Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Endocanabinoid System
2.1. Endocannabinoids
2.2. Endocanabinoid Receptors
2.3. Neuroprotection Roles
3. Cannabinoids and Alzheimer’s Disease
4. Cannabinoids and Parkinson’s Disease
5. Cannabinoids and Huntington’s Disease
6. Cannabinoids and Multiple Sclerosis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2-AG | 2-Arachidonoylglycerol |
3-NP | 3-Nitropropionic acid |
5-HT1A | 5-Hydroxytryptamine |
AchE | Acetylcholinesterase |
ACPA | Arachidonyl-cyclopropyl amide |
AD | Alzheimer’s Disease |
AEA | Anandamide |
ALS | Amyotrophic lateral sclerosis |
APP | Amyloid precursor protein |
BBB | Blood–Brain Barrier |
BLA | Basolateral amygdala |
CA1 | Dorsal hippocampus |
CB1R | Cannabinoid-receptors type 1 |
CB2R | Cannabinoid-receptors type 2 |
CBD | Cannabidiol |
CBD-DMH | Cannabidiol dimethylheptyl |
CBG | Cannabigerol |
CBR | Cannabinoid receptor |
CIDP | Chronic inflammatory demyelinating polyneuropathy |
CNS | Central nervous system |
COX | Cyclooxygenase |
DMT | Disease modifying therapy |
EAE | Experimental autoimmune encephalomyelitis |
ECB | Endocannabinoid |
ECS | Endocannabinoid system |
FAAH | Fatty acid amide hydrolase |
GABA | Gamma-aminobutyric acid |
GBS | Guillain–Barré syndrome |
GPRC | G-Coupled protein receptor |
GSK-3β | Glycogen synthase kinase-3β |
HD | Huntington’s Disease |
HTT | Huntingtin |
IL | Interleukin |
i.p. | Intraperitoneal |
L-DOPA | Levodopa |
MAGL | Monoacylglycerol lipase |
MAPK | Mitogen-activated protein kinases |
MCA | Middle cerebral artery |
MHC | Major histocompatibility complex |
mHTT | Mutant huntingtin |
MOG | Myelin oligodendrocyte glycoprotein |
MPTP | 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine |
MS | Multiple Sclerosis |
MSN | Medium spiny neurons |
NAc | Nucleus accumbens |
NAPE-PLD | N-arachidonoyl phosphatidylethanolamine-specific phospholipase D |
NF-kB | Nuclear factor-kB |
NMDA | N-Methyl-D-aspartic acid |
NTF | Neurofibrillary tangles |
OKA | Okadaic acid |
PD | Parkinson’s Disease |
PEA | Palmithoylethanolamide |
PFC | Prefrontal cortex |
PG | Prostaglandin |
PKA | Protein kinase A |
PPMS | Primary-progressive MS |
PRMS | Progressive-relapsing MS |
ROS | Reactive oxygen species |
RRMS | Relapsing-remitting MS |
SPMS | Secondary-progressive MS |
TMEV | Theiler’s murine encephalomyelitis virus |
TNF-α | Tumor necrosis factor-α |
TRPV | Transient receptor potential vanilloid |
VTA | Ventral tegmental area |
Δ9-THC | Δ9-Tetrahydrocannabinol |
References
- Morera-Herreras, T.; Miguelez, C.; Aristieta, A.; Torrecilla, M.; Ruiz-Ortega, J.Á.; Ugedo, L. Cannabinoids and Motor Control of the Basal Ganglia: Therapeutic Potential in Movement Disorders. In Cannabinoids in Health and Disease; Meccariello, R., Ed.; InTech Open: London, UK, 2016; pp. 60–92. [Google Scholar]
- Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2018, 10, a033118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, E.; Szoeke, C.E.I.; Vollset, S.E.; Abbasi, N.; Abd-Allah, F.; Abdela, J.; Aichour, M.T.E.; Akinyemi, R.O.; Alahdab, F.; Asgedom, S.W.; et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 88–106. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Hamilton, J.L.; Kopil, C.; Beck, J.C.; Tanner, C.M.; Albin, R.L.; Ray Dorsey, E.; Dahodwala, N.; Cintina, I.; Hogan, P.; et al. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Parkinsons Dis. 2020, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association. 2021 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2021, 17, 327–406. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.A.; Xu, W.; Gaglioti, A.H.; Holt, J.B.; Croft, J.B.; Mack, D.; McGuire, L.C. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged >/=65 years. Alzheimer’s Dement. 2019, 15, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Alvarez-Alvarez, I.; Guillen-Grima, F.; Al-Rahamneh, M.J.; Aguinaga-Ontoso, I. Trends of mortality from Alzheimer’s disease in the European Union, 1994–2013. Eur. J. Neurol. 2017, 24, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Kempuraj, D.; Thangavel, R.; Natteru, P.; Selvakumar, G.; Saeed, D.; Zahoor, H.; Zaheer, S.; Iyer, S.; Zaheer, A. Neuroinflammation Induces Neurodegeneration. J. Neurol. Neurosurg. Spine 2016, 1, 1003. [Google Scholar] [PubMed]
- Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science 2016, 353, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.J.; Dexter, D.T.; Crichton, R.R. Ageing, neuroinflammation and neurodegeneration. Front. Biosci. 2015, 7, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Chevalier-Larsen, E.; Holzbaur, E. Axonal transport and neurodegenerative disease. Biochim. Biophys. Acta 2006, 1762, 1094–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiurchiù, V.; van der Stelt, M.; Centonze, D.; Maccarrone, M. The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: Clues for other neuroinflammatory diseases. Prog. Neurobiol. 2018, 160, 82–100. [Google Scholar] [CrossRef] [PubMed]
- Lanuti, P.; Ciccocioppo, F.; Bologna, G.; Ercolino, E.; Pierdomenico, L.; Simeone, P.; Pieragostino, D.; Del Boccio, P.; Marchisio, M.; Miscia, S. Neurodegenerative diseases as proteinopathies-driven immune disorders. Neural Regen. Res. 2020, 15, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Zubair, H.; Pursell, S.; Shahab, M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci. 2018, 8, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, S.; Bernardi, G.; Centonze, D. The endocannabinoid system in the inflammatory and neurodegenerative processes of multiple sclerosis and of amyotrophic lateral sclerosis. Exp. Neurol. 2010, 224, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Lull, M.E.; Block, M.L. Microglial activation and chronic neurodegeneration. Neurotherapeutics 2010, 7, 354–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridgeman, M.B.; Abazia, D.T. Medicinal Cannabis: History, Pharmacology, and Implications for the Acute Care Setting. Pharm. Ther. 2017, 42, 180–188. [Google Scholar]
- Maurya, N.; Velmurugan, B.K. Therapeutic applications of cannabinoids. Chem. Biol. Interact. 2018, 293, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.J.; Williams, C.M.; Whalley, B.J.; Stephens, G.J. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol. Ther. 2012, 133, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Jones, É.; Vlachou, S. A Critical Review of the Role of the Cannabinoid Compounds Δ9-Tetrahydrocannabinol (Δ9-THC) and Cannabidiol (CBD) and their Combination in Multiple Sclerosis Treatment. Molecules 2020, 25, 4930. [Google Scholar] [CrossRef]
- Mechoulam, R.; Gaoni, Y. A Total Synthesis of dl-Δ1-Tetrahydrocannabinol, the Active Constituent of Hashish. J. Am. Chem. Soc. 1965, 87, 3273–3275. [Google Scholar] [CrossRef]
- Crocq, M.-A. History of cannabis and the endocannabinoid system. Dialogues Clin. Neurosci. 2020, 22, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Silvestro, S.; Schepici, G.; Bramanti, P.; Mazzon, E. Molecular Targets of Cannabidiol in Experimental Models of Neurological Disease. Molecules 2020, 25, 5186. [Google Scholar] [CrossRef] [PubMed]
- Koppel, B.S.; Brust, J.C.; Fife, T.; Bronstein, J.; Youssof, S.; Gronseth, G.; Gloss, D. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2014, 82, 1556–1563. [Google Scholar] [CrossRef] [PubMed]
- Cilia, R. Molecular Imaging of the Cannabinoid System in Idiopathic Parkinson’s Disease. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 141, pp. 305–345. [Google Scholar] [CrossRef]
