol. 2012, 15, 883–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, J.M.; Arcuni, P.A.; Weinstein, D.; Woolley, J.D. Intranasal Oxytocin Selectively Modulates Social Perception, Craving, and Approach Behavior in Subjects With Alcohol Use Disorder. J. Addict. Med. 2016, 10, 182–189. [Google Scholar] [CrossRef]
- Pedersen, C.A.; Gibson, C.M.; Rau, S.W.; Salimi, K.; Smedley, K.L.; Casey, R.L.; Leserman, J.; Jarskog, L.F.; Penn, D.L. Intranasal oxytocin reduces psychotic symptoms and improves Theory of Mind and social perception in schizophrenia. Schizophr. Res. 2011, 132, 50–53. [Google Scholar] [CrossRef]
- Porffy, L.A.; Bell, V.; Coutrot, A.; Wigton, R.; D’Oliveira, T.; Mareschal, I.; Shergill, S.S. In the eye of the beholder? Oxytocin effects on eye movements in schizophrenia. Schizophr. Res. 2020, 216, 279–287. [Google Scholar] [CrossRef]
- Quintana, D.S.; Westlye, L.T.; Hope, S.; Nærland, T.; Elvsåshagen, T.; Dørum, E.; Rustan, Ø.; Valstad, M.; Rezvaya, L.; Lishaugen, H.; et al. Dose-dependent social-cognitive effects of intranasal oxytocin delivered with novel Breath Powered device in adults with autism spectrum disorder: A randomized placebo-controlled double-blind crossover trial. Transl. Psychiatry 2017, 7, e1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, I.; Boll, S.; Volman, I.; Roelofs, K.; Spohn, A.; Herpertz, S.C.; Bertsch, K. Oxytocin Normalizes Approach–Avoidance Behavior in Women With Borderline Personality Disorder. Front. Psychiatry 2020, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Timmermann, M.; Jeung, H.; Schmitt, R.; Boll, S.; Freitag, C.M.; Bertsch, K.; Herpertz, S.C. Oxytocin improves facial emotion recognition in young adults with antisocial personality disorder. Psychoneuroendocrinology 2017, 85, 158–164. [Google Scholar] [CrossRef]
- Woolley, J.; Chuang, B.; Lam, O.; Lai, W.; O’Donovan, A.; Rankin, K.; Mathalon, D.; Vinogradov, S. Oxytocin administration enhances controlled social cognition in patients with schizophrenia. Psychoneuroendocrinology 2014, 47, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertsch, K.; Böhnke, R.; Kruk, M.R.; Richter, S.; Naumann, E. Exogenous cortisol facilitates responses to social threat under high provocation. Horm. Behav. 2011, 59, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Dierolf, A.M.; Arlt, L.E.; Roelofs, K.; Kölsch, M.; Hülsemann, M.J.; Schächinger, H.; Naumann, E. Effects of basal and acute cortisol on cognitive flexibility in an emotional task switching paradigm in men. Horm. Behav. 2016, 81, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Duesenberg, M.; Weber, J.; Schulze, L.; Schaeuffele, C.; Roepke, S.; Hellmann-Regen, J.; Otte, C.; Wingenfeld, K. Does cortisol modulate emotion recognition and empathy? Psychoneuroendocrinology 2016, 66, 221–227. [Google Scholar] [CrossRef]
- Henckens, M.J.A.G.; van Wingen, G.; Joels, M.; Fernandez, G. Time-Dependent Effects of Corticosteroids on Human Amygdala Processing. J. Neurosci. 2010, 30, 12725–12732. [Google Scholar] [CrossRef]
- Ma, S.T.; Abelson, J.L.; Okada, G.; Taylor, S.F.; Liberzon, I. Neural circuitry of emotion regulation: Effects of appraisal, attention, and cortisol administration. Cogn. Affect. Behav. Neurosci. 2017, 17, 437–451. [Google Scholar] [CrossRef]
- Putman, P.; Hermans, E.J.; Van Honk, J. Exogenous cortisol shifts a motivated bias from fear to anger in spatial working memory for facial expressions. Psychoneuroendocrinology 2007, 32, 14–21. [Google Scholar] [CrossRef]
- Putman, P.; Hermans, E.J.; Koppeschaar, H.; van Schijndel, A.; van Honk, J. A single administration of cortisol acutely reduces preconscious attention for fear in anxious young men. Psychoneuroendocrinology 2007, 32, 793–802. [Google Scholar] [CrossRef]
- Putman, P.; Hermans, E.J.; Van Honk, J. Cortisol administration acutely reduces threat-selective spatial attention in healthy young men. Physiol. Behav. 2010, 99, 294–300. [Google Scholar] [CrossRef]
- Schwabe, L.; Höffken, O.; Tegenthoff, M.; Wolf, O.T. Opposite effects of noradrenergic arousal on amygdala processing of fearful faces in men and women. NeuroImage 2013, 73, 1–7. [Google Scholar] [CrossRef]
- Taylor, V.A.; Ellenbogen, M.A.; Washburn, D.; Joober, R. The effects of glucocorticoids on the inhibition of emotional information: A dose–response study. Biol. Psychol. 2011, 86, 17–25. [Google Scholar] [CrossRef] [PubMed]
- van Peer, J.M.; Roelofs, K.; Rotteveel, M.; van Dijk, J.G.; Spinhoven, P.; Ridderinkhof, K.R. The effects of cortisol administration on approach–avoidance behavior: An event-related potential study. Biol. Psychol. 2007, 76, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Vasa, R.A.; Pine, D.S.; Masten, C.L.; Vythilingam, M.; Collin, C.; Charney, D.S.; Neumeister, A.; Mogg, K.; Bradley, B.P.; Bruck, M.; et al. Effects of yohimbine and hydrocortisone on panic symptoms, autonomic responses, and attention to threat in healthy adults. Psychopharmacology 2009, 204, 445–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho-Fernando, S.; Beblo, T.; Schlosser, N.; Terfehr, K.; Wolf, O.T.; Otte, C.; Löwe, B.; Spitzer, C.; Driessen, M.; Wingenfeld, K. Acute glucocorticoid effects on response inhibition in borderline personality disorder. Psychoneuroendocrinology 2013, 38, 2780–2788. [Google Scholar] [CrossRef]
- Schlosser, N.; Wolf, O.T.; Fernando, S.C.; Terfehr, K.; Otte, C.; Spitzer, C.; Beblo, T.; Driessen, M.; Löwe, B.; Wingenfeld, K. Effects of acute cortisol administration on response inhibition in patients with major depression and healthy controls. Psychiatry Res. 2013, 209, 439–446. [Google Scholar] [CrossRef]
- van Peer, J.M.; Spinhoven, P.; Roelofs, K. Psychophysiological evidence for cortisol-induced reduction in early bias for implicit social threat in social phobia. Psychoneuroendocrinology 2010, 35, 21–32. [Google Scholar] [CrossRef]
