Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Small Ruminants as Animal Models and Regenerative Medicine
2.1. Nervous System
2.2. Cardiovascular System
2.3. Respiratory System
2.4. Urology
2.5. Ophthalmology
2.6. Osteoarticular System
2.7. Skin
2.8. Reproductive System
2.9. Mesenchymal Stem Cells and Small Ruminants
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BM-MSCs– | Bone Marrow Mesenchymal Stem Cells; |
gMSCs– | Goat Mesenchymal Stem Cells; |
ISCT- | International Society for Cellular Therapy; |
MSCs– | Mesenchymal Stem Cells; |
oMSCs– | Ovine Mesenchymal Stem Cells; |
gBM- | MSCs-Goat bone marrow MSCs; |
References
- Underwood, W.J.; Blauwiekel, R.; Delano, M.L.; Gillesby, R.; Mischler, S.A.; Schoell, A. Biology and Diseases of Ruminants (Sheep, Goats, and Cattle). In Laboratory Animal Medicine, 3rd ed.; Fox, J., Ed.; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 623–694. [Google Scholar]
- Salerno, C.T.; Droel, J.; Bianco, R.W. Current state of in vivo preclinical heart valve evaluation. J. Hear. Valve Dis. 1998, 7, 158–162. [Google Scholar]
- Wall, R.; Kerr, D.; Bondioli, K. Transgenic Dairy Cattle: Genetic Engineering on a Large Scale. J. Dairy Sci. 1997, 80, 2213–2224. [Google Scholar] [CrossRef]
- Sinclair, K.D.; Corr, S.A.; Gutierrez, C.G.; Fisher, P.A.; Lee, J.-H.; Rathbone, A.J.; Choi, I.; Campbell, K.H.S.; Gardner, D.S. Healthy ageing of cloned sheep. Nat. Commun. 2016, 7, 12359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrode, R.; Tarekegn, G.M.; Mwacharo, J.M.; Djikeng, A. Invited review: Genomic selection for small ruminants in developed countries: How applicable for the rest of the world? Animal 2018, 12, 1333–1340. [Google Scholar] [CrossRef] [Green Version]
- Gandini, G.C.; Del Corvo, M.; Biscarini, F.; Stella, A. Genetic improvement of small ruminant local breeds with nucleus and inbreeding control: A simulation study. Small Rumin. Res. 2014, 120, 196–203. [Google Scholar] [CrossRef]
- Menchaca, A.; Mulet, A.P.; dos Santos Neto, P.C.; Crispo, M. Transgenesis and gene edition in small ruminants. Revista Brasileira Reprodução Animal 2017, 41, 217–221. [Google Scholar]
- Nomura, K.; Yonezawa, T.; Mano, S.; Kawakami, S.; Shedlock, A.M.; Hasegawa, M.; Amano, T. Domestication Process of the Goat Revealed by an Analysis of the Nearly Complete Mitochondrial Protein-Encoding Genes. PLoS ONE 2013, 8, e67775. [Google Scholar] [CrossRef] [Green Version]
- Fulton, L.K.; Clarke, M.S.; Farris, H.E. The Goat as a Model for Biomedical Research and Teaching. ILAR J. 1994, 36, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Larsen, G.D. A reliable ruminate for research. Lab Anim. 2015, 44, 337. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, D.C.; Hoxha, B.; Nelson, S.; Sun, J.; Gurji, H.; Simecka, J.W.; Mallet, R.T.; Olivencia-Yurvati, A.H.; Daniels, E.Q. Peri- and intra-operative management of the goat during acute surgical experimentation. Lab Anim. 2010, 39, 80–85. [Google Scholar] [CrossRef]
- Zheng, J.W.; Qiu, W.L.; Zhang, Z.Y.; Lin, G.C.; Zhu, H.G. Anatomical and histologic study of the cervical vessels in goats. Shanghai kou qiang yi xue = Shanghai J. Stomatol. 2000, 9, 39–41. [Google Scholar]
- Chu, C.R.; Szczodry, M.; Bruno, S. Animal Models for Cartilage Regeneration and Repair. Tissue Eng. Part B Rev. 2010, 16, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Pearce, I.A.; Richards, R.G.; Milz, S.; Schneider, E.; Pearce, S.G. Animal models for implant biomaterial research in bone: A review. Eur. Cells Mater. 2007, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Regouski, M.; Galenko, O.; Doleac, J.; Olsen, A.L.; Jacobs, V.; Liechty, D.; White, K.L.; Bunch, T.J.; Lee, P.M.; Rutigliano, H.M.; et al. Spontaneous Atrial Fibrillation in Transgenic Goats with TGF (Transforming Growth Factor)-β1 Induced Atrial Myopathy with Endurance Exercise. Circ. Arrhythmia Electrophysiol. 2019, 12, e007499. [Google Scholar] [CrossRef]
- Atkinson, J.B.; Swift, L.L.; Lequire, V.S. Myotonia Congenita—A Histochemical and Ultrastructural-Study in the Goat—Com-parison with Abnormalities Found in Human Myotonia Dystrophica. Am. J. Pathol. 1981, 102, 324–335. [Google Scholar] [PubMed]
- Kuyinu, E.L.; Narayanan, G.; Nair, L.S.; Laurencin, C.T. Animal models of osteoarthritis: Classification, update, and measurement of outcomes. J. Orthop. Surg. Res. 2016, 11, 1–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesoro-Cruz, E.; Hernández-González, R.; Kretschmer-Schmid, R.; Aguilar-Setién, A. Cross-reactivity between caprine arthritis-encephalitis virus and type 1 human immunodeficiency virus. Arch. Med. Res. 2003, 34, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Pailhoux, E.; Vigier, B.; Schibler, L.; Cribiu, E.P.; Cotinot, C.; Vaiman, D. Positional cloning of the PIS mutation in goats and its impact on understanding mammalian sex-differentiation. Genet. Sel. Evol. BioMed Cent. 2005, 37 (Suppl. 1), S55–S64. [Google Scholar] [CrossRef] [PubMed]
- Pollock, D.P.; Kutzko, J.P.; Birck-Wilson, E.; Williams, J.L.; Echelard, Y.; Meade, H.M. Transgenic milk as a method for the production of recombinant antibodies. J. Immunol. Methods 1999, 231, 147–157. [Google Scholar] [CrossRef]
- Bielinska, M.; Parviainen, H.; Kiiveri, S.; Heikinheimo, M.; Wilson, D.B. Review Paper: Origin and Molecular Pathology of Adrenocortical Neoplasms. Vet. Pathol. 2009, 46, 194–210. [Google Scholar] [CrossRef]
- Braun, U.; Ohlerth, S.; Liesegang, A.; Forster, E.; Gorber, U.; Tschuor, A.; Bearth, G.; Muntwyler, J.; Wiederkehr, D.; Ossent, P. Osteoporosis in goats associated with phosphorus and calcium deficiency. Vet. Rec. 2009, 164, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Honaramooz, A.; Behboodi, E.; Blash, S.; Megee, S.O.; Dobrinski, I. Germ cell transplantation in goats. Mol. Reprod. Dev. 2003, 64, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, J.; Zhou, G.; Guo, J.; Yan, H.; Niu, Y.; Li, Y.; Yuan, C.; Geng, R.; Lan, X.; et al. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci. Rep. 2016, 6, 38932. [Google Scholar] [CrossRef] [Green Version]
- Fullarton, A.C.; Lenihan, D.V.; Myles, L.M.; Glasby, M.A. Obstetric Brachial Plexus Palsy: A Large Animal Model for Traction Injury and its Repair. J. Hand Surg. 2000, 25, 52–57. [Google Scholar] [CrossRef]