- Melis, M.; Pillolla, G.; Bisogno, T.; Minassi, A.; Petrosino, S.; Perra, S.; Muntoni, A.L.; Lutz, B.; Gessa, G.L.; Marsicano, G. Protective activation of the endocannabinoid system during ischemia in dopamine neurons. Neurobiol. Dis. 2006, 24, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Maccarrone, M. Missing Pieces to the Endocannabinoid Puzzle. Trends Mol. Med. 2020, 26, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Daris, B.; Tancer Verboten, M.; Knez, Z.; Ferk, P. Cannabinoids in cancer treatment: Therapeutic potential and legislation. Bosn. J. Basic Med. Sci. 2019, 19, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Di Marzo, V.; Bifulco, M.; De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov. 2004, 3, 771–784. [Google Scholar] [CrossRef]
- Lowe, H.; Toyang, N.; Steele, B.; Bryant, J.; Ngwa, W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int. J. Mol. Sci. 2021, 22, 9472. [Google Scholar] [CrossRef]
- Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365, 61–65. [Google Scholar] [CrossRef]
- Trautmann, S.M.; Sharkey, K.A. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 125, pp. 85–126. [Google Scholar] [CrossRef]
- Wilhelmsen, K.; Khakpour, S.; Tran, A.; Sheehan, K.; Schumacher, M.; Xu, F.; Hellman, J. The Endocannabinoid/Endovanilloid N-Arachidonoyl Dopamine (NADA) and Synthetic Cannabinoid WIN55,212-2 Abate the Inflammatory Activation of Human Endothelial Cells. J. Biol. Chem. 2014, 289, 13079–13100. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, T.; Kondo, S.; Sukagawa, A.; Nakane, S.; Shinoda, A.; Itoh, K.; Yamashita, A.; Waku, K. 2-Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 1995, 215, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Aso, E.; Ferrer, I. Cannabinoids for treatment of Alzheimer’s disease: Moving toward the clinic. Front. Pharmacol. 2014, 5, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everett, T.J.; Gomez, D.M.; Hamilton, L.R.; Oleson, E.B. Endocannabinoid modulation of dopamine release during reward seeking, interval timing, and avoidance. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 104, 110031. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, A.; Martinez, A. Chapter 3—The Endocannabinoid System and Parkinson Disease. In The Endocannabinoid System. Genetics, Biochemistry, Brain Disorders, and Therapy; Murillo-Rodríguez, E., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 63–81. [Google Scholar]
- Contino, M.; McCormick, P.J. Editorial: The Canonical and Non-Canonical Endocannabinoid System as a Target in Cancer and Acute and Chronic Pain. Front. Pharmacol. 2020, 11, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, E.; Cavic, M.; Canela, E.I. Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System-Implications for Health and Disease. Int. J. Mol. Sci. 2021, 22, 3661. [Google Scholar] [CrossRef] [PubMed]
- Heinbockel, T.; Wang, Z.-J.; Brown, E.A.; Austin, P.T. Endocannabinoid Signaling in Neural Circuits of the Olfactory and Limbic System. In Cannabinoids in Health and Disease; InTechOpen: London, UK, 2016; pp. 11–37. [Google Scholar]
- Medeiros, D.d.C.; Cota, V.R.; Oliveira, A.C.P.; Moreira, F.A.; Moraes, M.F.D. The Endocannabinoid System Activation as a Neural Network Desynchronizing Mediator for Seizure Suppression. Front. Behav. Neurosci. 2020, 14, 603245. [Google Scholar] [CrossRef]
- Katona, I.; Freund, T.F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat. Med. 2008, 14, 923–930. [Google Scholar] [CrossRef] [PubMed]
- HUGO(a), G.N.C. CNR1. Available online: https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/2159 (accessed on 5 January 2022).
- HUGO(b), G.N.C. CNR2. Available online: https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:2160 (accessed on 5 January 2022).
- Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Felder, C.C.; Herkenham, M.; Mackie, K.; Martin, B.R.; et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 2002, 54, 161–202. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.-C.; Mackie, K. An Introduction to the Endogenous Cannabinoid System. Biol. Psychiatry 2016, 79, 516–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veilleux, A.; Di Marzo, V.; Silvestri, C. The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus. Curr. Diab. Rep. 2019, 19, 117. [Google Scholar] [CrossRef]
- Cassano, T.; Calcagnini, S.; Pace, L.; De Marco, F.; Romano, A.; Gaetani, S. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target. Front. Neurosci. 2017, 11, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katchan, V.; David, P.; Shoenfeld, Y. Cannabinoids and autoimmune diseases: A systematic review. Autoimmun. Rev. 2016, 15, 513–528. [Google Scholar] [CrossRef] [PubMed]
- Kubajewska, I.; Constantinescu, C.S. Cannabinoids and experimental models of multiple sclerosis. Immunobiology 2010, 215, 647–657. [Google Scholar] [CrossRef]
- Moreno, E.; Cavic, M.; Krivokuca, A.; Canela, E.I. The Interplay between Cancer Biology and the Endocannabinoid System-Significance for Cancer Risk, Prognosis and Response to Treatment. Cancers 2020, 12, 3275. [Google Scholar] [CrossRef] [PubMed]
- Vaseghi, S.; Nasehi, M.; Zarrindast, M.-R. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci. Biobehav. Rev. 2021, 120, 173–221. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Bhat, M.; Bowen, W.D.; Cheng, J. Signaling pathways from cannabinoid receptor-1 activation to inhibition of N-methyl-D-aspartic acid mediated calcium influx and neurotoxicity in dorsal root ganglion neurons. J. Pharmacol. Exp. Ther. 2009, 331, 1062–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagredo, O.; Pazos, M.R.; Valdeolivas, S.; Fernandez-Ruiz, J. Cannabinoids: Novel medicines for the treatment of Huntington’s disease. Recent Pat. CNS Drug Discov. 2012, 7, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Földy, C.; Neu, A.; Jones, M.V.; Soltesz, I. Presynaptic, Activity-Dependent Modulation of Cannabinoid Type 1 Receptor-Mediated Inhibition of GABA Release. J. Neurosci. 2006, 26, 1465–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monory, K.; Massa, F.; Egertová, M.; Eder, M.; Blaudzun, H.; Westenbroek, R.; Kelsch, W.; Jacob, W.; Marsch, R.; Ekker, M.; et al. The Endocannabinoid System Controls Key Epileptogenic Circuits in the Hippocampus. Neuron 2006, 51, 455–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howlett, A.C. Cannabinoid receptor signaling. In Cannabinoids: Handbook of Experimental Pharmacology; Pertwee, R.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 168, pp. 53–79. [Google Scholar] [CrossRef]