- van Peer, J.M.; Spinhoven, P.; van Dijk, J.G.; Roelofs, K. Cortisol-induced enhancement of emotional face processing in social phobia depends on symptom severity and motivational context. Biol. Psychol. 2009, 81, 123–130. [Google Scholar] [CrossRef]
- Bird, B.M.; Geniole, S.N.; Little, A.C.; Moreau, B.J.P.; Ortiz, T.L.; Goldfarb, B.; Bonin, P.L.; Carré, J.M. Does Exogenous Testosterone Modulate Men’s Ratings of Facial Dominance or Trustworthiness? Adapt. Hum. Behav. Physiol. 2017, 3, 365–385. [Google Scholar] [CrossRef] [Green Version]
- Bos, P.A.; Hofman, D.; Hermans, E.J.; Montoya, E.R.; Baron-Cohen, S.; van Honk, J. Testosterone reduces functional connectivity during the ‘Reading the Mind in the Eyes’ Test. Psychoneuroendocrinology 2016, 68, 194–201. [Google Scholar] [CrossRef]
- Bos, P.A.; Hermans, E.J.; Ramsey, N.F.; van Honk, J. The neural mechanisms by which testosterone acts on interpersonal trust. NeuroImage 2012, 61, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Bos, P.A.; Terburg, D.; van Honk, J. Testosterone decreases trust in socially naive humans. Proc. Natl. Acad. Sci. USA 2010, 107, 9991–9995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enter, D.; Spinhoven, P.; Roelofs, K. Alleviating social avoidance: Effects of single dose testosterone administration on approach–avoidance action. Horm. Behav. 2014, 65, 351–354. [Google Scholar] [CrossRef]
- Goetz, S.M.; Tang, L.; Thomason, M.; Diamond, M.; Hariri, A.R.; Carré, J.M. Testosterone Rapidly Increases Neural Reactivity to Threat in Healthy Men: A Novel Two-Step Pharmacological Challenge Paradigm. Biol. Psychiatry 2014, 76, 324–331. [Google Scholar] [CrossRef]
- Terburg, D.; Aarts, H.; Van Honk, J. Testosterone Affects Gaze Aversion From Angry Faces Outside of Conscious Awareness. Psychol. Sci. 2012, 23, 459–463. [Google Scholar] [CrossRef]
- van Honk, J.; Peper, J.S.; Schutter, D.J. Testosterone Reduces Unconscious Fear but Not Consciously Experienced Anxiety: Implications for the Disorders of Fear and Anxiety. Biol. Psychiatry 2005, 58, 218–225. [Google Scholar] [CrossRef]
- Van Honk, J.; Schutter, D.J.L.G. Testosterone reduces conscious detection of signals serving social correction: Implications for antisocial behavior. Psychol. Sci. 2007, 18, 663–667. [Google Scholar] [CrossRef] [PubMed]
- van Honk, J.; Schutter, D.J.; Bos, P.A.; Kruijt, A.-W.; Lentjes, E.G.; Baron-Cohen, S. Testosterone administration impairs cognitive empathy in women depending on second-to-fourth digit ratio. Proc. Natl. Acad. Sci. USA 2011, 108, 3448–3452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Wingen, G.; Mattern, C.; Verkes, R.J.; Buitelaar, J.; Fernández, G. Testosterone reduces amygdala–orbitofrontal cortex coupling. Psychoneuroendocrinology 2010, 35, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Van Wingen, G.A.; Zylicz, S.A.; Pieters, S.; Mattern, C.; Verkes, R.J.; Buitelaar, J.K.; Fernández, G. Testosterone Increases Amygdala Reactivity in Middle-Aged Women to a Young Adulthood Level. Neuropsychopharmacology 2009, 34, 539–547. [Google Scholar] [CrossRef]
- Enter, D.; Spinhoven, P.; Roelofs, K. Dare to Approach. Clin. Psychol. Sci. 2016, 4, 1073–1079. [Google Scholar] [CrossRef]
- Quintana, D.S.; Rokicki, J.; van der Meer, D.; Alnæs, D.; Kaufmann, T.; Córdova-Palomera, A.; Dieset, I.; Andreassen, O.A.; Westlye, L.T. Oxytocin pathway gene networks in the human brain. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Said, C.P.; Haxby, J.V.; Todorov, A. Brain systems for assessing the affective value of faces. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1660–1670. [Google Scholar] [CrossRef]
- Zinchenko, O.; Yaple, Z.A.; Arsalidou, M. Brain Responses to Dynamic Facial Expressions: A Normative Meta-Analysis. Front. Hum. Neurosci. 2018, 12, 227. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, R.L.; Lumia, A.R.; McGinnis, M.Y. Androgen Receptors, Sex Behavior, and Aggression. Neuroendocrinology 2012, 96, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimpl, G.; Fahrenholz, F. The Oxytocin Receptor System: Structure, Function, and Regulation. Physiol. Rev. 2001, 81, 629–683. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S.; Nasca, C.; Gray, J.D. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology 2016, 41, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Lovallo, W.R.; Robinson, J.L.; Glahn, D.C.; Fox, P.T. Acute effects of hydrocortisone on the human brain: An fMRI study. Psychoneuroendocrinology 2010, 35, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sripada, C.S.; Phan, K.; Labuschagne, I.; Welsh, R.; Nathan, P.J.; Wood, A. Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex. Int. J. Neuropsychopharmacol. 2012, 16, 255–260. [Google Scholar] [CrossRef]
- Moisan, M.; Minni, A.; Dominguez, G.; Helbling, J.; Foury, A.; Henkous, N.; Dorey, R.; Béracochéa, D. Role of corticosteroid binding globulin in the fast actions of glucocorticoids on the brain. Steroids 2014, 81, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Merens, W.; Van der Does, A.W.; Spinhoven, P. The effects of serotonin manipulations on emotional information processing and mood. J. Affect. Disord. 2007, 103, 43–62. [Google Scholar] [CrossRef]
- Rypma, B.; Fischer, H.; Rieckmann, A.; Hubbard, N.A.; Nyberg, L.; Bäckman, L. Dopamine D1 Binding Potential Predicts Fusiform BOLD Activity during Face-Recognition Performance. J. Neurosci. 2015, 35, 14702–14707. [Google Scholar] [CrossRef] [PubMed]
- Mancini, C.; Falciati, L.; Maioli, C.; Mirabella, G. Threatening Facial Expressions Impact Goal-Directed Actions Only if Task-Relevant. Brain Sci. 2020, 10, 794. [Google Scholar] [CrossRef]
- Mancini, C.; Falciati, L.; Maioli, C.; Mirabella, G. Happy Facial Expressions Impair Inhibitory Control with Respect to Fearful Facial Expressions but Only When Task Relevant. 2021. Available online: http://psyarxiv.com/6vkwr/ (accessed on 5 December 2021).