- Ribitsch, I.; Baptista, P.M.; Lange-Consiglio, A.; Melotti, L.; Patruno, M.; Jenner, F.; Schnabl-Feichter, E.; Dutton, L.C.; Connolly, D.J.; Van Steenbeek, F.G.; et al. Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do. Front. Bioeng. Biotechnol. 2020, 8, 972. [Google Scholar] [CrossRef] [PubMed]
- Van Der Velden, J.; Snibson, K.J. Airway disease: The use of large animal models for drug discovery. Pulm. Pharmacol. Ther. 2011, 24, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Perisse, I.V.; Cotton, C.U.; Regouski, M.; Meng, Q.; Domb, C.; Van Wettere, A.J.; Wang, Z.; Harris, A.; White, K.L.; et al. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [PubMed]
- Derscheid, R.J.; Ackermann, M.R. Perinatal Lamb Model of Respiratory Syncytial Virus (RSV) Infection. Viruses 2012, 4, 2359–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipitria, A.; Reichert, J.C.; Epari, D.R.; Saifzadeh, S.; Berner, A.; Schell, H.; Mehta, M.; Schuetz, M.A.; Duda, G.N.; Hutmacher, D.W. Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials 2013, 34, 9960–9968. [Google Scholar] [CrossRef]
- Egermann, M.; Goldhahn, J.; Schneider, E. Animal models for fracture treatment in osteoporosis. Osteoporos. Int. 2005, 16, S129–S138. [Google Scholar] [CrossRef] [PubMed]
- Farraha, M.; Lu, J.; Trivic, I.; Barry, M.A.; Chong, J.; Kumar, S.; Kizana, E. Development of a sheep model of atrioventricular block for the application of novel therapies. PLoS ONE 2020, 15, e0229092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viñoles, C.; Paganoni, B.; Glover, K.M.M.; Milton, J.T.B.; Blache, D.; Blackberry, M.A.; Martin, G.B. The use of a ‘first-wave’ model to study the effect of nutrition on ovarian follicular dynamics and ovulation rate in the sheep. Reproduction 2010, 140, 865–874. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J.L.; Berry, M.J.; Botting, K.J.; Darby, J.R.T.; Frasch, M.G.; Gatford, K.L.; Giussani, D.A.; Gray, C.L.; Harding, R.; Herrera, E.A.; et al. Improving pregnancy outcomes in humans through studies in sheep. Am. J. Physiol. Integr. Comp. Physiol. 2018, 315, R1123–R1153. [Google Scholar] [CrossRef] [Green Version]
- Morton, A.J.; Avanzo, L. Executive Decision-Making in the Domestic Sheep. PLoS ONE 2011, 6, e15752. [Google Scholar] [CrossRef] [Green Version]
- Kendrick, K.M.; Da Costa, A.P.; Leigh, A.E.; Hinton, M.R.; Peirce, J.W. Sheep don’t forget a face. Nat. Cell Biol. 2001, 414, 165–166. [Google Scholar] [CrossRef]
- Doyle, R.E.; Lee, C.; Deiss, V.; Fisher, A.D.; Hinch, G.N.; Boissy, A. Measuring judgement bias and emotional reactivity in sheep following long-term exposure to unpredictable and aversive events. Physiol. Behav. 2011, 102, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xie, M.; Chen, W.; Talbot, R.; Maddox, J.F.; Faraut, T.; Wu, C.; Muzny, D.M.; Li, Y.; Zhang, W.; et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 2014, 344, 1168–1173. [Google Scholar] [CrossRef] [Green Version]
- Pinnapureddy, A.R.; Stayner, C.; McEwan, J.; Baddeley, O.; Forman, J.; Eccles, M.R. Large animal models of rare genetic disorders: Sheep as phenotypically relevant models of human genetic disease. Orphanet J. Rare Dis. 2015, 10, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fubini, S.L.; Ducharme, N. Farm Animal Surgery-E-Book, 2nd ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016; 664p. [Google Scholar]
- Caroprese, M.; Giannenas, I.; Fthenakis, G. Interactions between nutritional approaches and defences against microbial diseases in small ruminants. Vet. Microbiol. 2015, 181, 8–14. [Google Scholar] [CrossRef]
- Häger, C.; Biernot, S.; Buettner, M.; Glage, S.; Keubler, L.M.; Held, N.; Bleich, E.M.; Otto, K.; Müller, C.W.; Decker, S.; et al. The Sheep Grimace Scale as an indicator of post-operative distress and pain in laboratory sheep. PLoS ONE 2017, 12, e0175839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starritt, N.E.; Kettle, S.A.J.; Glasby, M.A. Sutureless repair of the facial nerve using biodegradable glass fabric. Laryngoscope 2011, 121, 1614–1619. [Google Scholar] [CrossRef] [PubMed]
- Diogo, C.C.; Camassa, J.A.; Pereira, J.E.; Da Costa, L.M.; Filipe, V.; Couto, P.A.; Geuna, S.; Maurício, A.C.; Varejão, A.S. The use of sheep as a model for studying peripheral nerve regeneration following nerve injury: Review of the literature. Neurol. Res. 2017, 39, 926–939. [Google Scholar] [CrossRef]
- Alvites, R.; Caseiro, A.R.; Pedrosa, S.S.; Branquinho, M.V.; Ronchi, G.; Geuna, S.; Varejão, A.S.; Maurício, A.C. Peripheral nerve injury and axonotmesis: State of the art and recent advances. Cogent. Med. 2018, 5, 1466404. [Google Scholar] [CrossRef]
- Forden, J.; Xu, Q.-G.; Khu, K.J.; Midha, R. A Long Peripheral Nerve Autograft Model in the Sheep Forelimb. Neurosurgery 2011, 68, 1354–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niimi, Y.; Matsumine, H.; Fukuda, S.; Salsbury, J.R.; Niimi, Y.; Herndon, D.N.; Prough, D.S.; Enkhbaatar, P. Surgical anatomy of ovine facial and hypoglossal nerves for facial nerve reconstruction and regeneration research: An experimental study in sheep. Microsurgery 2020, 40, 51–58. [Google Scholar] [CrossRef]
- Siemionow, M.; Ms, J.C.; Uygur, S.; Kwiecien, G.; Oztürk, C.; Szopinski, J.; Madajka, M. Application of epineural sheath conduit for restoration of 6-cm long nerve defects in a sheep median nerve model. Microsurgery 2019, 39, 332–339. [Google Scholar] [CrossRef]
- Wilkes, D.; Li, G.; Angeles, C.F.; Patterson, J.T.; Huang, L.-Y.M. A large animal neuropathic pain model in sheep: A strategy for improving the predictability of preclinical models for therapeutic development. J. Pain Res. 2012, 5, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Roballo, K.C.; Burns, D.T.; Ghnenis, A.B.; Osimanjiang, W.; Bushman, J.S. Long-term neural regeneration following injury to the peroneal branch of the sciatic nerve in sheep. Eur. J. Neurosci. 2020, 52, 4385–4394. [Google Scholar] [CrossRef] [PubMed]
- Casañas, J.; De La Torre, J.; Soler, F.; García, F.; Rodellar, C.; Pumarola, M.; Climent, J.; Soler, R.; Orozco, L. Peripheral nerve regeneration after experimental section in ovine radial and tibial nerves using synthetic nerve grafts, including expanded bone marrow mesenchymal cells: Morphological and neurophysiological results. Injury 2014, 45, S2–S6. [Google Scholar] [CrossRef]