- Silvestri, C.; Di Marzo, V. The Endocannabinoid System in Energy Homeostasis and the Etiopathology of Metabolic Disorders. Cell Metab. 2013, 17, 475–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreitzer, A.C.; Malenka, R.C. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 2007, 445, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.R.; Pan, C.H.; Hishimoto, A.; Li, C.Y.; Xi, Z.X.; Llorente-Berzal, A.; Viveros, M.P.; Ishiguro, H.; Arinami, T.; Onaivi, E.S.; et al. Species differences in cannabinoid receptor 2 (CNR2gene): Identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav. 2009, 8, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Cabral, G.A.; Griffin-Thomas, L. Emerging role of the cannabinoid receptor CB2in immune regulation: Therapeutic prospects for neuroinflammation. Expert Rev. Mol. Med. 2009, 11, e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núñez, E.; Benito, C.; Tolón, R.M.; Hillard, C.J.; Griffin, W.S.T.; Romero, J. Glial expression of cannabinoid CB2 receptors and fatty acid amide hydrolase are beta amyloid–linked events in Down’s syndrome. Neuroscience 2008, 151, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Van Sickle, M.D.; Duncan, M.; Kingsley, P.J.; Mouihate, A.; Urbani, P.; Mackie, K.; Stella, N.; Makriyannis, A.; Piomelli, D.; Davison, J.S.; et al. Identification and Functional Characterization of Brainstem Cannabinoid CB 2 Receptors. Science 2005, 310, 329–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aso, E.; Ferrer, I. CB2 Cannabinoid Receptor as Potential Target against Alzheimer’s Disease. Front. Neurosci. 2016, 10, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, T.J.; Patwardhan, A.; Akopian, A.N.; Hargreaves, K.M.; Flores, C.M. Modulation of trigeminal sensory neuron activity by the dual cannabinoid-vanilloid agonists anandamide, N-arachidonoyl-dopamine and arachidonyl-2-chloroethylamide. Br. J. Pharmacol. 2004, 141, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Aso, E.; Palomer, E.; Juves, S.; Maldonado, R.; Munoz, F.J.; Ferrer, I. CB1 agonist ACEA protects neurons and reduces the cognitive impairment of AbetaPP/PS1 mice. J. Alzheimer’s Dis. 2012, 30, 439–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croxford, J.L.; Pryce, G.; Jackson, S.J.; Ledent, C.; Giovannoni, G.; Pertwee, R.G.; Yamamura, T.; Baker, D. Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. J. Neuroimmunol. 2008, 193, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Leuti, A.; Fazio, D.; Fava, M.; Piccoli, A.; Oddi, S.; Maccarrone, M. Bioactive lipids, inflammation and chronic diseases. Adv. Drug Deliv. Rev. 2020, 159, 133–169. [Google Scholar] [CrossRef]
- Panikashvili, D.; Shein, N.A.; Mechoulam, R.; Trembovler, V.; Kohen, R.; Alexandrovich, A.; Shohami, E. The endocannabinoid 2-AG protects the blood-brain barrier after closed head injury and inhibits mRNA expression of proinflammatory cytokines. Neurobiol. Dis. 2006, 22, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Klein, T.W. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol. 2005, 5, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Buisseret, B.; Alhouayek, M.; Guillemot-Legris, O.; Muccioli, G.G. Endocannabinoid and Prostanoid Crosstalk in Pain. Trends Mol. Med. 2019, 25, 882–896. [Google Scholar] [CrossRef] [PubMed]
- Hind, W.H.; Tufarelli, C.; Neophytou, M.; Anderson, S.I.; England, T.J.; O’Sullivan, S.E. Endocannabinoids modulate human blood-brain barrier permeability in vitro. Br. J. Pharmacol. 2015, 172, 3015–3027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gris, J.C.; Nobile, B.; Bouvier, S. Neuropsychiatric presentations of antiphospholipid antibodies. Thromb. Res. 2015, 135, S56–S59. [Google Scholar] [CrossRef]
- Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis. Model. Mech. 2017, 10, 499–502. [Google Scholar] [CrossRef] [Green Version]
- Pugazhendhi, A.; Suganthy, N.; Chau, T.P.; Sharma, A.; Unpaprom, Y.; Ramaraj, R.; Karuppusamy, I.; Brindhadevi, K. Cannabinoids as anticancer and neuroprotective drugs: Structural insights and pharmacological interactions—A review. Process. Biochem. 2021, 111, 9–31. [Google Scholar] [CrossRef]
- García, C.; Palomo-Garo, C.; Gómez-Gálvez, Y.; Fernández-Ruiz, J. Cannabinoid–dopamine interactions in the physiology and physiopathology of the basal ganglia. Br. J. Pharmacol. 2016, 173, 2069–2079. [Google Scholar] [CrossRef]
- Loera-Valencia, R.; Cedazo-Minguez, A.; Kenigsberg, P.A.; Page, G.; Duarte, A.I.; Giusti, P.; Zusso, M.; Robert, P.; Frisoni, G.B.; Cattaneo, A.; et al. Current and emerging avenues for Alzheimer’s disease drug targets. J. Intern. Med. 2019, 286, 398–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanciu, G.D.; Rusu, R.N.; Bild, V.; Filipiuc, L.E.; Tamba, B.-I.; Ababei, D.C. Systemic Actions of SGLT2 Inhibition on Chronic mTOR Activation as a Shared Pathogenic Mechanism between Alzheimer’s Disease and Diabetes. Biomedicines 2021, 9, 576. [Google Scholar] [CrossRef]
- Outen, J.D.; Burhanullah, M.H.; Vandrey, R.; Amjad, H.; Harper, D.G.; Patrick, R.E.; May, R.L.; Agronin, M.E.; Forester, B.P.; Rosenberg, P.B. Cannabinoids for Agitation in Alzheimer’s Disease. Am. J. Geriatr. Psychiatry 2021, 29, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, G.D.; Luca, A.; Rusu, R.N.; Bild, V.; Beschea Chiriac, S.I.; Solcan, C.; Bild, W.; Ababei, D.C. Alzheimer’s Disease Pharmacotherapy in Relation to Cholinergic System Involvement. Biomolecules 2020, 10, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaseghi, S.; Babapour, V.; Nasehi, M.; Zarrindast, M.-R. The role of CA1 CB1 receptors on lithium-induced spatial memory impairment in rats. EXCLI J. 2018, 17, 916–934. [Google Scholar] [CrossRef] [PubMed]
- Jenny, M.; Schröcksnadel, S.; Überall, F.; Fuchs, D. The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism. Pharmaceutical 2010, 3, 2647–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eubanks, L.M.; Rogers, C.J.; Beuscher, A.E.; Koob, G.F.; Olson, A.J.; Dickerson, T.J.; Janda, K.D. A Molecular Link Between the Active Component of Marijuana and Alzheimer’s Disease Pathology. Mol. Pharm. 2006, 3, 773–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, S.; Jain, S.; Vyas, P.; Bawa, S.; Vohora, D. The role of endocannabinoid pathway in the neuropathology of Alzheimer’s disease: Can the inhibitors of MAGL and FAAH prove to be potential therapeutic targets against the cognitive impairment associated with Alzheimer’s disease? Brain Res. Bull. 2021, 174, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, J.; Chen, C. Endocannabinoid 2-arachidonoylglycerol protects neurons against β-amyloid insults. Neurosci. Biobehav. Rev. 2011, 178, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Chen, C. Endocannabinoid 2-Arachidonoylglycerol Protects Neurons by Limiting COX-2 Elevation. J. Biol. Chem. 2008, 283, 22601–22611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çakır, M.; Tekin, S.; Doğanyiğit, Z.; Erden, Y.; Soytürk, M.; Çiğremiş, Y.; Sandal, S. Cannabinoid type 2 receptor agonist JWH-133, attenuates Okadaic acid induced spatial memory impairment and neurodegeneration in rats. Life Sci. 2019, 217, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.-W.; Yuan, Y.-H.; Chen, N.-H. The therapeutic role of cannabinoid receptors and its agonists or antagonists in Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 96, 109745. [Google Scholar] [CrossRef]
- Burstein, S. Cannabidiol (CBD) and its analogs: A review of their effects on inflammation. Bioorg. Med. Chem. 2015, 23, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Feng, Y. Cannabidiol (CBD) enhanced the hippocampal immune response and autophagy of APP/PS1 Alzheimer’s mice uncovered by RNA-seq. Life Sci. 2021, 264, 118624. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Mishima, K.; Nozako, M.; Hazekawa, M.; Irie, K.; Fujioka, M.; Orito, K.; Abe, K.; Hasebe, N.; Egashira, N.; et al. Delayed treatment with cannabidiol has a cerebroprotective action via a cannabinoid receptor-independent myeloperoxidase-inhibiting mechanism. J. Neurochem. 2007, 102, 1488–1496. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shi, J.; Wang, B.; Li, J.; Jia, H. CB2 cannabinoid receptor agonist ameliorates novel object recognition but not spatial memory in transgenic APP/PS1 mice. Neurosci. Lett. 2019, 707, 134286. [Google Scholar] [CrossRef] [PubMed]
- Kuljis, R.O. Lesions in the Pulvinar in Patients with Alzheimer’s Disease. J. Neuropathol. Exp. Neurol. 1994, 53, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Chou, X.-l.; Fang, Q.; Yan, L.; Zhong, W.; Peng, B.; Li, H.; Wei, J.; Tao, H.W.; Zhang, L.I. Contextual and cross-modality modulation of auditory cortical processing through pulvinar mediated suppression. eLife 2020, 9, e54157. [Google Scholar] [CrossRef]