- Mirabella, G. The Weight of Emotions in Decision-Making: How Fearful and Happy Facial Stimuli Modulate Action Readiness of Goal-Directed Actions. Front. Psychol. 2018, 9, e1334. [Google Scholar] [CrossRef] [PubMed]
- Olderbak, S.; Wilhelm, O.; Olaru, G.; Geiger, M.; Brenneman, M.W.; Roberts, R.D. A psychometric analysis of the reading the mind in the eyes test: Toward a brief form for research and applied settings. Front. Psychol. 2015, 6, 1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors | Sample | Age, Gender, Handedness | Dose | Way Administrat | Time | Task | Research Design |
---|---|---|---|---|---|---|---|
Healthy Population | |||||||
Campbell et al. [26] | 68 68 | 72.07 ± 6.49 19.68 ± 1.79; 50% ♂ 50% ♀ - | 20 IU OX | Single administration Nasal | 45 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Cardoso et al. [27] | 82 | From 18 to 30; 49% ♂ 51% ♀ - | 24 IU OX | Single administration Nasal | 120 min | Mayer-Salovey-Caruso emotional intelligence test (face task) | Double-blind, randomized, placebo-controlled |
Colonnello et al. [28] | 84 | 25.00 ± 2.00; 100% ♂ - | 24 IU OX | Single administration Nasal | 50 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Di Simplicio et al. [29] | 29 | From 18 to 30; 100% ♂ - | 24 IU OX | Single administration Nasal | 50 min | Facial expression recognition task and Cambridge face memory test | Double-blind, randomized, placebo-controlled |
Domes et al. [30] | 30 | 25.3 ± 2.2; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | Reading the mind in the eyes test | Double-blind, placebo-controlled |
Domes et al. [31] | 16 | 24.2 ± 2.5; 100% ♀ Right-handed | 24 IU OX | Single administration Nasal | 45–60 min | Facial emotion recognition task | Double-blind, placebo-controlled |
Domes et al. [32] | 69 | 24.0 ± 3.1; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Domes et al. [33] | 62 | 24.0 ± 2.5; 100% ♂ - | 24 IU OX | Single administration Nasal | 40 min | Dynamic affect recognition evaluation | Double-blind, randomized, placebo-controlled |
Domes et al. [34] | 30 | 25.7 ± 2.91; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | Implicit facial affect recognition paradigm | Double-blind, randomized, placebo-controlled |
Ellenbogen et al. [35] | 102 | From 18 to 35; 50% ♂ 50% ♀ - | 24 IU OX | Single administration Nasal | 45 min | Negative affective priming task | Double-blind, randomized, placebo-controlled |
Ellenbogen et al. [36] | 57 | From 18 to 35; 48% ♂ 52% ♀ - | 24 IU OX | Single administration Nasal | 45 min | Modified spatial cueing task | Double-blind, randomized, placebo-controlled |
Ellingsen et al. [37] | 39 | 26 years; 49% ♂ 51% ♀ Right-handed | 40 IU OX | Single administration Nasal | 40 min | Facial emotion recognition task | Double-blind, placebo-controlled |
Feeser et al. [38] | 82 | 27.9 ± 4.7; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | Karolinska directed emotional faces | Double-blind, randomized, placebo-controlled |
Fischer-Shofty et al. [39] | 27 | 26.93 ± 3.51; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Gamer et al. [40] | 46 | 25.0 ± 3.7; 100% ♂ Right-handed | 24 IU OX | Single administration Nasal | 45 min | Emotion classification paradigm | Double-blind, placebo-controlled |
Gamer & Büchel. [41] | 38 | 24.6 ± 3.5; 100% ♂ Right-handed | 24 IU OX | Single administration Nasal | 45 min | Facial emotion recognition task | Double-blind, placebo-controlled |
Grainger et al. [42] | 118 | From 18 to 90; 47% ♂ 53% ♀ - | 24 IU OX | Single administration Nasal | 90 min | Facial trust stimuli | Double-blind, randomized, placebo-controlled |
Guastella et al. [43] | 69 | 19.98 ± 2.27; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Hirosawa et al. [44] | 20 | 31.4 years; 100% ♂; Right-handed | 24 IU OX | Single administration Nasal | 45 min | Facial emotion recognition task | Single-blind, placebo-controlled |
Hoge et al. [45] | 47 | 43.3 ± 10.7; 62% ♂ 38% ♀ - | 30 IU OX | Single administration Nasal | 25 min | Affective misattribution task | Double-blind, randomized, placebo-controlled |
Horta et al. [46] | 48 54 | 22.4 ± 3.0; 52% ♂ 48% ♀ - 71.2 ± 4.9; 44% ♂ 56% ♀ - | 24 IU OX | Single administration Nasal | 90 min | Dynamic facial emotion identification task | Double-blind, randomized, placebo-controlled |
Hubble et al. [47] | 40 | 20.98 ± 4.55; 100% ♂ - | 24 IU OX | Single administration Nasal | 30 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Leknes et al. [48] | 39 | From 20 to 39; 49% ♂ 51% ♀ Right-handed | 40 IU OX | Single administration Nasal | 45 min | Facial emotion recognition task | Double-blind, placebo-controlled |
Lischke et al. [49] | 47 | 26.09 ± 3.41; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Luo et al. [50] | 86 | 22.41 ± 2.054; 50% ♂ 50% ♀ Right-handed | 24 IU OX | Single administration Nasal | 45 min | Chinese facial affective picture system | Double-blind, randomized, placebo-controlled |
Lynn et al. [51] | 40 | 44.00 ± 10.32; 60% ♂ 40% ♀ - | 30 IU OX | Single administration Nasal | 50 min | Facial emotion recognition task | Double-blind, placebo-controlled |