- Reddy, C.G.; Miller, J.W.; Abode-Iyamah, O.K.; Safayi, S.; Wilson, S.; Dalm, B.D.; Fredericks, D.C.; Gillies, G.T.; Iii, M.A.H.; Brennan, T.J. Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis. J. Pain Res. 2018, 11, 1147–1162. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.; Abode-Iyamah, K.O.; Miller, J.W.; Reddy, C.G.; Safayi, S.; Fredericks, D.C.; Jeffery, N.D.; DeVries-Watson, N.A.; Shivapour, S.K.; Viljoen, S.; et al. An ovine model of spinal cord injury. J. Spinal Cord Med. 2016, 40, 346–360. [Google Scholar] [CrossRef] [Green Version]
- Daly, C.D.; Ghosh, P.; Zannettino, A.C.; Badal, T.; Shimmon, R.; Jenkin, G.; Oehme, D.; Jain, K.; Sher, I.; Vais, A.; et al. Mesenchymal progenitor cells primed with pentosan polysulfate promote lumbar intervertebral disc regeneration in an ovine model of microdiscectomy. Spine J. 2018, 18, 491–506. [Google Scholar] [CrossRef]
- Freeman, B.J.; Kuliwaba, J.S.; Jones, C.F.; Shu, C.C.; Colloca, C.J.; Zarrinkalam, M.R.; Mulaibrahimovic, A.; Gronthos, S.; Zannettino, A.C.W.; Howell, S. Allogeneic Mesenchymal Precursor Cells Promote Healing in Postero-lateral Annular Lesions and Improve Indices of Lumbar Intervertebral Disc Degeneration in an Ovine Model. Spine 2016, 41, 1331–1339. [Google Scholar] [CrossRef] [Green Version]
- Perentos, N.; Martins, A.Q.; Watson, T.C.; Bartsch, U.; Mitchell, N.L.; Palmer, D.N.; Jones, M.W.; Morton, A.J. Translational neurophysiology in sheep: Measuring sleep and neurological dysfunction in CLN5 Batten disease affected sheep. Brain 2015, 138, 862–874. [Google Scholar] [CrossRef]
- Reid, S.J.; Mckean, N.E.; Henty, K.; Portelius, E.; Blennow, K.; Rudiger, S.R.; Bawden, C.S.; Handley, R.R.; Verma, P.J.; Faull, R.L.; et al. Alzheimer’s disease markers in the aged sheep (Ovis aries). Neurobiol. Aging 2017, 58, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, J.C.; Bawden, C.S.; Rudiger, S.R.; McLaughlan, C.J.; Reid, S.J.; Waldvogel, H.J.; Macdonald, M.E.; Gusella, J.F.; Walker, S.K.; Kelly, J.M.; et al. An ovine transgenic Huntington’s disease model. Hum. Mol. Genet. 2010, 19, 1873–1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opdam, H.I.; Federico, P.; Jackson, G.D.; Buchanan, J.; Abbott, D.F.; Fabinyi, G.C.A.; Syngeniotis, A.; Vosmansky, M.; Archer, J.S.; Wellard, R.M.; et al. A sheep model for the study of focal epilepsy with concurrent intracranial EEG and functional MRI. Epilepsia 2002, 43, 779–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitzsche, B.; Frey, S.; Collins, L.D.; Seeger, J.; Lobsien, D.; Dreyer, A.; Kirsten, H.; Stoffel, M.H.; Fonov, V.S.; Boltze, J. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes. Front. Neuroanat. 2015, 9, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boltze, J.; Nitzsche, F.; Jolkkonen, J.; Weise, G.; Pösel, C.; Nitzsche, B.; Wagner, D.-C. Concise Review: Increasing the Validity of Cerebrovascular Disease Models and Experimental Methods for Translational Stem Cell Research. Stem Cells 2017, 35, 1141–1153. [Google Scholar] [CrossRef] [Green Version]
- Sisa, C.; Kholia, S.; Naylor, J.; Sanchez, M.B.H.; Bruno, S.; Deregibus, M.C.; Camussi, G.; Inal, J.M.; Lange, S.; Hristova, M. Mesenchymal Stromal Cell Derived Extracellular Vesicles Reduce Hypoxia-Ischaemia Induced Perinatal Brain Injury. Front. Physiol. 2019, 10, 282. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, G.; Pozzo, E.; Scorletti, F.; Benedetti, L.; Cusella, G.; Ronzoni, F.L.; Sahakyan, V.; Zambaiti, E.; Mimmi, M.C.; Calcaterra, V.; et al. Molecular signature of amniotic fluid derived stem cells in the fetal sheep model of myelomeningocele. J. Pediatr. Surg. 2015, 50, 1521–1527. [Google Scholar] [CrossRef]
- Wang, A.; Brown, E.G.; Lankford, L.; Keller, B.A.; Pivetti, C.D.; Sitkin, N.A.; Beattie, M.S.; Bresnahan, J.C.; Farmer, D.L. Placental Mesenchymal Stromal Cells Rescue Ambulation in Ovine Myelomeningocele. Stem Cells Transl. Med. 2015, 4, 659–669. [Google Scholar] [CrossRef]
- Muheremu, A.; Chen, L.; Wang, X.; Wei, Y.; Gong, K.; Ao, Q. Chitosan nerve conduits seeded with autologous bone marrow mononuclear cells for 30 mm goat peroneal nerve defect. Sci. Rep. 2017, 7, srep44002. [Google Scholar] [CrossRef] [Green Version]
- Skedsmo, F.S.; Malachin, G.; Våge, D.I.; Hammervold, M.M.; Øyvind, S.; Ersdal, C.; Ranheim, B.; Stafsnes, M.H.; Bartosova, Z.; Bruheim, P.; et al. Demyelinating polyneuropathy in goats lacking prion protein. FASEB J. 2019, 34, 2359–2375. [Google Scholar] [CrossRef]
- De Almeida, V.M.; Chaves, H.A.D.S.; Filho, G.B.D.S.; Ribeiro, D.P.; Braga, T.C.; Mendonça, F.D.S. Peripheral neuropathy in a copper-deficient goat. Ciência Rural 2017, 47. [Google Scholar] [CrossRef] [Green Version]
- Charlton, K.M.; Pierce, K.R. A Neuropathy in Goats Caused by Experimental Coyotillo (Karwinskia humboldtiana) poisoning: III. Distribution of lesions in peripheral nerves. Pathol. Vet. 1970, 7, 408–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathis, S.; Soulages, A.; Vallat, J.-M.; Le Masson, G. Epidemics and outbreaks of peripheral nervous system disorders: II. Toxic and nutritional causes. J. Neurol. 2021, 268, 892–902. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, J.; Xu, B.; Yang, H.; Zhu, Q. A model of acute central cervical spinal cord injury syndrome combined with chronic injury in goats. Eur. Spine J. 2016, 26, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-Z.; Wang, B.-B.; Zou, X.-B.; Ge, S.; Chen, Y.-Y.; Zhang, S.; Ni, L.; Li, H.-R.; Yang, J.-C.; Ma, X.-Y. Relationship between the laminectomy extension and spinal cord injury caused by acute spinal shortening: Goat in vivo experiment. Eur. Spine J. 2020, 29, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, R.J.; Smit, T.H.; Vergroesen, P.P.; Bank, R.A.; Stoop, R.; Van Rietbergen, B.; Van Royen, B.J.; Helder, M.N. Spinal fusion using adipose stem cells seeded on a radiolucent cage filler: A feasibility study of a single surgical procedure in goats. Eur. Spine J. 2014, 24, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, Z.; Deng, W.; Zhang, Z.; Liu, Y.; Wei, L.; Zhang, Y.; Zhou, L.; Wang, Y. Derivation and characterization of sheep bone marrow-derived mesenchymal stem cells induced with telomerase reverse transcriptase. Saudi J. Biol. Sci. 2017, 24, 519–525. [Google Scholar] [CrossRef]