- Fang, Q.; Chou, X.-l.; Peng, B.; Zhong, W.; Zhang, L.I.; Tao, H.W. A Differential Circuit via Retino-Colliculo-Pulvinar Pathway Enhances Feature Selectivity in Visual Cortex through Surround Suppression. Neuron 2020, 105, 355–369.e356. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, L.A.; Mesik, L.; Ji, X.-Y.; Fang, Q.; Li, H.-F.; Li, Y.-T.; Zingg, B.; Zhang, L.I.; Tao, H.W. Cross-Modality Sharpening of Visual Cortical Processing through Layer-1-Mediated Inhibition and Disinhibition. Neuron 2016, 89, 1031–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, M.; Ontaneda, D. Thalamic Injury and Cognition in Multiple Sclerosis. Front. Neurol. 2021, 11, 623914. [Google Scholar] [CrossRef] [PubMed]
- Erskine, D.; Thomas, A.J.; Attems, J.; Taylor, J.P.; McKeith, I.G.; Morris, C.M.; Khundakar, A.A. Specific patterns of neuronal loss in the pulvinar nucleus in dementia with lewy bodies. Mov. Disord. 2017, 32, 414–422. [Google Scholar] [CrossRef] [Green Version]
- Micaelo-Fernandes, C.; Bouskila, J.; Bouchard, J.-F.; Ptito, M. Presence of the Endocannabinoid System in the Inferior Pulvinar of the Vervet Monkey. Brain Sci. 2021, 11, 770. [Google Scholar] [CrossRef] [PubMed]
- Platt, B.; Kamboj, S.; Morgan, C.J.A.; Curran, H.V. Processing dynamic facial affect in frequent cannabis-users: Evidence of deficits in the speed of identifying emotional expressions. Drug Alcohol Depend. 2010, 112, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Baul, H.S.; Manikandan, C.; Sen, D. Cannabinoid receptor as a potential therapeutic target for Parkinson’s Disease. Brain Res. Bull. 2019, 146, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Lanciego, J.L.; López, I.P.; Rico, A.J.; Aymerich, M.S.; Pérez-Manso, M.; Conte, L.; Combarro, C.; Roda, E.; Molina, C.; Gonzalo, N.; et al. The search for a role of the caudal intralaminar nuclei in the pathophysiology of Parkinson’s disease. Brain Res. Bull. 2009, 78, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Kibret, B.G.; Ishiguro, H.; Horiuchi, Y.; Onaivi, E.S. New Insights and Potential Therapeutic Targeting of CB2 Cannabinoid Receptors in CNS Disorders. Int. J. Mol. Sci. 2022, 23, 975. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Cai, Q.; Zhang, J.; He, X.; Liu, Y.; Zhu, R.; Jin, L. AM1241 alleviates MPTP-induced Parkinson’s disease and promotes the regeneration of DA neurons in PD mice. Oncotarget 2017, 8, 67837–67850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Gálvez, Y.; Palomo-Garo, C.; Fernández-Ruiz, J.; García, C. Potential of the cannabinoid CB2 receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 200–208. [Google Scholar] [CrossRef]
- Chagas, M.H.N.; Zuardi, A.W.; Tumas, V.; Pena-Pereira, M.A.; Sobreira, E.T.; Bergamaschi, M.M.; dos Santos, A.C.; Teixeira, A.L.; Hallak, J.E.C.; Crippa, J.A.S. Effects of cannabidiol in the treatment of patients with Parkinson’s disease: An exploratory double-blind trial. J. Psychopharmacol. 2014, 28, 1088–1098. [Google Scholar] [CrossRef]
- Hawes, E.M.; Lee, C.R.; Brackney, D.E.; Ensley, T.G.; Kidd, J.; Page, C. Cannabidiol Products: Review of the Regulatory and Clinical Considerations. J. Nurse Pract. 2020, 16, 747–755. [Google Scholar] [CrossRef]
- Brotchie, J.M. CB1 cannabinoid receptor signalling in Parkinson’s disease. Curr. Opin. Pharmacol. 2003, 3, 54–61. [Google Scholar] [CrossRef]
- Chung, Y.C.; Bok, E.; Huh, S.H.; Park, J.Y.; Yoon, S.H.; Kim, S.R.; Kim, Y.S.; Maeng, S.; Park, S.H.; Jin, B.K. Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. J. Immunol. 2011, 187, 6508–6517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuccato, C.; Valenza, M.; Cattaneo, E. Molecular Mechanisms and Potential Therapeutical Targets in Huntington’s Disease. Physiol. Rev. 2010, 90, 905–981. [Google Scholar] [CrossRef] [PubMed]
- Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; et al. Huntington disease. Nat. Rev. Dis. Primers 2015, 1, 15005. [Google Scholar] [CrossRef] [PubMed]
- Labbadia, J.; Morimoto, R.I. Huntington’s disease: Underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci. 2013, 38, 378–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demetriou, C.A.; Heraclides, A.; Salafori, C.; Tanteles, G.A.; Christodoulou, K.; Christou, Y.; Zamba-Papanicolaou, E. Epidemiology of Huntington disease in Cyprus: A 20-year retrospective study. Clin. Genet. 2018, 93, 656–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cloud, L.J.; Rosenblatt, A.; Margolis, R.L.; Ross, C.A.; Pillai, J.A.; Corey-Bloom, J.; Tully, H.M.; Bird, T.; Panegyres, P.K.; Nichter, C.A.; et al. Seizures in juvenile Huntington’s disease: Frequency and characterization in a multicenter cohort. Mov. Disord. 2012, 27, 1797–1800. [Google Scholar] [CrossRef] [PubMed]
- Douglas, I.; Evans, S.; Rawlins, M.D.; Smeeth, L.; Tabrizi, S.J.; Wexler, N.S. Juvenile Huntington’s disease: A population-based study using the General Practice Research Database. BMJ Open 2013, 3, e002085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quarrell, O.W.; Nance, M.A.; Nopoulos, P.; Paulsen, J.S.; Smith, J.A.; Squitieri, F. Managing juvenile Huntington’s disease. Neurodegener. Dis. Manag. 2013, 3, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Letort, D.; Gonzalez-Alegre, P. Huntington’s disease in children. Handb. Clin. Neurol. 2013, 113, 1913–1917. [Google Scholar] [CrossRef] [PubMed]
- Ajitkumar, A.; De Jesus, O. Huntington Disease; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Armstrong, M.J.; Miyasaki, J.M. Evidence-based guideline: Pharmacologic treatment of chorea in Huntington disease: Report of the guideline development subcommittee of the American Academy of Neurology. Neurology 2012, 79, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, S.P. Differential interactions of phencyclidine with tetrabenazine and reserpine affecting intraneuronal dopamine. Biochem. Pharmacol. 1983, 32, 2851–2856. [Google Scholar] [CrossRef]
- Paleacu, D. Tetrabenazine in the treatment of Huntington’s disease. Neuropsychiatr. Dis. Treat. 2007, 3, 545–551. [Google Scholar] [PubMed]
- Pidgeon, C.; Rickards, H. The pathophysiology and pharmacological treatment of Huntington disease. Behav. Neurol. 2013, 26, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Frank, S. Treatment of Huntington’s Disease. Neurotherapeutics 2013, 11, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Potkin, K.T.; Potkin, S.G. New directions in therapeutics for Huntington disease. Future Neurol. 2018, 13, 101–121. [Google Scholar] [CrossRef] [PubMed]
- Bonelli, R.M.; Niederwieser, G.; Diez, J.; Gruber, A.; Koltringer, P. Pramipexole ameliorates neurologic and psychiatric symptoms in a Westphal variant of Huntington’s disease. Clin. Neuropharmacol. 2002, 25, 58–60. [Google Scholar] [CrossRef] [PubMed]
- Low, P.A.; Allsop, J.L.; Halmacyi, G.M. Huntington’s chorea: The rigid form (Westphal variant) treated with levodopa. Med. J. Aust. 1974, 1, 393–394. [Google Scholar] [CrossRef] [PubMed]
- Magnet, M.K.; Bonelli, R.M.; Kapfhammer, H.-P. Amantadine in the Akinetic-Rigid Variant of Huntington’s Disease. Ann. Pharmacother. 2004, 38, 1194–1196. [Google Scholar] [CrossRef]
- Van Laere, K.; Casteels, C.; Dhollander, I.; Goffin, K.; Grachev, I.; Bormans, G.; Vandenberghe, W. Widespread Decrease of Type 1 Cannabinoid Receptor Availability in Huntington Disease In Vivo. J. Nucl. Med. 2010, 51, 1413–1417. [Google Scholar] [CrossRef] [Green Version]