Maier et al. [52] | 50 | 24.54 ± 3.09; 48% ♂ 52% ♀ Right-handed | 40 IU OX | Single administration Nasal | 30 min | Forced-choice emotional face recognition task | Double-blind, randomized, placebo-controlled |
Marsh et al. [53] | 50 | From 20 to 40; 58% ♂ 42% ♀ - | 24 IU OX | Single administration Nasal | 35 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Perry et al. [54] | 30 | 38.9 ± 10.6; 63% ♂ 37% ♀ - | 24 IU OX | Single administration Nasal | 45 min | The face-context composites | Double-blind, randomized, placebo-controlled |
Petrovic et al. [55] | 30 | From 19 to 40; 100% ♂ Right-handed | 32 IU OX | Single administration Nasal | 45 min | Affective ratings in response to presentation of faces | Double-blind, randomized, placebo-controlled |
Prehn et al. [56] | 47 | -; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | Dynamic facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Quintana et al. [57] | 16 | From 18 to 35; 100% ♂ - | 8, 24 IU OX 1 IU (blood) | Single administration Nasal or intravenously | 40 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Radke et al. [58] | 24 | 21.46 ± 1.93; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 or 65 min | Approaching-avoiding face task | Double-blind, randomized, placebo-controlled |
Riem et al. [59] | 50 | 19.62 ± 1.47; 100% ♀ - | 16 IU OX | Single administration Nasal | 60 min | Reading the mind in the eyes test | Double-blind, randomized, placebo-controlled |
Savaskan et al. [60] | 36 | 27.5 ± 1.3; 50% ♂ 50 ♀ - | 20 IU OX | Single administration Nasal | 30 min | Facial emotion recognition task | Single-blind, randomized, placebo-controlled |
Schulze et al. [61] | 56 | 24.18 ± 3.12; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Shin et al. [62] | 37 | 23.1 ± 2.8; 100% ♂ - | 40, 32 IU OX | Single administration Nasal | 45 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Skvortsova et al. [63] | 88 | 21.5 ± 2.4; 100 ♀ - | 24 IU OX | Single administration Nasal | 50 min | Facial emotion recognition task | Single-blind, randomized, placebo-controlled |
Skvortsova et al. [64] | 9 | 21 average; 100% ♀ - | 24 IU OX | Single administration Nasal | 50 min | Facial attractiveness and trustworthiness task | Single-blind, randomized, placebo-controlled |
Spengler et al. [65] | 116 | 24.7 ± 4.4; 100% ♂ - | 12, 24, 48 OX | Single administration Nasal | 45 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Teed et al. [66] | 20 | -; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | Facial emotion recognition task | Double-blind, placebo-controlled |
Theodoridou et al. [67] | 120 | 22.4 years; 50% ♂ 50% ♀ - | 24 IU OX | Single administration Nasal | 35 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Thienel et al. [68] | 37 | From 23 to 26; 100% ♂ - | 24 IU OX | Single administration Nasal | 40 min | Face rating task | Double-blind, placebo-controlled |
Tollenaar et al. [69] | 20 | 21 ± 3; 100% ♂ - | 24 IU OX | Single administration Nasal | 35 min | Emotional gaze cueing task | Double-blind, randomized, placebo-controlled |
Xu et al. [70] | 60 | From 19 to 27; 100% ♂ Right-handed | 40 IU OX | Single administration Nasal | 45 min | Social dual-target rapid serial visual presentation task | Double-blind, randomized, placebo-controlled |
Xu et al. [71] | 71 | 21.85 ± 0.32; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | The antisaccade paradigm | Double-blind, randomized, placebo-controlled |
Yue et al. [72] | 87 | 21.2 ± 1.76; 49% ♂ 51% ♀ - | 24 IU OX | Single administration Nasal | 45 min | Emotional face working memory task | Double-blind, randomized, placebo-controlled |
Clinical Population | |||||||
Averbeck et al. [73] | 21 SZ | 38.2 ± 1.8; 100% ♂ - | 24 IU OX | Single administration Nasal | 50 min | Hexagon emotion discrimination task | Double-blind, placebo-controlled |
Bach et al. [74] | 18 AUD 15 controls | From 18 to 65; 100% ♂ Right-handed | 24 IU OX | Single administration Nasal | 45 min | Matching shape or face task | Double-blind, placebo-controlled |
Bate et al. [75] | 10 DP 10 controls | 49.2 ± 14.2; 70% ♂ 30% ♀; 80% Right-handed 46.8 ± 13.2; - | 24 IU OX | Single administration Nasal | 45 min | Cambridge face memory test and Cambridge face perception test | Double-blind, randomized, placebo-controlled |
Bertsch et al. [76] | 40 BD 41 controls | From 18 to 36; 100% ♀ - | 26 IU OX | Single administration Nasal | 45 min | Emotion classification task | Double-blind, randomized, placebo-controlled |
Bradley et al. [77] | 33 SZ 39 controls | 40.3 ± 15.5 39.8 ± 13.7 100% ♂ - | 40 IU OX | Single administration Nasal | 50 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Brüne et al. [78] | 13 BPD 13 controls | 28.6 ± 7.22 25.7 ± 6.76; 31% ♂ 69% ♀ - | 24 IU OX | Single administration Nasal | 45 min | Emotional dot probe task | Double-blind, randomized, placebo-controlled |
Clark-Elford et al. [79] | 16 SAD 26 controls | 27.13 ± 9.25; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | Emotional dot probe task | Double-blind, randomized, placebo-controlled |