- Toh, W.S.; Foldager, C.B.; Olsen, B.R.; Spector, M. Basement membrane molecule expression attendant to chondrogenesis by nucleus pulposus cells and mesenchymal stem cells. J. Orthop. Res. 2013, 31, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Kluin, J.; Talacua, H.; Smits, A.I.P.M.; Emmert, M.Y.; Brugmans, M.C.P.; Fioretta, E.S.; Dijkman, P.E.; Söntjens, S.H.M.; Duijvelshoff, R.; Dekker, S.; et al. In situ heart valve tissue engineering using a bioresorbable elastomeric implant—From material design to 12 months follow-up in sheep. Biomaterials 2017, 125, 101–117. [Google Scholar] [CrossRef]
- Gandolfi, F.; Vanelli, A.; Pennarossa, G.; Rahaman, M.; Acocella, F.; Brevini, T.A. Large animal models for cardiac stem cell therapies. Theriogenology 2011, 75, 1416–1425. [Google Scholar] [CrossRef]
- Gugjoo, M.B.; Amarpal. Mesenchymal stem cell research in sheep: Current status and future prospects. Small Rumin. Res. 2018, 169, 46–56. [Google Scholar] [CrossRef]
- Houtgraaf, J.H.; De Jong, R.; Kazemi, K.; De Groot, D.; Van Der Spoel, T.I.; Arslan, F.; Hoefer, I.; Pasterkamp, G.; Itescu, S.; Zijlstra, F.; et al. Intracoronary Infusion of Allogeneic Mesenchymal Precursor Cells Directly After Experimental Acute Myocardial Infarction Reduces Infarct Size, Abrogates Adverse Remodeling, and Improves Cardiac Function. Circ. Res. 2013, 113, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, S.; Soleimani, M.; Sahebjam, M.; Imani, M.; Nassiri, S.M.; Atashi, A.; Joupari, M.D.; Ghiaseddin, A.; Latifpour, M.; Tafti, S.H.A. Effects of Endothelial and Mesenchymal Stem Cells on Improving Myocardial Function in a Sheep Animal Model. J. Tehran Univ. Hear. Cent. 2017, 12, 65–71. [Google Scholar]
- Ménard, C.; Hagège, A.A.; Agbulut, O.; Barro, M.; Morichetti, M.C.; Brasselet, C.; Bel, A.; Messas, E.; Bissery, A.; Bruneval, P.; et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: A preclinical study. Lancet 2005, 366, 1005–1012. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T.; Wei, X.; Bianchi, G.; Hu, J.; Sanchez, P.G.; Xu, K.; Zhang, P.; Pittenger, M.F.; Wu, Z.J.; et al. Mesenchymal Stem Cell Transplantation Improves Regional Cardiac Remodeling Following Ovine Infarction. Stem Cells Transl. Med. 2012, 1, 685–695. [Google Scholar] [CrossRef]
- Airey, J.A.; Almeida-Porada, G.; Colletti, E.J.; Porada, C.D.; Chamberlain, J.; Movsesian, M.; Sutko, J.L.; Zanjani, E.D. Human Mesenchymal Stem Cells Form Purkinje Fibers in Fetal Sheep Heart. Circulation 2004, 109, 1401–1407. [Google Scholar] [CrossRef] [Green Version]
- Koobatian, M.T.; Row, S.; Smith Jr, R.J.; Koenigsknecht, C.; Andreadis, S.T.; Swartz, D.D. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials 2016, 76, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, S.; Zhou, J.; Wang, J.; Zhen, M.; Liu, Y.; Chen, J.; Qi, Z. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials 2010, 31, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Dooley, L.M.; Abdalmula, A.; Washington, E.A.; Kaufman, C.; Tudor, E.M.; Ghosh, P.; Itescu, S.; Kimpton, W.G.; Bailey, S.R. Effect of Mesenchymal Precursor Cells on the Systemic Inflammatory Response and Endothelial Dysfunction in an Ovine Model of Collagen-Induced Arthritis. PLoS ONE 2015, 10, e0124144. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.W.; Chen, Z.Y.; Ni, J.X.; Luo, C.X.; Liu, M.M.; Zhang, L.R.; Li, L.; Chen, Y.B.; Xie, Y.; Xue, Z.N. An animal (goat) model for open heart surgery. Acta Acad. Med. Sichuan 1985, 16, 267–269. [Google Scholar]
- Kim, W.; Cho, S.; Sung, S.; Park, H. A Chronic Heart Failure Model by Coronary Artery Ligation in the Goat. Int. J. Artif. Organs 2003, 26, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Remes, J.; van Brakel, T.J.; Bolotin, G.; Garber, C.; de Jong, M.M.; van der Veen, F.H.; Maessen, J.G. Persistent atrial fibrillation in a goat model of chronic left atrial overload. J. Thorac. Cardiovasc. Surg. 2008, 136, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Neuberger, H.-R.; Schotten, U.; Blaauw, Y.; Vollmann, D.; Eijsbouts, S.; Van Hunnik, A.; Allessie, M. Chronic Atrial Dilation, Electrical Remodeling, and Atrial Fibrillation in the Goat. J. Am. Coll. Cardiol. 2006, 47, 644–653. [Google Scholar] [CrossRef] [Green Version]
- Polejaeva, I.A.; Ranjan, R.; Davies, C.J.; Regouski, M.; Hall, J.; Olsen, A.L.; Meng, Q.; Rutigliano, H.M.; Dosdall, D.J.; Angel, N.A.; et al. Increased Susceptibility to Atrial Fibrillation Secondary to Atrial Fibrosis in Transgenic Goats Expressing Transforming Growth Factor-β. J. Cardiovasc. Electrophysiol. 2016, 27, 1220–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiraishi, Y.; Yambe, T.; Yoshizawa, M.; Hashimoto, H.; Yamada, A.; Miura, H.; Hashem, M.; Kitano, T.; Shiga, T.; Homma, D. Examination of mitral regurgitation with a goat heart model for the development of intelligent artificial papillary muscle. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society: (EMBC 2012), San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Liu, X.-B.; Zhou, C.-B.; Chen, J.-M.; Cen, J.-Z.; Xu, G.; Zhuang, J. A fetal goat model of cardiopulmonary bypass with cardioplegic arrest and hemodynamic assessment. J. Thorac. Cardiovasc. Surg. 2011, 142, 1562–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, B.; Deng, L.; Wang, F. Effects of bone marrow mesenchymal stem cells enriched by small intestinal submucosal films on cardiac function and compensatory circulation after myocardial infarction in goats. Zhongguo = Zhongguo = Chin. J. reparative Reconstr. Surg. 2006, 20, 1248–1252. [Google Scholar]
- Scheerlinck, J.-P.Y.; Snibson, K.J.; Bowles, V.M.; Sutton, P. Biomedical applications of sheep models: From asthma to vaccines. Trends Biotechnol. 2008, 26, 259–266. [Google Scholar] [CrossRef]
- Guillamón, M.D.L.H.; Clau, L.B. La oveja como modelo experimental de animal grande en la investigación de patologías respiratorias. Archivos de Bronconeumología 2010, 46, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, E.N.; Snibson, K.J.; Hirst, S.J.; Bischof, R.J. Sheep as a model species for the study and treatment of human asthma and other respiratory diseases. Drug Discov. Today Dis. Model. 2009, 6, 101–106. [Google Scholar] [CrossRef]