- Ooms, M.; Rietjens, R.; Rangarajan, J.R.; Vunckx, K.; Valdeolivas, S.; Maes, F.; Himmelreich, U.; Fernandez-Ruiz, J.; Bormans, G.; Van Laere, K.; et al. Early decrease of type 1 cannabinoid receptor binding and phosphodiesterase 10A activity in vivo in R6/2 Huntington mice. Neurobiol. Aging 2014, 35, 2858–2869. [Google Scholar] [CrossRef] [Green Version]
- Ceccarini, J.; Ahmad, R.; Van de Vliet, L.; Casteels, C.; Vandenbulcke, M.; Vandenberghe, W.; Van Laere, K. Behavioral Symptoms in Premanifest Huntington Disease Correlate with Reduced Frontal CB1R Levels. J. Nucl. Med. 2019, 60, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, K.L.; Waldvogel, H.J.; Glass, M.; Faull, R.L.M. Cannabinoid (CB1), GABAA and GABAB receptor subunit changes in the globus pallidus in Huntington’s disease. J. Chem. Neuroanat. 2009, 37, 266–281. [Google Scholar] [CrossRef]
- Bisogno, T.; Martire, A.; Petrosino, S.; Popoli, P.; Di Marzo, V. Symptom-related changes of endocannabinoid and palmitoylethanolamide levels in brain areas of R6/2 mice, a transgenic model of Huntington’s disease. Neurochem. Int. 2008, 52, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Mievis, S.; Blum, D.; Ledent, C. Worsening of Huntington disease phenotype in CB1 receptor knockout mice. Neurobiol. Dis. 2011, 42, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Glass, M.; Dragunow, M.; Faull, R.L. The pattern of neurodegeneration in Huntington’s disease: A comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 2000, 97, 505–519. [Google Scholar] [CrossRef]
- Glass, M.; van Dellen, A.; Blakemore, C.; Hannan, A.J.; Faull, R.L.M. Delayed onset of huntington′s disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB1 receptors. Neuroscience 2004, 123, 207–212. [Google Scholar] [CrossRef]
- Blázquez, C.; Chiarlone, A.; Sagredo, O.; Aguado, T.; Pazos, M.R.; Resel, E.; Palazuelos, J.; Julien, B.; Salazar, M.; Börner, C.; et al. Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington’s disease. Brain 2011, 134, 119–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ignatowska-Jankowska, B.M.; Baillie, G.L.; Kinsey, S.; Crowe, M.; Ghosh, S.; Owens, R.A.; Damaj, I.M.; Poklis, J.; Wiley, J.L.; Zanda, M.; et al. A Cannabinoid CB1 Receptor-Positive Allosteric Modulator Reduces Neuropathic Pain in the Mouse with No Psychoactive Effects. Neuropsychopharmacology 2015, 40, 2948–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laprairie, R.B.; Bagher, A.M.; Rourke, J.L.; Zrein, A.; Cairns, E.A.; Kelly, M.E.M.; Sinal, C.J.; Kulkarni, P.M.; Thakur, G.A.; Denovan-Wright, E.M. Positive allosteric modulation of the type 1 cannabinoid receptor reduces the signs and symptoms of Huntington’s disease in the R6/2 mouse model. Neuropharmacology 2019, 151, 1–12. [Google Scholar] [CrossRef]
- Slivicki, R.A.; Xu, Z.; Kulkarni, P.M.; Pertwee, R.G.; Mackie, K.; Thakur, G.A.; Hohmann, A.G. Positive Allosteric Modulation of Cannabinoid Receptor Type 1 Suppresses Pathological Pain Without Producing Tolerance or Dependence. Biol. Psychiatry 2018, 84, 722–733. [Google Scholar] [CrossRef] [Green Version]
- Palazuelos, J.; Aguado, T.; Pazos, M.R.; Julien, B.; Carrasco, C.; Resel, E.; Sagredo, O.; Benito, C.; Romero, J.; Azcoitia, I.; et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 2009, 132, 3152–3164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, G.; Morales, P.; Rodríguez-Cueto, C.; Fernández-Ruiz, J.; Jagerovic, N.; Franco, R. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders. Front. Neurosci. 2016, 10, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polini, B.; Cervetto, C.; Carpi, S.; Pelassa, S.; Gado, F.; Ferrisi, R.; Bertini, S.; Nieri, P.; Marcoli, M.; Manera, C. Positive Allosteric Modulation of CB1 and CB2 Cannabinoid Receptors Enhances the Neuroprotective Activity of a Dual CB1R/CB2R Orthosteric Agonist. Life 2020, 10, 333. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-J.; Gao, M.; Gao, F.-F.; Su, Q.-X.; Wu, J. Brain cannabinoid receptor 2: Expression, function and modulation. Acta Pharmacol. Sin. 2017, 38, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.; Mitchell, I.; Patel, S.; Ives, N.; Rickards, H. A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov. Disord. 2009, 24, 2254–2259. [Google Scholar] [CrossRef] [PubMed]
- Lastres-Becker, I.; Hansen, H.H.; Berrendero, F.; De Miguel, R.; Pérez-Rosado, A.; Manzanares, J.; Ramos, J.A.; Fernández-Ruiz, J. Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington’s disease. Synapse 2002, 44, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Peres, F.F.; Lima, A.C.; Hallak, J.E.C.; Crippa, J.A.; Silva, R.H.; Abílio, V.C. Cannabidiol as a Promising Strategy to Treat and Prevent Movement Disorders? Front. Pharmacol. 2018, 9, 482. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Ruiz, J. The endocannabinoid system as a target for the treatment of motor dysfunction. Br. J. Pharmacol. 2009, 156, 1029–1040. [Google Scholar] [CrossRef] [Green Version]
- Pintor, A.; Tebano, M.T.; Martire, A.; Grieco, R.; Galluzzo, M.; Scattoni, M.L.; Pèzzola, A.; Coccurello, R.; Felici, F.; Cuomo, V.; et al. The cannabinoid receptor agonist WIN 55,212-2 attenuates the effects induced by quinolinic acid in the rat striatum. Neuropharmacology 2006, 51, 1004–1012. [Google Scholar] [CrossRef] [Green Version]
- Sagredo, O.; García-Arencibia, M.; de Lago, E.; Finetti, S.; Decio, A.; Fernández-Ruiz, J. Cannabinoids and Neuroprotection in Basal Ganglia Disorders. Mol. Neurobiol. 2007, 36, 82–91. [Google Scholar] [CrossRef]
- Heim, B.; Bajaj, S.; Marzi, R.D.; Mangesius, S.; Djamshidian, A.; Poewe, W.; Seppi, K. M6 Nabilone in huntington’s disease: A case series of five patients. J. Neurol. Neurosurg. Psychiatry 2016, 87, A103. [Google Scholar] [CrossRef]
- Akinyemi, E.; Randhawa, G.; Longoria, V.; Zeine, R. Medical Marijuana Effects in Movement Disorders, Focus on Huntington Disease; A Literature Review. J. Pharm. Pharm. Sci. 2020, 23, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Saft, C.; von Hein, S.M.; Lücke, T.; Thiels, C.; Peball, M.; Djamshidian, A.; Heim, B.; Seppi, K. Cannabinoids for Treatment of Dystonia in Huntington’s Disease. J. Huntington’s Dis. 2018, 7, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Nachnani, R.; Raup-Konsavage, W.M.; Vrana, K.E. The Pharmacological Case for Cannabigerol. J. Pharmacol. Exp. Ther. 2021, 376, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Alonso, J.; Paraíso-Luna, J.; Navarrete, C.; del Río, C.; Cantarero, I.; Palomares, B.; Aguareles, J.; Fernández-Ruiz, J.; Bellido, M.L.; Pollastro, F.; et al. VCE-003.2, a novel cannabigerol derivative, enhances neuronal progenitor cell survival and alleviates symptomatology in murine models of Huntington’s disease. Sci. Rep. 2016, 6, 29789. [Google Scholar] [CrossRef] [Green Version]
- Aiken, C.T.; Tobin, A.J.; Schweitzer, E.S. A cell-based screen for drugs to treat Huntington’s disease. Neurobiol. Dis. 2004, 16, 546–555. [Google Scholar] [CrossRef]
- Maker-Clark, G.; Patel, S. Integrative therapies for multiple sclerosis. Dis. Mon. 2013, 59, 290–301. [Google Scholar] [CrossRef]
- Al-Ghezi, Z.Z.; Miranda, K.; Nagarkatti, M.; Nagarkatti, P.S. Combination of Cannabinoids, Δ9-Tetrahydrocannabinol and Cannabidiol, Ameliorates Experimental Multiple Sclerosis by Suppressing Neuroinflammation Through Regulation of miRNA-Mediated Signaling Pathways. Front. Immunol. 2019, 10, 1921. [Google Scholar] [CrossRef]
- Ford, H. Clinical presentation and diagnosis of multiple sclerosis. Clin. Med. 2020, 20, 380–383. [Google Scholar] [CrossRef]