Davis et al. [80] | 27 SZ | 37.0 ± 10.8 42.8 ± 9.1; 100% ♂ - | 40 IU OX | Single administration Nasal | 30 min (+1 week, +1 month) | Facial emotion recognition task | Double-blind, placebo-controlled |
Davis et al. [81] | 23 SZ | From 18 to 56; 100% ♂ - | 40 IU OX | Single administration Nasal | 30 min | Facial emotion recognition task | Double-blind, placebo-controlled |
Domes et al. [82] | 43 MDD | 47 years; 42% ♂ 58% ♀ - | 24 IU OX | Single administration Nasal | 45 min | Emotional dot probe task | Double-blind, randomized, placebo-controlled |
Fang et al. [83] | 60 SAD | 24.39 years; 100% ♂ - | 24 IU OX | Single administration Nasal | 45 min | Modified Posner task | Double-blind, randomized, placebo-controlled |
Fischer-Shofty et al. [84] | 31 SZ 35 controls | 31.8 ± 6.53 29.49 ± 5.59 83% ♂ 17% ♀ - | 24 IU OX | Single administration Nasal | 45 min | FaceMorphing task | Double-blind, randomized, placebo-controlled |
Goldman et al. [85] | 13 SZ 11 controls | 53 ± 3 44 ± 9 38 ± 13 45%♂ 55% ♀ - | 10, 20 IU OX | Three administrations Nasal | 45 min | Facial emotion recognition task | Double-blind, placebo-controlled |
Gorka et al. [86] | 16 GSAD 17 controls | 29.8 ± 9.1 29.9 ± 10.5 100% ♂; Right-handed | 24 IU OX Placebo | Single administration Nasal | 45 min | Emotional face matching task | Double-blind, randomized, placebo-controlled |
Guastella et al. [87] | 16 ASD | 14.88 ± 2.42; 100% ♂ - | 18 and 24 IU OX | Single administration Nasal | 45 min | Reading the mind in the eyes test-revised | Double-blind, randomized, placebo-controlled |
Guastella et al. [88] | 50 ASD | From 12 to 18; 100% ♂ - | 18 IU and 24 IU OX | Daily for 4–8 weeks Nasal | 4 weeks | Reading the mind in the eyes test | Double-blind, placebo-controlled |
Labuschagne et al. [89] | 18 GSAD | From 18 to 55; 100% ♂ Right-handed | 24 IU OX | Single administration Nasal | 45 min | Emotional face matching task | Double-blind, randomized, placebo-controlled |
Labuschagne et al. [90] | 18 GSAD 18 controls | 29.4 ± 9.0 29.9 ± 10.2 100% ♂; Right-handed | 24 IU OX | Single administration Nasal | 45 min | Computerized emotional face processing task | Double-blind, placebo-controlled |
Mitchell et al. [91] | 32 AUD | 28.9 ± 7.15; 59% ♂ 41% ♀ - | 50 IU OX | Single administration Nasal | 45 min | Reading the mind in the eyes test | Double-blind, randomized, placebo-controlled |
Pedersen et al. [92] | 20 SZ | 39.00 ±11.18 35.78 ±9.52 85% ♂ 15% ♀ - | 24 IU OX | Daily for 14 days Nasal | 14 days | Trustworthiness task | Double-blind, randomized, placebo-controlled |
Porffy et al. [93] | 19 SZ | 38.4 ± 7.3; 100% ♂ Right-handed | 40 IU OX | Single administration Nasal | 120 min | Free-viewing task | Double-blind, placebo-controlled |
Quintana et al. [94] | 17 SAD | From 18 to 35; 100% ♂ - | 8 or 24 IU OX 1 IU (blood) | Single administration Nasal | 40 min | Emotional dot probe task | Double-blind, randomized, placebo-controlled |
Schneider et al. [95] | 114 BD | From 18 to 52; 100% ♀ - | 24 IU | Single administration Nasal | 75 min | Approach–avoidance task | Double-blind, randomized, placebo-controlled |
Timmermann et al. [96] | 22 ASPD 29 controls | 24.2 ± 4.1; 63% ♂ 37% ♀ - | 24 IU OX | Single administration Nasal | 45 min | Emotion classification paradigm | Double-blind, placebo-controlled |
Woolley et al. [97] | 29 SZ 31 controls | 44.6 ± 10.7 42.5 ± 14.1 ♂; - | 40 IU OX | Single administration Nasal | 30 min | Reading the mind in the eyes test | Double-blind, randomized, placebo-controlled |
Authors | Accuracy | Reaction Time | Rating Arousal | Attention | Memory | Trustworthiness/ Friendliness | Dominance/ Hostility | Significant after Including… | Effect Size |
---|---|---|---|---|---|---|---|---|---|
Healthy Population | |||||||||
Campbell et al. [26] | Ns | - | - | - | - | - | - | Hormone x Gender x Age (p = 0.014) | np2 = 0.05 |
Cardoso et al. [27] | Significant | - | Significant | - | - | - | - | - | np2 = 0.09 |
Colonnello et al. [28] | - | Ns | - | - | - | - | - | Ns | - |
Di Simplicio et al. [29] | Ns | Ns | - | - | Ns | - | - | Hormone x Valence (p = 0.031) | np2 = 0.161 |
Domes et al. [30] | Significant | - | - | - | - | - | - | Ns | - |
Domes et al. [31] | - | - | Ns | Ns | - | - | - | Ns | - |
Domes et al. [32] | - | Ns | - | Ns | - | - | - | Hormone x Emotion (p = 0.05) | - |
Domes et al. [33] | Ns | - | - | Ns | - | - | - | Hormone x Emotion (p = 0.015) | - |
Domes et al. [34] | Ns | - | - | - | - | - | - | - | - |
Ellenbogen et al. [35] | - | Ns | - | - | - | - | - | Ns | - |
Ellenbogen et al. [36] | - | Ns | - | - | - | - | - | Hormone x Emotion (p < 0.05) | np2 = 0.08 |
Ellingsen et al. [37] | - | - | - | - | - | Ns | - | Hormone x Facial Expression x Touch (p = 0.025) | - |
Feeser et al. [38] | Significant | - | - | - | - | - | - | - | - |
Fischer-Shofty et al. [39] | Ns | Ns | - | - | - | - | - | Hormone x Emotion (p < 0.05) | - |
Gamer et al. [40] | Ns | - | - | Ns | - | - | - | Hormone x Initial Fixation (p = 0.043) | - |