- Luna, C.M.; Sibila, O.; Agusti, C.; Torres, A. Animal models of ventilator-associated pneumonia. Eur. Respir. J. 2009, 33, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Mornex, J.-F. The sheep, model for human lung pathology. Rev. Prat. 2003, 53, 241–244. [Google Scholar]
- Asmussen, S.; Ito, H.; Traber, D.L.; Lee, J.W.; Cox, A.R.; Hawkins, H.K.; McAuley, D.F.; McKenna, D.H.; Traber, L.D.; Zhuo, H.; et al. Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia. Thorax 2014, 69, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Rojas, M.; Cárdenes, N.; Kocyildirim, E.; Tedrow, J.R.; Cáceres, E.; Deans, R.; Ting, A.; Bermúdez, C. Human adult bone marrow-derived stem cells decrease severity of lipopolysaccharide-induced acute respiratory distress syndrome in sheep. Stem Cell Res. Ther. 2014, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Matthay, M.A. Therapeutic Potential of Mesenchymal Stromal Cells for Acute Respiratory Distress Syndrome. Ann. Am. Thorac. Soc. 2015, 12, S54–S57. [Google Scholar] [CrossRef] [PubMed]
- Chaleshtori, S.S.; Dezfouli, M.R.M.; Abbasi, J.; Dehghan, M.M.; Fakhr, M.J.; Yadollahi, S.; Mirabad, M.M. Prevention of LPS-induced acute respiratory distress syndrome in sheep by bone marrow-derived mesenchymal stem/stromal cells. Life Sci. 2020, 263, 118600. [Google Scholar] [CrossRef]
- Ihara, K.; Fukuda, S.; Enkhtaivan, B.; Trujillo, R.; Perez-Bello, D.; Nelson, C.; Randolph, A.; Alharbi, S.; Hanif, H.; Herndon, D.; et al. Adipose-derived stem cells attenuate pulmonary microvascular hyperpermeability after smoke inhalation. PLoS ONE 2017, 12, e0185937. [Google Scholar] [CrossRef] [PubMed]
- Kocyildirim, E.; Cárdenes, N.; Ting, A.; Cáceres, E.; Bermudez, C.; Rojas, M. The Use of GMP-Produced Bone Marrow-Derived Stem Cells in Combination with Extracorporeal Membrane Oxygenation in ARDS: An Animal Model. ASAIO J. 2017, 63, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Ingenito, E.P.; Tsai, L.; Murthy, S.; Tyagi, S.; Mazan, M.; Hoffman, A. Autologous Lung-Derived Mesenchymal Stem Cell Transplantation in Experimental Emphysema. Cell Transplant. 2012, 21, 175–189. [Google Scholar] [CrossRef] [PubMed]
- De Val, B.P.; López-Soria, S.; Nofrarías, M.; Martín, M.; Vordermeier, H.M.; Villarreal-Ramos, B.; Romera, N.; Escobar, M.; Solanes, D.; Cardona, P.-J.; et al. Experimental Model of Tuberculosis in the Domestic Goat after Endobronchial Infection with Mycobacterium caprae. Clin. Vaccine Immunol. 2011, 18, 1872–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Val, B.P.; Vidal, E.; Nofrarias, M.; López-Soria, S.; Cardona, P.-J.; Domingo, M. Assessment of Goat Tuberculosis Model for Use in Vaccine Trials. Procedia Vaccinol. 2014, 8, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Dinda, A.K.; Mishra, N.C. Antibacterial activity and composition of decellularized goat lung extracellular matrix for its tissue engineering applications. Biol. Eng. Med. 2017, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Petrella, F.; Toffalorio, F.; Brizzola, S.; De Pas, T.M.; Rizzo, S.; Barberis, M.; Pelicci, P.; Spaggiari, L.; Acocella, F. Stem Cell Transplantation Effectively Occludes Bronchopleural Fistula in an Animal Model. Ann. Thorac. Surg. 2014, 97, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Rajamani, R.; Timm, G.; Sezen, S. Instrumented urethral catheter and itsex vivovalidation in a sheep urethra. Meas. Sci. Technol. 2017, 28, 035702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, D.B.; Costa, W.S.; Damasceno-Ferreira, J.A.; Júnior, A.N.; Ascoli, F.O.; Pereira-Sampaio, M.A.; Sampaio, F.J. The sheep as a model for healing studies after partial nephrectomy. J. Surg. Res. 2016, 200, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, P.; Lynch, W.; Collins, S.; Vonthethoff, L.; Morris, D. Renal Cryotherapy in a Sheep Model; A Feasability Study. J. Urol. 1997, 157, 710–712. [Google Scholar] [CrossRef]
- Roelofs, L.A.; Kortmann, B.B.; Oosterwijk, E.; Eggink, A.J.; Tiemessen, D.M.; Crevels, A.J.; Wijnen, R.M.; Daamen, W.F.; Van Kuppevelt, T.H.; Geutjes, P.J.; et al. Tissue engineering of diseased bladder using a collagen scaffold in a bladder exstrophy model. BJU Int. 2013, 114, 447–457. [Google Scholar] [CrossRef] [Green Version]
- Vidas, Ž.; Jurenec, F.; Karadjole, T.; Samardžija, M.; Bačić, G.; Beck, A.; Maćešić, N. Partial resection of the urinary bladder in swine and sheep and replacement of the resected segment by biologically inert patches. Acta Vet. Brno 2018, 87, 347–350. [Google Scholar] [CrossRef]
- Riccetto, C.L.Z.; Palma, P.C.R.; Thiel, M.; Miyaoka, R.; Netto, R.N., Jr. Experimental Animal Model for Training Transobturator and Retropubic Sling Techniques. Urol. Int. 2007, 78, 130–134. [Google Scholar] [CrossRef]
- Behr, L.; Hekmati, M.; Lucchini, A.; Houcinet, K.; Faussat, A.-M.; Borenstein, N.; Noel, L.-H.; Lelievre-Pegorier, M.; Laborde, K. Evaluation of the effect of autologous mesenchymal stem cell injection in a large-animal model of bilateral kidney ischaemia reperfusion injury. Cell Prolif. 2009, 42, 284–297. [Google Scholar] [CrossRef] [PubMed]
- Bujok, J.; Walski, T.; Czerski, A.; Gałecka, K.; Grzeszczuk-Kuć, K.; Zawadzki, W.; Witkiewicz, W.; Komorowska, M. Sheep model of haemodialysis treatment. Lab Anim. 2018, 52, 176–185. [Google Scholar] [CrossRef]
- Burdzinska, A.; Dybowski, B.; Zarychta-Wisniewska, W.; Kulesza, A.; Zagozdzon, R.; Gajewski, Z.; Paczek, L. The Anatomy of Caprine Female Urethra and Characteristics of Muscle and Bone Marrow Derived Caprine Cells for Autologous Cell Therapy Testing. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2017, 300, 577–588. [Google Scholar] [CrossRef] [Green Version]
- Olson, P.D.; Hruska, K.A.; Hunstad, D.A. Androgens Enhance Male Urinary Tract Infection Severity in a New Model. J. Am. Soc. Nephrol. 2015, 27, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Heesakkers, J.P.; Jianguo, W.; Geerdes, B.P.; Baeten, C.G.; Janknegt, R.A. Electrical stimulated graciloplasty in the male goat: An animal model for urethral pressure measurement. Neurourol. Urodyn. 1996, 15, 545–553. [Google Scholar] [CrossRef]