- Miclea, A.; Salmen, A.; Zoehner, G.; Diem, L.; Kamm, C.P.; Chaloulos-Iakovidis, P.; Miclea, M.; Briner, M.; Kilidireas, K.; Stefanis, L.; et al. Age-dependent variation of female preponderance across different phenotypes of multiple sclerosis: A retrospective cross-sectional study. CNS Neurosci. Ther. 2018, 25, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Correa, F.; Hernangómez-Herrero, M.; Mestre, L.; Loría, F.; Docagne, F.; Guaza, C. The endocannabinoid anandamide downregulates IL-23 and IL-12 subunits in a viral model of multiple sclerosis: Evidence for a cross-talk between IL-12p70/IL-23 axis and IL-10 in microglial cells. Brain Behav. Immun. 2011, 25, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, Z. Phytotherapy as a Complementary Medicine for Multiple Sclerosis. Turk. J. Pharm. Sci. 2019, 16, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Huseby, E.S.; Huseby, P.G.; Shah, S.; Smith, R.; Stadinski, B.D. Pathogenic CD8 T Cells in Multiple Sclerosis and Its Experimental Models. Front. Immunol. 2012, 3, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huseby, E.S.; Liggitt, D.; Brabb, T.; Schnabel, B.; Öhlén, C.; Goverman, J. A Pathogenic Role for Myelin-Specific Cd8+ T Cells in a Model for Multiple Sclerosis. J. Exp. Med. 2001, 194, 669–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraussen, J.; de Bock, L.; Somers, V. B cells and antibodies in progressive multiple sclerosis: Contribution to neurodegeneration and progression. Autoimmun. Rev. 2016, 15, 896–899. [Google Scholar] [CrossRef]
- Zhou, T.; Ahmad, T.K.; Alrushaid, S.; Pozdirca, M.; Ethans, K.; Intrater, H.; Le, T.; Burczynski, F.; Kong, J.; Namaka, M. Therapeutic impact of orally administered cannabinoid oil extracts in an experimental autoimmune encephalomyelitis animal model of multiple sclerosis. Biochem. Biophys. Res. Commun. 2019, 516, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Magliozzi, R.; Howell, O.; Vora, A.; Serafini, B.; Nicholas, R.; Puopolo, M.; Reynolds, R.; Aloisi, F. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2006, 130, 1089–1104. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.J.; Diemel, L.T.; Pryce, G.; Baker, D. Cannabinoids and neuroprotection in CNS inflammatory disease. J. Neurol. Sci. 2005, 233, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Peferoen, L.; Kipp, M.; van der Valk, P.; van Noort, J.M.; Amor, S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 2014, 141, 302–313. [Google Scholar] [CrossRef]
- Kipp, M. Oligodendrocyte Physiology and Pathology Function. Cells 2020, 9, 2078. [Google Scholar] [CrossRef] [PubMed]
- Correale, J.; Farez, M.F. The Role of Astrocytes in Multiple Sclerosis Progression. Front. Neurol. 2015, 6, 180. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.-M.K.; Downer, E.J. Toll-like receptor signalling as a cannabinoid target in Multiple Sclerosis. Neuropharmacology 2017, 113, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Gustavsen, S.; Søndergaard, H.; Linnet, K.; Thomsen, R.; Rasmussen, B.; Sorensen, P.; Sellebjerg, F.; Oturai, A. Safety and efficacy of low-dose medical cannabis oils in multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 48, 102708. [Google Scholar] [CrossRef]
- Kappos, L.; Fox, R.J.; Burcklen, M.; Freedman, M.S.; Havrdová, E.K.; Hennessy, B.; Hohlfeld, R.; Lublin, F.; Montalban, X.; Pozzilli, C.; et al. Ponesimod Compared with Teriflunomide in Patients with Relapsing Multiple Sclerosis in the Active-Comparator Phase 3 OPTIMUM Study. JAMA Neurol. 2021, 78, 558. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Taghian, K.; Petratos, S. Axonal degeneration in multiple sclerosis: Can we predict and prevent permanent disability? Acta Neuropathol. Commun. 2014, 2, 97. [Google Scholar] [CrossRef] [PubMed]
- da Rovare, V.P.; Magalhães, G.P.A.; Jardini, G.D.A.; Beraldo, M.L.; Gameiro, M.O.; Agarwal, A.; Luvizutto, G.J.; Paula-Ramos, L.; Camargo, S.E.A.; de Oliveira, L.D.; et al. Cannabinoids for spasticity due to multiple sclerosis or paraplegia: A systematic review and meta-analysis of randomized clinical trials. Complement. Ther. Med. 2017, 34, 170–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novotna, A.; Mares, J.; Ratcliffe, S.; Novakova, I.; Vachova, M.; Zapletalova, O.; Gasperini, C.; Pozzilli, C.; Cefaro, L.; Comi, G.; et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols * (Sativex®), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur. J. Neurol. 2011, 18, 1122–1131. [Google Scholar] [CrossRef]
- Kim-Fine, S.; Greenfield, J.; Chaput, K.H.; Robert, M.; Metz, L.M. Cannabinoids and bladder symptoms in multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 54, 103105. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis. The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Rasoul, A.A.; Khudhur, Z.O.; Hamad, M.S.; Ismaeal, Y.S.; Smail, S.W.; Rasul, M.F.; Mohammad, K.A.; Bapir, A.A.; Omar, S.A.; Qadir, M.K.; et al. The role of oxidative stress and haematological parameters in relapsing-remitting multiple sclerosis in Kurdish population. Mult. Scler. Relat. Disord. 2021, 56, 103228. [Google Scholar] [CrossRef] [PubMed]
- Grand′Maison, F.; Yeung, M.; Morrow, S.; Lee, L.; Emond, F.; Ward, B.; Laneuville, P.; Schecter, R. Sequencing of high-efficacy disease-modifying therapies in multiple sclerosis: Perspectives and approaches. Neural Regen. Res. 2018, 13, 1871. [Google Scholar] [CrossRef] [PubMed]
- Melamed, E.; Lee, M.W. Multiple Sclerosis and Cancer: The Ying-Yang Effect of Disease Modifying Therapies. Front. Immunol. 2020, 10, 2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saposnik, G.; Montalban, X. Therapeutic Inertia in the New Landscape of Multiple Sclerosis Care. Front. Neurol. 2018, 9, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierpont, T.M.; Limper, C.B.; Richards, K.L. Past, Present, and Future of Rituximab—The World’s First Oncology Monoclonal Antibody Therapy. Front. Oncol. 2018, 8, 163. [Google Scholar] [CrossRef]
- Wang, B.; Lyu, H.; Pei, S.; Song, D.; Ni, J.; Liu, B. Cladribine in combination with entinostat synergistically elicits anti-proliferative/anti-survival effects on multiple myeloma cells. Cell Cycle 2018, 17, 985–996. [Google Scholar] [CrossRef]
- Wei, C.W.; Yu, Y.L.; Chen, Y.H.; Hung, Y.T.; Yiang, G.T. Anticancer effects of methotrexate in combination with α-tocopherol and α-tocopherol succinate on triple-negative breast cancer. Oncol. Rep. 2019, 41, 2060–2066. [Google Scholar] [CrossRef] [PubMed]
- Saidu, N.E.B.; Bretagne, M.; Mansuet, A.L.; Just, P.-A.; Leroy, K.; Cerles, O.; Chouzenoux, S.; Nicco, C.; Damotte, D.; Alifano, M.; et al. Dimethyl Fumarate Is Highly Cytotoxic in Kras Mutated Cancer Cells but Spares Non-Tumorigenic Cells. Oncotarget 2018, 9, 9088–9099. [Google Scholar] [CrossRef] [Green Version]
- Rupp, T.; Pelouin, O.; Genest, L.; Legrand, C.; Froget, G.; Castagné, V. Therapeutic potential of Fingolimod in triple negative breast cancer preclinical models. Transl. Oncol. 2021, 14, 100926. [Google Scholar] [CrossRef] [PubMed]
- Huang, O.; Zhang, W.; Zhi, Q.; Xue, X.; Liu, H.; Shen, D.; Geng, M.; Xie, Z.; Jiang, M. Featured Article: Teriflunomide, an immunomodulatory drug, exerts anticancer activity in triple negative breast cancer cells. Exp. Biol. Med. 2014, 240, 426–437. [Google Scholar] [CrossRef]
- Chiurchiù, V.; Leuti, A.; Maccarrone, M. Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses. J. Neuroimm. Pharmacol. 2015, 10, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Bie, B.; Wu, J.; Foss, J.F.; Naguib, M. An overview of the cannabinoid type 2 receptor system and its therapeutic potential. Curr. Opin. Anaesthesiol. 2018, 31, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mecha, M.; Carrillo-Salinas, F.J.; Feliú, A.; Mestre, L.; Guaza, C. Perspectives on Cannabis-Based Therapy of Multiple Sclerosis: A Mini-Review. Front. Cell. Neurosci. 2020, 14, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, D.T.; Makela, P.; Robson, P.; House, H.; Bateman, C. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult. Scler. 2004, 10, 434–441. [Google Scholar] [CrossRef]