Gamer & Büchel. [41] | Ns | - | - | - | - | - | - | Ns | - |
Grainger et al. [42] | - | - | - | - | - | Ns | - | Ns | - |
Guastella et al. [43] | - | - | - | - | Ns | Ns | - | Hormone x Emotion (p = 0.04) | - |
Hirosawa et al. [44] | - | Ns | - | - | - | - | Ns | Ns | - |
Hoge et al. [45] | - | - | - | - | - | Ns | - | Hormone x Gender (p < 0.048) | np2 = 0.118 |
Horta et al. [46] | Ns | Ns | - | - | - | - | - | Ns | - |
Hubble et al. [47] | Ns | Ns | - | Ns | - | - | - | Ns | - |
Leknes et al. [48] | Ns | - | - | - | - | - | - | Hormone x Task x Emotion (p < 0.05) | - |
Lischke et al. [49] | Ns | - | - | Ns | - | - | - | Hormone x Emotion (p = 0.02) | - |
Luo et al. [50] | Ns | - | Ns | - | - | - | - | Ns | - |
Lynn et al. [51] | - | Ns | - | - | - | - | - | Hormone x Gender (p < 0.049) | np2 = 0.11 |
Maier et al. [52] | Ns | Ns | - | - | - | - | - | Hormone x Sweat x Interference (p < 0.025) | np2 = 0.11 |
Marsh et al. [53] | Ns | - | - | - | - | - | - | Hormone x Emotion (p < 0.05) | np2 = 0.06 |
Perry et al. [54] | Ns | - | - | - | - | - | - | Hormone x Emotion (p = 0.026) | - |
Petrovic et al. [55] | - | Ns | Ns | - | - | - | - | Hormone x Shock (p < 0.05) | - |
Prehn et al. [56] | Significant | - | - | - | - | - | - | - | np2 = 0.10 |
Quintana et al. [57] | - | - | Ns | - | - | Ns | - | Hormone x Emotion (p = 0.003) | - |
Radke et al. [58] | - | Ns | - | - | - | - | - | Hormone x Emotion x Movements (p = 0.015) | np2 = 0.23 |
Riem et al. [59] | Ns | - | - | - | - | - | - | Hormone x Love Withdrawal (p = 0.01) | - |
Savaskan et al. [60] | - | - | - | Significant | - | - | - | - | |
Schulze et al. [61] | Significant | - | - | - | - | - | - | - | np2 = 0.128 |
Shin et al. [62] | Ns | Ns | - | - | - | - | - | Hormone x Emotion (p = 0.01) (dose 40 IU) | np2 = 0.64 |
Skvortsova et al. [63] | - | - | Ns | - | - | - | - | Ns | - |
Skvortsova et al. [64] | - | - | - | - | - | Ns | - | Ns | - |
Spengler et al. [65] | Ns | - | Ns | - | - | - | - | Hormone x Emotion x Dose x Time (p = 0.03) | np2 = 0.08 |
Teed et al. [66] | - | - | - | - | - | Ns | Ns | Hormone x Condition (p = 0.020) | np2 = 0.045 |
Theodoridou et al. [67] | - | Ns | - | - | - | - | - | Hormone x Emotion (p < 0.05) | - |
Thienel et al. [68] | - | - | - | - | - | Ns | - | Hormone x Sexual Orientation x Emotion x State (p < 0.03) | - |
Tollenaar et al. [69] | - | - | - | Significant | - | - | - | - | np2 = 0.25 |
Xu et al. [70] | Significant | - | - | - | - | - | - | - | np2 = 0.138 |
Xu et al. [71] | - | - | - | Significant | - | - | - | - | np2 = 0.10 |
Yue et al. [72] | Ns | - | - | - | Ns | - | - | Hormone x Task x Emotion (p < 0.05) | np2 = 0.09 |
Clinical Population | |||||||||
Averbeck et al. [73] | Significant | - | - | - | - | - | - | - | - |
Bach et al. [74] | Ns | - | Ns | - | - | - | Ns | - | |
Bate et al. [75] | Significant | - | - | - | Significant | - | - | - | np2 = 0.426 |
Bertsch et al. [76] | - | Ns | - | - | - | - | - | Hormone x Emotion x Fixation (p = 0.03) | - |
Bradley et al. [77] | Ns | - | - | - | - | - | - | Hormone x Group (p < 0.001) | - |
Brüne et al. [78] | - | Ns | - | - | - | - | - | Hormone x Emotion x Cognition x Group (p = 0.03) | - |
Clark-Elford et al. [79] | - | Ns | - | - | - | - | - | Hormone x Group (p < 0.01) | np2 = 0.22 |
Davis et al. [80] | Ns | - | - | - | - | - | - | Ns | - |
Davis et al. [81] | Ns | - | - | - | - | - | - | Ns | - |
Domes et al. [82] | Ns | Ns | - | - | - | - | - | Hormone x Emotion (p = 0.014) | np2 = 0.139 |
Fang et al. [83] | - | Ns | - | - | - | - | - | Hormone x Attachment x Emotion (p < 0.05) | - |
Fischer-Shofty et al. [84] | Ns | - | - | - | - | - | - | Hormone x Emotion (p = 0.028) | np2 = 0.077 |
Goldman et al. [85] | Ns | - | Ns | - | - | - | - | Hormone x Dose x Group (p < 0.01) | - |
Gorka et al. [86] | Ns | Ns | - | - | - | - | - | Ns | |
Guastella et al. [87] | Significant | - | - | Ns | - | - | - | - | - |
Guastella et al. [88] | Ns | - | - | - | - | - | - | Ns | - |
Labuschagne et al. [89] | Ns | - | - | - | - | - | - | Ns | |
Labuschagne et al. [90] | Ns | Ns | - | - | - | - | - | Ns | |
Mitchell et al. [91] | Ns | Ns | - | - | - | - | - | Hormone x Difficulty (p = 0.04) | - |
Pedersen et al. [92] | - | - | - | - | - | Ns | - | Ns | |
Porffy et al. [93] | - | - | - | Significant | - | - | - | - | - |
Quintana et al. [94] | Ns | - | Ns | - | - | - | - | Hormone x Dose x Emotion (p = 0.02) | d = 0.63 |
Schneider et al. [95] | - | Ns | - | - | - | - | - | Hormone x Emotion (p = 0.014) | np2 = 0.06 |
Timmermann et al. [96] | Ns | Ns | - | - | - | - | - | Hormone x Group x Emotion (p = 0.023) | np2 = 0.08 |
Woolley et al. [97] | - | - | - | Ns | - | - | - | Hormone x Group x Difficulty (p = 0.03) |
Authors | Sample | Age, Gender, Handedness | Dose | Way Administrat | Time | Task | Research Design |
---|---|---|---|---|---|---|---|
Healthy Population | |||||||
Bertsch et al. [98] | 56 | From 19 to 25; 50% ♂ 50% ♀ Right-handed | 20 mg hydrocortisone | Single administration Oral | 1 h | Emotional Stroop task | Double-blind, placebo-controlled |