- De Jonge, P.K.; Sloff, M.; Janke, H.-P.; Versteegden, L.R.; Kortmann, B.B.; De Gier, R.P.; Geutjes, P.J.; Oosterwijk, E.; Feitz, W.F. Ureteral Reconstruction in Goats Using Tissue-Engineered Templates and Subcutaneous Preimplantation. Tissue Eng. Part. A 2018, 24, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Vishwakarma, S.K.; Bhavani, P.G.; Bardia, A.; Abkari, A.; Murthy, G.S.N.; Venkateshwarulu, J. Preparation of natural three-dimensional goat kidney scaffold for the development of bioartificial organ. Indian J. Nephrol. 2014, 24, 372–375. [Google Scholar] [CrossRef]
- Gelder, M.; Kort, G.; Hazenbrink, D.; Vaessen, K.; Joles, J.; Gerritsen, K. (Eds.) A Uremic Goat Model Created by Subtotal Renal Artery Embolization. In Nephrology Dialysis Transplantation; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Banks, M.S.; Sprague, W.W.; Schmoll, J.; Parnell, J.A.Q.; Love, G.D. Why do animal eyes have pupils of different shapes? Sci. Adv. 2015, 1, e1500391. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, F.S.; Mazouri, A.; Jabbarvand, M.; Rahman, N.A.; Mohammadi, A. Sheep practice eye for ophthalmic surgery training in skills laboratory. J. Cataract. Refract. Surg. 2011, 37, 987–991. [Google Scholar] [CrossRef]
- Bhartiya, P.; Manjunatha, N.P.; Sharma, N. Goat eye with human nucleus for phacoemulsification training. J. Cataract. Refract. Surg. 2011, 37, 1916–1917. [Google Scholar] [CrossRef]
- Candia, O.A.; Gerometta, R.; Millar, J.C.; Podos, S.M. Suppression of Corticosteroid-Induced Ocular Hypertension in Sheep by Anecortave. Arch. Ophthalmol. 2010, 128, 338–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouhenni, R.A.; Dunmire, J.; Sewell, A.; Edward, D.P. Animal Models of Glaucoma. J. Biomed. Biotechnol. 2012, 2012, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walshe, J.; Abdulsalam, N.A.K.; Suzuki, S.; Chirila, T.V.; Harkin, D.G. Growth of Human and Sheep Corneal Endothelial Cell Layers on Biomaterial Membranes. J. Vis. Exp. 2020, 2020, e60762. [Google Scholar] [CrossRef] [PubMed]
- Mi, S.; Yang, X.; Zhao, Q.; Qu, L.; Chen, S.; Meek, K.M.; Dou, Z. Reconstruction of corneal epithelium with cryopreserved corneal limbal stem cells in a goat model. Mol. Reprod. Dev. 2008, 75, 1607–1616. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, X.-Y.; Huang, D.-T.; Yang, X.-Y. The capacity of goat epidermal adult stem cells to reconstruct the damaged ocular surface of total LSCD and activate corneal genetic programs. J. Mol. Histol. 2020, 51, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Dozza, B.; Salamanna, F.; Baleani, M.; Giavaresi, G.; Parrilli, A.; Zani, L.; Lucarelli, E.; Martini, L.; Fini, M.; Donati, D.M. Nonunion fracture healing: Evaluation of effectiveness of demineralized bone matrix and mesenchymal stem cells in a novel sheep bone nonunion model. J. Tissue Eng. Regen. Med. 2018, 12, 1972–1985. [Google Scholar] [CrossRef]
- Li, Z.; Hou, T.; Luo, F.; Chang, Z.; Wu, X.; Xing, J.; Deng, M.; Xu, J. Bone marrow enriched graft, modified by self-assembly peptide, repairs critically-sized femur defects in goats. Int. Orthop. 2014, 38, 2391–2398. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Fan, Y.; Zhang, G.; Li, D.; Dong, W.; Sha, Z.; Yu, X.; Feng, Q.; Cui, F.; et al. Repairing goat tibia segmental bone defect using scaffold cultured with mesenchymal stem cells. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2010, 94, 44–52. [Google Scholar] [CrossRef]
- Tang, T.T.; Lu, B.; Yue, B.; Xie, X.H.; Xie, Y.Z.; Dai, K.R.; Lu, J.X.; Lou, J.R. Treatment of osteonecrosis of the femoral head with hBMP-2-gene-modified tissue-engineered bone in goats. J. Bone Jt. Surgery. Br. Vol. 2007, 89, 127–129. [Google Scholar] [CrossRef] [Green Version]
- Hollinger, J.O.; Kleinschmidt, J.C. The Critical Size Defect as an Experimental Model To Test Bone Repair Materials. J. Craniofacial Surg. 1990, 1, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.L.; Dhert, W.J.; De Bruijn, J.D.; Dalmeijer, R.A.; Leenders, H.; Van Blitterswijk, C.A.; Verbout, A.J. Critical Size Defect in the Goat’s Os Ilium. Clin. Orthop. Relat. Res. 1999, 364, 231–239. [Google Scholar] [CrossRef]
- Atayde, L.M.; Cortez, P.P.; Afonso, A.; Santos, M.; Maurício, A.C.; Santos, J.D. Morphology effect of bioglass-reinforced hydroxyapatite (Bonelike®) on osteoregeneration. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2014, 103, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.M.; Sousa, A.C.; Caseiro, A.R.; Pedrosa, S.S.; Pinto, O.P.; Branquinho, M.V.; Amorim, I.; Santos, J.D.; Pereira, T.; Mendonça, C.M.; et al. Dental pulp stem cells and Bonelike® for bone regeneration in ovine model. Regen. Biomater. 2019, 6, 49–59. [Google Scholar] [CrossRef]
- Dias, G.J.; Mahoney, P.; Hung, N.A.; Sharma, L.A.; Kalita, P.; Smith, R.A.; Kelly, R.J.; Ali, A. Osteoconduction in keratin-hydroxyapatite composite bone-graft substitutes. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2016, 105, 2034–2044. [Google Scholar] [CrossRef] [PubMed]
- Vertenten, G.; Lippens, E.; Gironès, J.; Gorski, T.; Declercq, H.; Saunders, J.; Broeck, W.V.D.; Chiers, K.; Duchateau, L.; Schacht, E.; et al. Evaluation of an Injectable, Photopolymerizable, and Three-Dimensional Scaffold Based on Methacrylate-Endcapped Poly(D,L-Lactide-co-ɛ-Caprolactone) Combined with Autologous Mesenchymal Stem Cells in a Goat Tibial Unicortical Defect Model. Tissue Eng. Part. A 2009, 15, 1501–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Kassaby, M.; El Kader, K.A.; Khamis, N.; Al Hammoud, A.; Ben Talb, A.; El Hadidi, Y.N. The Effect of Bone Marrow Mesenchymal Stem Cells Application on Distracted Bone Quality during Rapid Rate of Distraction Osteogenesis. Craniomaxillofacial Trauma Reconstr. 2018, 11, 192–198. [Google Scholar] [CrossRef]
- Tatara, A.M.; Kretlow, J.D.; Spicer, P.P.; Lu, S.; Lam, J.; Liu, W.; Cao, Y.; Liu, G.; Jackson, J.D.; Yoo, J.J.; et al. Autologously Generated Tissue-Engineered Bone Flaps for Reconstruction of Large Mandibular Defects in an Ovine Model. Tissue Eng. Part. A 2015, 21, 1520–1528. [Google Scholar] [CrossRef] [Green Version]
- Dias, I.R.; Camassa, J.A.; Bordelo, J.A.; Babo, P.S.; Viegas, C.A.; Dourado, N.; Reis, R.L.; Gomes, M.E. Preclinical and Translational Studies in Small Ruminants (Sheep and Goat) as Models for Osteoporosis Research. Curr. Osteoporos. Rep. 2018, 16, 182–197. [Google Scholar] [CrossRef]