- Pryce, G.; Visintin, C.; Ramagopalan, S.V.; Al-Izki, S.; De Faveri, L.E.; Nuamah, R.A.; Mein, C.A.; Montpetit, A.; Hardcastle, A.J.; Kooij, G.; et al. Control of spasticity in a multiple sclerosis model using central nervous system-excluded CB1 cannabinoid receptor agonists. FASEB J. 2013, 28, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Laprairie, R.B.; Bagher, A.M.; Kelly, M.E.M.; Denovan-Wright, E.M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 2015, 172, 4790–4805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rog, D.J.; Nurmikko, T.J.; Friede, T.; Young, C.A. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 2005, 65, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Rog, D.J.; Nurmikko, T.J.; Young, C.A. Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: An uncontrolled, open-label, 2-year extension trial. Clin. Ther. 2007, 29, 2068–2079. [Google Scholar] [CrossRef] [PubMed]
- Maccarrone, M.; Maldonado, R.; Casas, M.; Henze, T.; Centonze, D. Cannabinoids therapeutic use: What is our current understanding following the introduction of THC, THC: CBD oromucosal spray and others? Expert. Rev. Clin. Pharmacol. 2017, 10, 443–455. [Google Scholar] [CrossRef]
- Mannucci, C.; Navarra, M.; Calapai, F.; Spagnolo, E.V.; Busardò, F.P.; Cas, R.D.; Ippolito, F.M.; Calapai, G. Neurological Aspects of Medical Use of Cannabidiol. CNS Neurol. Disord. Drug Targets 2017, 16, 541–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constantinescu, C.S.; Farooqi, N.; O’Brien, K.; Gran, B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol. 2011, 164, 1079–1106. [Google Scholar] [CrossRef] [PubMed]
- Burrows, D.J.; McGown, A.; Jain, S.A.; De Felice, M.; Ramesh, T.M.; Sharrack, B.; Majid, A. Animal models of multiple sclerosis: From rodents to zebrafish. Mult. Scler. J. 2018, 25, 306–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, D.; Pryce, G.; Croxford, J.L.; Brown, P.; Pertwee, R.G.; Huffman, J.W.; Layward, L. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 2000, 404, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Martin, B.R.; Adler, M.W.; Razdan, R.J.; Kong, W.; Ganea, D.; Tuma, R.F. Modulation of Cannabinoid Receptor Activation as a Neuroprotective Strategy for EAE and Stroke. J. Neuroimm. Pharmacol. 2009, 4, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Chico, A.; Canedo, M.; Manterola, A.; Victoria Sánchez-Gómez, M.; Pérez-Samartín, A.; Rodríguez-Puertas, R.; Matute, C.; Mato, S. Blockade of monoacylglycerol lipase inhibits oligodendrocyte excitotoxicity and prevents demyelination in vivo. Glia 2015, 63, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Croxford, A.L.; Kurschus, F.C.; Waisman, A. Mouse models for multiple sclerosis: Historical facts and future implications. Biochim. Biophys. Acta Mol. Basis Dis. 2011, 1812, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Hasseldam, H.; Johansen, F.F. Neuroprotection without immunomodulation is not sufficient to reduce first relapse severity in experimental autoimmune encephalomyelitis. Neuroimmunomodulation 2010, 17, 252–264. [Google Scholar] [CrossRef]
- Hernández-Torres, G.; Cipriano, M.; Hedén, E.; Björklund, E.; Canales, A.; Zian, D.; Feliú, A.; Mecha, M.; Guaza, C.; Fowler, C.; et al. A reversible and selective inhibitor of monoacylglycerol lipase ameliorates multiple sclerosis. Angew. Chem. Int. Ed. Engl. 2014, 53, 13765–13770. [Google Scholar] [CrossRef]
- Ni, X.; Geller, E.B.; Eppihimer, M.J.; Eisenstein, T.K.; Adler, M.W.; Tuma, R.F. Win 55212-2, a cannabinoid receptor agonist, attenuates leukocyte/endothelial interactions in an experimental autoimmune encephalomyelitis model. Mult. Scler. J. 2004, 10, 158–164. [Google Scholar] [CrossRef]
- Pryce, G.; Ahmed, Z.; Hankey, D.J.R.; Jackson, S.J.; Croxford, J.L.; Pocock, J.M.; Ledent, C.; Petzold, A.; Thompson, A.J.; Giovannoni, G.; et al. Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain 2003, 126, 2191–2202. [Google Scholar] [CrossRef] [PubMed]
- Webb, M.; Luo, L.; Ma, J.Y.; Tham, C. Genetic deletion of Fatty Acid Amide Hydrolase results in improved long-term outcome in chronic autoimmune encephalitis. Neurosci. Lett. 2008, 439, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Maresz, K.; Pryce, G.; Ponomarev, E.D.; Marsicano, G.; Croxford, J.L.; Shriver, L.P.; Ledent, C.; Cheng, X.; Carrier, E.J.; Mann, M.K.; et al. Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat. Med. 2007, 13, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Cabral, G.A.; Griffin-Thomas, L. Cannabinoids as therapeutic agents for ablating neuroinflammatory disease. Endocr. Metab. Immune Disord. Drug Targets 2008, 8, 159–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, L.; Stella, N. Cannabinoids and neuroinflammation. Br. J. Pharmacol. 2004, 141, 775–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berard, J.L.; Wolak, K.; Fournier, S.; David, S. Characterization of relapsing–remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice. Glia 2010, 58, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Centonze, D.; Bari, M.; Rossi, S.; Prosperetti, C.; Furlan, R.; Fezza, F.; DeChiara, V.; Battistini, L.; Bernardi, G.; Bernardini, S.; et al. The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain 2007, 130, 2543–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.; Piser, T.M.; Seybold, V.S.; Thayer, S.A. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J. Neurosci. 1996, 72, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Joseph, D.; Schulze, J. Cannabinoid Activity—Is There a Causal Connection to Spasmolysis in Clinical Studies? Biomolecules 2021, 11, 826. [Google Scholar] [CrossRef]
- Molina-Holgado, F.; Molina-Holgado, E.; Guaza, C. The endogenous cannabinoid anandamide potentiates interleukin-6 production by astrocytes infected with Theiler’s murine encephalomyelitis virus by a receptor-mediated pathway. FEBS Lett. 1998, 433, 139–142. [Google Scholar] [CrossRef]
- Kozela, E.; Lev, N.; Kaushansky, N.; Eilam, R.; Rimmerman, N.; Levy, R.; Ben-Nun, A.; Juknat, A.; Vogel, Z. Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice. Br. J. Pharmacol. 2011, 163, 1507–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-García, C.; Torres, I.M.; García-Hernández, R.; Campos-Ruíz, L.; Esparragoza, L.R.; Coronado, M.J.; Grande, A.G.; García-Merino, A.; Sánchez López, A.J. Mechanisms of action of cannabidiol in adoptively transferred experimental autoimmune encephalomyelitis. Exp. Neurol. 2017, 298, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Giacoppo, S.; Galuppo, M.; Pollastro, F.; Grassi, G.; Bramanti, P.; Mazzon, E. A new formulation of cannabidiol in cream shows therapeutic effects in a mouse model of experimental autoimmune encephalomyelitis. DARU J. Pharm. Sci. 2015, 23, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassmann, H.; Bradl, M. Multiple sclerosis: Experimental models and reality. Acta Neuropathol. 2016, 133, 223–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, J.K.; Eagar, T.N.; Miller, S.D. Functional activation of myelin-specific T cells by virus-induced molecular mimicry. J. Immunol. 2002, 169, 2719–2726. [Google Scholar] [CrossRef] [Green Version]