Dierolf et al. [99] | 38 | 23.00 ± 2.89; 100% ♂ Right-handed | 4 mg hydrocortisone | Single administration Intravenously | 2 min | Emotion–gender task switch | Double-blind, randomized, placebo-controlled |
Duesenberg et al. [100] | 75 | 24.5 ± 3.4; 49% ♂ and 51%♀ - | 10 mg hydrocortisone | Single administration Oral | 45 min | Facial emotion recognition task | Double-blind, randomized, placebo-controlled |
Henckens et al. [101] | 72 | 21 years; 100% ♂ Right-handed | 10 mg hydrocortisone | Single administration Oral | 1 h 15 or 4 h 45 min | Dynamic facial expression task | Double-blind, randomized, placebo-controlled |
Ma et al. [102] | 40 | 22.8 ± 5.4; 50% ♂ and 50%♀ Right-handed | 100 mg hydrocortisone | Single administration Oral | 2 h | Shifted-attention emotion appraisal task | Double-blind, randomized, placebo-controlled |
Putman et al. [103] | 18 | From 18 to 23; 100% ♂ - | 40 mg hydrocortisone | Single administration Oral | 2 h | Face relocation task | Double-blind, counterbalanced, placebo-controlled |
Putman et al. [104] | 20 | 20.1 average; 100% ♂ - | 40 mg hydrocortisone | Single administration Oral | 1 h 15 min | Masked emotional Stroop task | Double-blind, counterbalanced, placebo-controlled |
Putman et al. [105] | 20 | From 18 to 23; 100% ♂ Right-handed | 40 mg hydrocortisone | Single administration Oral | 45 min | Emotional gaze cueing task | Double-blind, placebo-controlled |
Schwabe et al. [106] | 80 | 23.53 ± 0.34; 50% ♂ and 50%♀; Right-handed | 20 mg hydrocortisone | Single administration Oral | 45 min | Rating fearfulness in facial expressions | Double-blind, randomized, placebo-controlled |
Taylor et al. [107] | 64 | From 19 to 43; 22% ♂ 78% ♀ - | 10 mg or 40 mg hydrocortisone | Single administration Oral | 1 h | Negative affective priming task | Double-blind, randomized, placebo-controlled |
van Peer et al. [108] | 40 | From 18 to 30; 100% ♂ Right-handed | 50 mg hydrocortisone | Single administration Oral | 1 h 15 min | Approach–avoidance task | Double-blind, randomized, placebo-controlled |
Vasa et al. [109] | 32 | 26.63 ± 4.30; 50% ♂ 50% ♀ - | 0.5 mg/kg hydrocortisone | Single administration Blood | 30 min | Emotional dot probe task | Double-blind, randomized, placebo-controlled |
Clinical Population | |||||||
Carvalho Fernando et al. [110] | 64 PTSD | >18 years; 100% ♀ Right-handed | 10 mg hydrocortisone | Single administration Oral | 45 min | Emotional go/no-go paradigm | Double-blind, randomized, placebo-controlled |
Schlosser et al. [111] | 104 MDD | From 18 to 60; 38% ♂ 62% ♀ - | 10 mg hydrocortisone | Single administration Oral | 45 min | Emotional go/no-go paradigm | Double-blind, randomized, placebo-controlled |
van Peer et al. [112] | 17 SAD | 31.4 ± 10.0; 100% ♂ Right-handed | 50 mg hydrocortisone | Single administration Oral | 2 h 30 min | Emotional Stroop task | Double-blind, randomized, placebo-controlled |
van Peer et al. [113] | 20 SAD | 32.8 ± 10.2; 45% ♂ 55%♀ Right-handed | 50 mg hydrocortisone | Single administration Oral | 1–2 h | Approach–avoidance task | Double-blind, randomized, placebo-controlled |
Authors | Accuracy | Interference | Memory | Reaction Time | Rating Arousal | Attention | Significant after Including… | Effect Size |
---|---|---|---|---|---|---|---|---|
Healthy Population | ||||||||
Bertsch et al. [98] | - | - | - | Ns | - | - | Hormone x Group (p = 0.005) | np2 = 0.19 |
Dierolf et al. [99] | Ns | - | - | Ns | - | Hormone x Cue x Emotion x Task Switch (p < 0.05) | ω2 = 0.04 | |
Duesenberg et al. [100] | Ns | - | - | - | - | - | Hormone x Gender x Emotion (difficulty) (p = 0.009) | - |
Henckens et al. [101] | - | - | - | Ns | - | - | Ns | - |
Ma et al. [102] | - | - | - | Ns | - | - | Hormone x Emotion (p = 0.032) | - |
Putman et al. [103] | - | - | Ns | - | - | - | Hormone x Emotion (p = 0.006) | - |
Putman et al. [104] | - | Significant | - | - | - | - | - | np2 = 0.234 |
Putman et al. [105] | - | - | - | - | - | Ns | Hormone x Emotion x Anxiety levels (p = 0.053) | np2 = 0.193 |
Schwabe et al. [106] | - | - | - | - | Ns | - | Ns | - |
Taylor et al. [107] | - | - | - | Ns | - | - | Hormone x Emotion (p < 0.05) | - |
van Peer et al. [108] | Ns | - | - | Ns | - | - | Hormone x Group x Arm movement (p < 0.0001) | np2 = 0.29 |
Vasa et al. [109] | - | Ns | - | Ns | - | - | Ns | - |
Clinical Population | ||||||||
Carvalho et al. [110] | - | - | - | Significant | - | - | - | np2 = 0.06 |
Schlosser et al. [111] | - | - | - | Ns | - | - | Hormone x Group (p = 0.034) | - |
van Peer et al. [112] | - | - | - | Ns | - | - | Ns | - |
van Peer et al. [113] | - | - | - | Ns | - | - | Ns | - |
Authors | Sample | Age, Gender, Handedness | Dose | Way Administrat | Time | Task | Research Design |
---|---|---|---|---|---|---|---|
Healthy Population | |||||||
Bird et al. [114] Study 1 | 30 | 21.21 ± 2.19; 100% ♂; - | 150 mg of AndroGel | Single administration Topical administration | 50% (2 h) 50% (4 h) | Facial ratings of trustworthiness task | Double-blind, randomized, placebo-controlled |
