Cardiac Peptides—Current Physiology, Pathophysiology, Biochemistry, Molecular Biology, and Clinical Application
Author Contributions
Funding
Conflicts of Interest
References
- de Bold, A.J.; Flynn, T.G. Cardionatrin I—A novel heart peptide with potent diuretic and natriuretic properties. Life Sci. 1983, 33, 297–302. [Google Scholar] [CrossRef]
- Nishikimi, T.; Kuwahara, K.; Nakao, K. Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides. J. Cardiol. 2011, 57, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand-Srivastava, M.B. Natriuretic peptide receptor-C signaling and regulation. Peptides 2005, 26, 1044–1059. [Google Scholar] [CrossRef]
- Moffatt, P.; Thomas, G.; Sellin, K.; Bessette, M.C.; Lafrenière, F.; Akhouayri, O.; St-Arnaud, R.; Lanctôt, C. Osteocrin is a specific ligand of the natriuretic Peptide clearance receptor that modulates bone growth. J. Biol. Chem. 2007, 282, 36454–36462. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, T.; Otani, K.; Chiba, A.; Nishimura, H.; Tokudome, T.; Takano-Watanabe, H.; Matsuo, A.; Ishikawa, H.; Shimamoto, K.; Fukui, H.; et al. A New Secretory Peptide of Natriuretic Peptide Family, Osteocrin, Suppresses the Progression of Congestive Heart Failure After Myocardial Infarction. Circ. Res. 2018, 122, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, T.; Maeda, N.; Matsuoka, H. The role of natriuretic peptides in cardioprotection. Cardiovasc. Res. 2006, 69, 318–328. [Google Scholar] [CrossRef]
- Mcmurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Nakajima, K.; Shimamori, Y.; Fujimoto, Y. Comparison of the Hydrolysis of the Three Types of Natriuretic Peptides by Human Kidney Neutral Endopeptidase 24.11. Biochem. Mol. Med. 1997, 61, 47–51. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988, 332, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Davenport, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Endothelin. Pharmacol. Rev. 2016, 68, 357–418. [Google Scholar] [CrossRef] [Green Version]
- Rosenkranz, S.; Lang, I.M.; Blindt, R.; Bonderman, D.; Bruch, L.; Diller, G.P.; Felgendreher, R.; Gerges, C.; Hohenforst-Schmidt, W.; Holt, S.; et al. Pulmonary hypertension associated with left heart disease: Updated Recommendations of the Cologne Consensus Conference 2018. Int. J. Cardiol. 2018, 272, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, K.; Kangawa, K.; Kawamoto, M.; Ichiki, Y.; Nakamura, S.; Matsuo, H.; Eto, T. Adrenomedullin: A Novel Hypotensive Peptide Isolated from Human Pheochromocytoma. Biochem. Biophys. Res. Commun. 1993, 192, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, T.; Matsuoka, H. Cardiac adrenomedullin: Its role in cardiac hypertrophy and heart failure. Curr. Med. Chem. Cardiovasc. Hematol. Agents 2005, 3, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, N.; Satoh, T.; Nishikimi, T.; Uematsu, M.; Furuichi, S.; Sakamaki, F.; Oya, H.; Kyotani, S.; Nakanishi, N.; Goto, Y.; et al. Hemodynamic, Renal, and Hormonal Effects of Adrenomedullin Infusion in Patients with Congestive Heart Failure. Circulation 2000, 101, 498–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshizawa, T.; Sakurai, T.; Kamiyoshi, A.; Ichikawa-Shindo, Y.; Kawate, H.; Iesato, Y.; Koyama, T.; Uetake, R.; Yang, L.; Yamauchi, A.; et al. Novel Regulation of Cardiac Metabolism and Homeostasis by the Adrenomedullin-Receptor Activity-Modifying Protein 2 System. Hypertension 2013, 61, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef]
- Hosoda, H.; Kojima, M.; Kangawa, K. Biological, Physiological, and Pharmacological Aspects of Ghrelin. J. Pharmacol. Sci. 2006, 100, 398–410. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, I.; Tokudome, T.; Hosoda, H.; Miyazato, M.; Kangawa, K. Ghrelin and cardiovascular diseases. J. Cardiol. 2012, 59, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Goetze, J.P.; Hunter, I.; Zois, N.E.; Terzic, D.; Valeur, N.; Olsen, L.; Smith, J.; Plomgaard, P.; Hansen, L.H.; Rehfeld, J.F.; et al. Cardiac procholecystokinin expression during haemodynamic changes in the mammalian heart. Peptides 2018, 108, 7–13. [Google Scholar] [CrossRef]
- Sato, T.; Suzuki, T.; Watanabe, H.; Kadowaki, A.; Fukamizu, A.; Liu, P.P.; Kimura, A.; Ito, H.; Penninger, J.; Imai, Y.; et al. Apelin is a positive regulator of ACE2 in failing hearts. J. Clin. Investig. 2013, 123, 5203–5211. [Google Scholar] [CrossRef] [Green Version]
- Kuba, K.; Sato, T.; Imai, Y.; Yamaguchi, T. Apelin and Elabela/Toddler; double ligands for APJ/Apelin receptor in heart development, physiology, and pathology. Peptides 2019, 111, 62–70. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishikimi, T.; Kato, J. Cardiac Peptides—Current Physiology, Pathophysiology, Biochemistry, Molecular Biology, and Clinical Application. Biology 2022, 11, 330. https://doi.org/10.3390/biology11020330
Nishikimi T, Kato J. Cardiac Peptides—Current Physiology, Pathophysiology, Biochemistry, Molecular Biology, and Clinical Application. Biology. 2022; 11(2):330. https://doi.org/10.3390/biology11020330
Chicago/Turabian StyleNishikimi, Toshio, and Johji Kato. 2022. "Cardiac Peptides—Current Physiology, Pathophysiology, Biochemistry, Molecular Biology, and Clinical Application" Biology 11, no. 2: 330. https://doi.org/10.3390/biology11020330
APA StyleNishikimi, T., & Kato, J. (2022). Cardiac Peptides—Current Physiology, Pathophysiology, Biochemistry, Molecular Biology, and Clinical Application. Biology, 11(2), 330. https://doi.org/10.3390/biology11020330