- Çolpak, H.; Gönen, Z.; Özdamar, S.; Alkan, A.; Kütük, N. Vertical ridge augmentation using guided bone regeneration procedure and dental pulp derived mesenchymal stem cells with simultaneous dental implant placement: A histologic study in a sheep model. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Lu, J.-Y.; Hao, Y.-M.; Cao, C.-H.; Zou, D.-R. Maxillary sinus floor elevation with a tissue-engineered bone composite of deciduous tooth stem cells and calcium phosphate cement in goats. J. Tissue Eng. Regen. Med. 2017, 11, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Martinello, T.; Gomiero, C.; Perazzi, A.; Iacopetti, I.; Gemignani, F.; DeBenedictis, G.M.; Ferro, S.; Zuin, M.; Martines, E.; Brun, P.; et al. Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin. BMC Vet. Res. 2018, 14, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaie, F.; Momeni-Moghaddam, M.; Naderi-Meshkin, H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment. Int. J. Low Extrem. Wounds 2019, 18, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Al-Bayati, A.; Al-Asadi, R.; Mahdi, A.; Al-Falahi, N. Effects of autologous platelets rich plasma on full-thickness cutaneous wounds healing in goats. Int. J. Anim. Vet. Adv. 2013, 5, 233–239. [Google Scholar] [CrossRef]
- Alvarez, L.; Adcock, S.J.; Tucker, C.B. Sensitivity and wound healing after hot-iron disbudding in goat kids. J. Dairy Sci. 2019, 102, 10152–10162. [Google Scholar] [CrossRef]
- Badis, D.; Omar, B. The effectiveness of platelet-rich plasma on the skin wound healing process: A comparative experimental study in sheep. Vet. World 2018, 11, 800–808. [Google Scholar] [CrossRef]
- Ferdousy, R.N. Role of platelet rich plasma gel in the wound healing of black Bengal goat. IOSR J. Agric. Vet. Sci. 2013, 6, 14–21. [Google Scholar] [CrossRef]
- Azari, O.; Babaei, H.; Derakhshanfar, A.; Nematollahi-Mahani, S.N.; Poursahebi, R.; Moshrefi, M. Effects of transplanted mesenchymal stem cells isolated from Wharton’s jelly of caprine umbilical cord on cutaneous wound healing; histopathological evaluation. Vet. Res. Commun. 2011, 35, 211–222. [Google Scholar] [CrossRef]
- Ghorbani, A.; Mohammadi, R.; Shahrooz, R. Effect of Local Transplantation of Bone Marrow Derived Mast Cells (BMMCs) Combined with Chitosan Biofilm on Excisional and Incisional Wound Healing: A Novel Preliminary Animal Study on Lamb. Iranian J. Vet. Surg. 2019, 14, 34–43. [Google Scholar] [CrossRef]
- De Tayrac, R.; Alves, A.; Thérin, M. Collagen-coated vs noncoated low-weight polypropylene meshes in a sheep model for vaginal surgery. A pilot study. Int. Urogynecol. J. 2006, 18, 513–520. [Google Scholar] [CrossRef]
- Ferreira, J.P.S.; Rynkevic, R.; Martins, P.A.L.S.; Parente, M.P.L.; Famaey, N.M.; Deprest, J.; Fernandes, A.A. Predicting the mechanical response of the vaginal wall in ball burst tests based on histology. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2019, 108, 1925–1933. [Google Scholar] [CrossRef]
- Rynkevic, R.; Ferreira, J.; Martins, P.; Parente, M.; Fernandes, A.A. Linking hyperelastic theoretical models and experimental data of vaginal tissue through histological data. J. Biomech. 2019, 82, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Feola, A.; Endo, M.; Urbankova, I.; Vlacil, J.; Deprest, T.; Bettin, S.; Klosterhalfen, B.; Deprest, J. Host reaction to vaginally inserted collagen containing polypropylene implants in sheep. Am. J. Obstet. Gynecol. 2015, 212, 474.e1–474.e8. [Google Scholar] [CrossRef]
- Abramowitch, S.D.; Feola, A.; Jallah, Z.; Moalli, P.A. Tissue mechanics, animal models, and pelvic organ prolapse: A review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 144, S146–S158. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.R.M.; Feitosa, M.L.T.; Rocha, A.R.; Bezerra, D.O.; Leite, Y.K.C.; Neto, N.M.A.; Rodrigues, H.W.S.; Sousa, A., Jr.; Silva, A.S.; Sarmento, J.L.R.; et al. Adipose stem cells in reparative goat mastitis mammary gland. PLoS ONE 2019, 14, e0223751. [Google Scholar] [CrossRef]
- Rozemuller, H.; Prins, H.-J.; Naaijkens, B.; Staal, J.; Bühring, H.-J.; Martens, A.C. Prospective Isolation of Mesenchymal Stem Cells from Multiple Mammalian Species Using Cross-Reacting Anti-Human Monoclonal Antibodies. Stem Cells Dev. 2010, 19, 1911–1921. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, E.M.; Le Blanc, K.; Dominici, M.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Deans, R.J.; Krause, D.S.; Keating, A.; International Society for Cellular, T. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005, 7, 393–395. [Google Scholar] [CrossRef]
- Tvorogova, A.A.; Kovaleva, A.V.; Saidova, A.A. Mesenchymal stem cells from the domestic ungulates: Trends and outliers. Int. J. Vet. Sci. Res. 2018, 4, 023–031. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, W.; Gao, J.; Zhou, H.; Zhang, Y. Isolation, culture, and induced multiple differentiation of Mongolian sheep bone marrow-derived mesenchymal stem cells. Vitr. Cell. Dev. Biol. Anim. 2014, 50, 464–474. [Google Scholar] [CrossRef]
- Vahedi, P.; Soleimanirad, J.; Roshangar, L.; Shafaei, H.; Jarolmasjed, S.; Charoudeh, H.N. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering. Adv. Pharm. Bull. 2016, 6, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Heidari, B.; Shirazi, A.; Akhondi, M.M.; Hassanpour, H.; Behzadi, B.; Naderi, M.M.; Sarvari, A.; Borjian, S. Comparison of Proliferative and Multilineage Differentiation Potential of Sheep Mesenchymal Stem Cells Derived from Bone Marrow, Liver, and Adipose Tissue. Avicenna J. Med. Biotechnol. 2013, 5, 104–117. [Google Scholar]
- Colosimo, A.; Russo, V.; Mauro, A.; Curini, V.; Marchisio, M.; Bernabò, N.; Alfonsi, M.; Mattioli, M.; Barboni, B. Prolonged in vitro expansion partially affects phenotypic features and osteogenic potential of ovine amniotic fluid-derived mesenchymal stromal cells. Cytotherapy 2013, 15, 930–950. [Google Scholar] [CrossRef]