Bird et al. [114] Study 2 | 117 | 25.27 ±8 4.98; 100% ♂; - | 150 mg of AndroGel | Single administration Topical administration | 2 h 45 min | Facial ratings of dominance task | Double-blind, placebo-controlled |
Bos et al. [115] | 16 | 20.8 ± 2.0; 100% ♀; Right-handed | 0.5 mg of testosterone | Single administration Sublingual | 4 h | Reading the mind in the eyes test | Double-blind, randomized, placebo-controlled |
Bos et al. [116] | 16 | 20.8 ± 2.0; 100% ♀; Right-handed | 0.5 mg of testosterone | Single administration Sublingual | 4 h | Facial rating of trustworthiness task | Randomized, counterbalanced, placebo-controlled |
Bos et al. [117] | 24 | 20.02; 100% ♀; - | 0.5 mg of testosterone | Single administration Sublingual | 4 h | Facial rating of trustworthiness task | Double-blind, counterbalanced design, placebo-controlled |
Enter et al. [118] | 24 | 29 ± 8.4; 100% ♀; Right-handed | 0.5 mg of testosterone | Single administration Sublingual | 4 h 30 min | Approach-avoidance task | Double-blind, randomized, placebo-controlled |
Goetz et al. [119] | 16 | From 18- 44; 100% ♂; Right-handed | 100 mg of AndroGel | Single administration Topical administration | 50 min | Emotional face matching task | Double-blind, counterbalanced, placebo-controlled |
Terburg et al. [120] | 20 | From 20 to 25; 100% ♀ - | 0.5 mg of testosterone | Single administration Sublingual | 4 h | Social-dominance task | Placebo-controlled, counterbalanced |
van Honk et al. [121] | 16 | From 19 to 26; 100% ♀ Right-handed | 0.5 mg of testosterone | Single administration Sublingual | 4 h | Masked emotional Stroop task | Double-blind, randomized, placebo-controlled |
van Honk & Schutter, [122] | 16 | From 19 to 26; 100% ♀ Right-handed | 0.5 mg of testosterone | Single administration Sublingual | 4 h | Emotion-recognition task | Double-blind, randomized, placebo-controlled |
van Honk et al. [123] | 16 | 21 years; 100% ♀ - | 0.5 mg of testosterone | Single administration Sublingual | 4 h | Reading the mind in the eyes test | Double-blind, placebo-controlled |
van Wingen et al. [124] | 25 | 42 years; 100% ♀ Right-handed | 0.9 mg of testosterone | Single administration Nasal dose | 45 min | Face emotion recognition task | Double-blind, randomized, placebo-controlled |
van Wingen et al. [125] | 44 | From 19 to 50; 100% ♀ Right-handed | 0.9 mg of testosterone | Single administration Nasal dose | 45 min | Face emotion recognition task | Double-blind, placebo-controlled |
Clinical Population | |||||||
Enter et al. [126] | 17 SAD | 22.8 ± 5.0; 100% ♀ Right-handed | 0.5 mg of testosterone | Single administration Sublingual | 4 h 30 min | Approach-avoidance task | Double-blind, placebo-controlled |
Authors | Accuracy | Interference | Reaction Time | Trustworthiness/Friendliness | Dominance/Hostility | Significant after Including… | Effect Size |
---|---|---|---|---|---|---|---|
Healthy Population | |||||||
Bird et al. [114] Study 1 | Ns | - | Ns | Ns | - | Hormone x Order administration (p = 0.006) | np2 = 0.242 |
Bird et al. [114] Study 2 | - | - | - | - | Ns | Ns | - |
Bos et al. [115] | Ns | - | Ns | - | - | Ns | - |
Bos et al. [116] | - | - | - | Ns | - | Ns | - |
Bos et al. [117] | - | - | - | Significant | - | - | - |
Enter et al. [118] | - | - | Ns | - | - | Hormone x Emotion (p = 0.033) | np2 = 0.05 |
Goetz et al. [119] | Ns | - | Ns | - | - | Ns | - |
Terburg et al. [120] | Ns | - | - | - | - | Hormone x Emotion (p = 0.008) | np2 = 0.32 |
van Honk et al. [121] | Ns | - | - | - | - | Hormone x Emotion (p = 0.015) | - |
van Honk & Schutter, [122] | Ns | - | - | - | - | Hormone x Threat Expression x Emotion (p < 0.05) | - |
van Honk et al. [123] | Significant | - | - | - | - | - | - |
van Wingen et al. [124] | Ns | - | Ns | - | - | Ns | - |
van Wingen et al. [125] | Ns | - | Ns | - | - | Ns | - |
Clinical Population | |||||||
Enter et al. [126] | - | - | Ns | - | - | Hormone x Emotion (p = 0.032) | np2 = 0.236 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Martínez, Á.; Sarrate-Costa, C.; Moya-Albiol, L. A Systematic Review of the Role of Oxytocin, Cortisol, and Testosterone in Facial Emotional Processing. Biology 2021, 10, 1334. https://doi.org/10.3390/biology10121334
Romero-Martínez Á, Sarrate-Costa C, Moya-Albiol L. A Systematic Review of the Role of Oxytocin, Cortisol, and Testosterone in Facial Emotional Processing. Biology. 2021; 10(12):1334. https://doi.org/10.3390/biology10121334
Chicago/Turabian StyleRomero-Martínez, Ángel, Carolina Sarrate-Costa, and Luis Moya-Albiol. 2021. "A Systematic Review of the Role of Oxytocin, Cortisol, and Testosterone in Facial Emotional Processing" Biology 10, no. 12: 1334. https://doi.org/10.3390/biology10121334
APA StyleRomero-Martínez, Á., Sarrate-Costa, C., & Moya-Albiol, L. (2021). A Systematic Review of the Role of Oxytocin, Cortisol, and Testosterone in Facial Emotional Processing. Biology, 10(12), 1334. https://doi.org/10.3390/biology10121334