- Tian, Y.; Tao, L.; Zhao, S.; Tai, D.; Liu, N.; Liu, P. Isolation and morphological characterization of ovine amniotic fluid mesenchymal stem cells. Exp. Anim. 2016, 65, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; He, X.; Pu, Y.; Zhang, W.; Zhang, P.; Li, C.; Guan, W.; Li, X.; Ma, Y. Biological Characterization and Pluripotent Identification of Sheep Dermis-Derived Mesenchymal Stem/Progenitor Cells. BioMed Res. Int. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jäger, M.; Bachmann, R.; Scharfstädt, A.; Krauspe, R. Ovine cord blood accommodates multipotent mesenchymal progenitor cells. in vivo 2006, 20, 205–214. [Google Scholar]
- Bornes, T.D.; Jomha, N.M.; Mulet-Sierra, A.; Adesida, A.B. Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds. Stem Cell Res. Ther. 2015, 6, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Mediano, D.R.; Sanz-Rubio, D.; Bolea, R.; Marín, B.; Vázquez, F.J.; Remacha, A.R.; López-Pérez, Ó.; Fernández-Borges, N.; Castilla, J.; Zaragoza, P.; et al. Characterization of mesenchymal stem cells in sheep naturally infected with scrapie. J. Gen. Virol. 2015, 96, 3715–3726. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, N.P.; Srivastava, J.K.; Smith, R.F.; Longinotti, C. Heterogeneity in proliferative potential of ovine mesenchymal stem cell colonies. J. Mater. Sci. Mater. Med. 2004, 15, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Gugjoo, M.B.; Amarpal; Fazili, M.U.R.; Shah, R.A.; Mir, M.S.; Sharma, G.T. Goat mesenchymal stem cell basic research and potential applications. Small Rumin. Res. 2020, 183, 106045. [Google Scholar] [CrossRef]
- Mohamad-Fauzi, N.; Ross, P.J.; Maga, A.E.; Murray, J.D. Impact of source tissue and ex vivo expansion on the characterization of goat mesenchymal stem cells. J. Anim. Sci. Biotechnol. 2015, 6, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Tamadon, A.; Mehrabani, D.; Zarezadeh, Y.; Rahmanifar, F.; Dianatpour, M.; Zare, S. Caprine Endometrial Mesenchymal Stromal Stem Cell: Multilineage Potential, Characterization, and Growth Kinetics in Breeding and Anestrous Stages. Vet. Med. Int. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, Z.; Wang, Q.; Wang, H.; Liang, H.; Liu, D. Epigenetic modification differences between fetal fibroblast cells and mesenchymal stem cells of the Arbas Cashmere goat. Res. Vet. Sci. 2017, 114, 363–369. [Google Scholar] [CrossRef]
- Schop, D.; Janssen, F.W.; Van Rijn, L.D.S.; Fernandes, H.; Bloem, R.M.; De Bruijn, J.D.; Van Dijkhuizen-Radersma, R. Growth, Metabolism, and Growth Inhibitors of Mesenchymal Stem Cells. Tissue Eng. Part. A 2009, 15, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.R.; Marinho, R.C.; Bezerra-Junior, R.Q.; Câmara, L.M.; Albuquerque-Pinto, L.C.; Teixeira, M.F. Isolation, culture and characterization of multipotent mesenchymal stem cells from goat umbilical cord blood. Pesquisa Veterinária Brasileira 2017, 37, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, X.; Lai, D.; Deng, J.; Hou, Z.; Liang, H.; Liu, D. BIX-01294 promotes the differentiation of adipose mesenchymal stem cells into adipocytes and neural cells in Arbas Cashmere goats. Res. Vet. Sci. 2018, 119, 9–18. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Ramani, U.V.; Ahir, V.B.; Rank, D.N.; Joshi, C.G. A modified enrichment protocol for adult caprine skeletal muscle stem cell. Cytotechnology 2010, 62, 483–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reza, A.M.M.T.; Shiwani, S.; Singh, N.K.; Lohakare, J.D.; Lee, S.J.; Jeong, D.K.; Han, J.Y.; Rengaraj, D.; Lee, B.W. Keratinocyte growth factor and thiazolidinediones and linolenic acid differentiate characterized mammary fat pad adipose stem cells isolated from prepubertal Korean black goat to epithelial and adipogenic lineage. Vitr. Cell. Dev. Biol. Anim. 2014, 50, 194–206. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Li, P.-Z.; Pang, J.; Wan, Y.-J.; Zhang, G.-M.; Fan, Y.-X.; Wang, Z.-Y.; Tao, N.-H.; Wang, F. Induction of goat bone marrow mesenchymal stem cells into putative male germ cells using mRNA for STRA8, BOULE and DAZL. Cytotechnology 2019, 71, 563–572. [Google Scholar] [CrossRef]
- Somal, A.; Bhat, I.A.; Singh, A.P.; Panda, B.S.; Desingu, P.A.; Pandey, S.; Bharti, M.K.; Pal, A.; Saikumar, G.; Sharma, G.T. Impact of Cryopreservation on Caprine Fetal Adnexa Derived Stem Cells and Its Evaluation for Growth Kinetics, Phenotypic Characterization, and Wound Healing Potential in Xenogenic Rat Model. J. Cell. Physiol. 2017, 232, 2186–2200. [Google Scholar] [CrossRef] [PubMed]
Parameter/Species | Sheep | Goat |
---|---|---|
Chromosome number | 54 | 60 |
Body temperature (°C) | 39–40 | 38.5–39.5 |
Heart rate (beats/min) | 75 (60–120) | 85 (70–110) |
Respiration rate adult (breaths/min) | 36 (12–72) | 28 (15–40) |
Life span (years) | 10–15 | 8–12 years |
Body weights (lbs) | 20 to 100 kg | 45 to 70 kg |
Permanent dental formula | 2 (I 0/3 C 0/1 P 3/3 M 3/3) = 32 |
Parameter/Species | Lambs | Kids |
---|---|---|
Body temperature (°C) | 39.5–40.5 | 39–40.5 |
Heart rate (beats/min) | 140 (120–160) | 140 (120–160) |
Respiration rate adult (breaths/min) | 50 (30–70) | 50 (40–65) |
Body weights at Birth (lbs) | 1 to 4 Kg | 1 to 4 Kg |
Deciduos dental formula | 2 (Di 0/3 Dc 0/1 Dp 3/3) = 20 |
Reproductive Parameters/Species | Sheep | Goat |
---|---|---|
Age at puberty (months) | 7–8 | 4–8 |
Cycle type | Seasonally polyestrus | |
Duration of cycle (days) | 14–19 | 18–24 |
Length of estrus (hours) | 24–30 | 24–96 |
Gestation (days) | 147–150 | 144–155 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvites, R.D.; Branquinho, M.V.; Sousa, A.C.; Lopes, B.; Sousa, P.; Mendonça, C.; Atayde, L.M.; Maurício, A.C. Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives. Biology 2021, 10, 249. https://doi.org/10.3390/biology10030249
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Mendonça C, Atayde LM, Maurício AC. Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives. Biology. 2021; 10(3):249. https://doi.org/10.3390/biology10030249
Chicago/Turabian StyleAlvites, Rui Damásio, Mariana Vieira Branquinho, Ana Catarina Sousa, Bruna Lopes, Patrícia Sousa, Carla Mendonça, Luís Miguel Atayde, and Ana Colette Maurício. 2021. "Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives" Biology 10, no. 3: 249. https://doi.org/10.3390/biology10030249
APA StyleAlvites, R. D., Branquinho, M. V., Sousa, A. C., Lopes, B., Sousa, P., Mendonça, C., Atayde, L. M., & Maurício, A. C. (2021). Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives. Biology, 10(3), 249. https://doi.org/10.3390/biology10030249