- Oleszak, E.L.; Chang, J.R.; Friedman, H.; Katsetos, C.D.; Platsoucas, C.D. Theiler’s Virus Infection: A Model for Multiple Sclerosis. Clin. Microbiol. Rev. 2004, 17, 174–207. [Google Scholar] [CrossRef] [Green Version]
- Nagarkatti, P.; Pandey, R.; Rieder, S.A.; Hegde, V.L.; Nagarkatti, M. Cannabinoids as novel anti-inflammatory drugs. Future Med. Chem. 2009, 1, 1333–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernangómez, M.; Mestre, L.; Correa, F.G.; Loría, F.; Mecha, M.; Iñigo, P.M.; Docagne, F.; Williams, R.O.; Borrell, J.; Guaza, C. CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia 2012, 60, 1437–1450. [Google Scholar] [CrossRef] [Green Version]
- Loría, F.; Petrosino, S.; Hernangómez, M.; Mestre, L.; Spagnolo, A.; Correa, F.; Di Marzo, V.; Docagne, F.; Guaza, C. An endocannabinoid tone limits excitotoxicity in vitro and in a model of multiple sclerosis. Neurobiol. Dis. 2010, 37, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Arevalo-Martin, A.; Vela, J.M.; Molina-Holgado, E.; Borrell, J.; Guaza, C. Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J. Neurosci. 2003, 23, 2511–2516. [Google Scholar] [CrossRef]
- Eljaschewitsch, E.; Witting, A.; Mawrin, C.; Lee, T.; Schmidt, P.M.; Wolf, S.; Hoertnagl, H.; Raine, C.S.; Schneider-Stock, R.; Nitsch, R.; et al. The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 2006, 49, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, W.S.; Hu, S.; Min, X.; Lokensgard, G.A.C.J.R.; Peterson, P.K. Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1beta-stimulated human astrocytes. Glia 2005, 49, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Ceña, V.; Sulkowski, G.; Dąbrowska-Bouta, B.; Salińska, E.; Strużyńska, L. Modulation of Glutamate Transport and Receptor Binding by Glutamate Receptor Antagonists in EAE Rat Brain. PLoS ONE 2014, 9, e113954. [Google Scholar] [CrossRef] [Green Version]
Mechanisms of AD Pathogenesis | Implications of the ECS in AD | Cannabinoid Receptor Ligands with Potential Benefits in Therapeutic Management of AD | |||
---|---|---|---|---|---|
Target Components | Physiological Function | Disease Model and Species | Compound | BIOLOGICAL EFFECT | |
β-amyloid (Aβ) peptides →neurodegenerative cascade → neuronal cell death [35,75,79,80] | CB1R activation | hyperpolarization of the neuronal membrane modulating of neurotransmitter and cytokine release [79] | Rats intra-CA1 microinjection i.p. intra-NAc intra-mPFC | ACPA (agonist of CB1R) | cognitive impairments [52,81] |
[35,75,79,80] | ↑ CB1R density | neuroprotective and anti-inflammatory response [79] | Rats intra-CA1 microinjection intra-NAc intra-BLA | AM251 (antagonist of CB1R) | enhanced memory and learning processes [52,81] |
Rat hippocampus | CBD and Δ9-THC | ↑ synthesis of tryptophan → improvement of the disease [82] | |||
In vitro Methods Molecular docking | Cannabinoids (CBD, CBD-DMH) | ↓ of oxidative stress ↓ of TNF-α synergistic effect with AchE inhibitors →
| |||
proteolytic cleavage of β-APP → formation of Aβ1-42 monomers → activation of astrocytes and microglia → release of inflammatory cytokines, kinases and nitric oxide → phosphorylation of tau proteins [84] | Endocannabinoids (2-AG) CB1R/CB2R activation | synthesized by microglia and astrocytes → suppress cytokine synthesis via CB1/CB2 receptors | Primary hippocampal neuron cell cultures from rat embryos | MAGL inhibitors (URB 602 andJZL 184) | ↑ endogenous levels of 2-AG → ↓ of TUNEL-positive neurons
|
(added space) GSK-3β promotes tau proteinhyperphosphorylation → formation of NFT → impairing the axonal transport → neuronal atrophy [75] | neuroprotective effects → targeting this pathway with key roles in AD pathogenesis | PC12 cells treated with Aβ | CBD AEA WIN 55,212–2 | attenuation of tau hyperphosphorylation by inhibiting Gsk-3β [75] | |
increased COX-2 levels → involvement in neuroinflammation [86] | 2-AG is substrate for COX-2 2-AG suppress elevation of hippocampal COX-2 expression | MAGL inhibitor (URB602) and nonselective MAGL inhibitor (ATFMK) | ↑ 2-AG levels → suppresses the expression of COX-2 action mediated by CB1R [86] | ||
tau pathology [87] | CB2R activation | role in memory processing its activation → vital for cognitive processes a depletion or disruption of these receptors in rodents →induces long-lasting memory deficits | Rats | AM630 (CB2R antagonist) | negative effects such as impaired memory [87] |
Rats → impaired memory by administration of okadaic acid | JWH-133 (CB2R agonist) | reduced spatial memory impairment reduced neuroinflammation and neurodegeneration [87] | |||
formation of Aβ peptide aggregates in the brain [88] PPAR- γ involvment in disease management [89] | CB2R activation | involved in controlling Inflammation | Beta-amyloid challenged astrocytes | CBD ± PPAR- γ antagonist (MK886 or GW9662) | interacts with the PPAR-γ receptor →
|
Aβ peptide-induced neurotoxicity, oxidative stress and inflammatory status | CB2R activation | enhances immune system response andautophagy pathway | Analyses of transcriptome of APP/PS1 mice hypocampus | CBD, chronic i.p. injection (30 days) | improvement of the neuroinflammation and oxidative stress level [90] |
neuroinflammatory mechanism | CB2R activation | ameliorate the neuroinflammation and cognitive impairments of AD | APP/PS1 mice | JWH015 | improvement of novel object recognition regulation in microglia-mediated neuroinflammation [92] |
evidence that associates neutrophil-derived myeloperoxidase (MPO) in the pathogenesis of AD | CB1R activation | Murine model (male mice) induced with focal cerebral ischaemia | Δ9-THC and SR141716 (CB1-R antagonist)/ AM630 (CB2R antagonist) | CB1R antagonist inhibited the neuroprotective effect of Δ9-THC CB2R antagonist had no effect
| |
mechanism of inhibition of myeloperoxidase independent of the cannabinoid receptor | CBD | (added space) the neuroprotective effect CBD was not inhibited by both CB1R and CB2R antagonist → effects, independent of cannabinoid receptors
| |||
β-amyloid (Aβ) plaques cause injuries in the pulvinar nucleus → disruption of thalamo-cortical circuits including disturbances in visual attention [93] | CB1R NAPE-PLD FAAH located in the thalamus - pulvinar nucleus (lateral, medial and inferior) - dorsal lateral geniculate nucleus | physiological connections withprefrontal cortex and amygdala [94,95,96,97] | Coronal brain sections from Vervet monkey | (added space) | |
Patients with AD | Δ9-THC CBD |
Mechanisms of PD Pathogenesis | Implications of the ECS in PD | Cannabinoid Receptor Ligands with Potential Benefits in Therapeutic Management of PD | |||
---|---|---|---|---|---|
Target Components | Physiological Function | Disease Model and Species | Compound | Biological Effect | |
↓ tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta down-regulation of CB2Rs in the substantia nigra | CB2R | neuroprotective effect are involved in neuroinflammation [25,105] | MPTP-induced mouse model of Parkinson’s disease | WIN 55,212 –2JW015 (CB2 receptor agonist) | protects neuron loss reduces MPTP-induced microglial activation reverses MPTP-associated motor deficits [37] reduce inflammation in the brain of MPTP-treated mice [25] |
side effects of current anti-parkinsonian therapies, especially L(3,4) dihydroxyphenylalamine L-DOPA-induced dyskinesia [108] | CB1R | modulation of neurotransmission and contribution to synaptic plasticity [108] | WIN 55,212–2 HU210 | protected nigrostriatal dopamine neurons reduced microglia activation [109] | |
↓ dopaminergic neurons in the substantia nigra compacta and a significant reduction of striatal dopamine [104] | CB2R | CB2R-deficient mice showed an exacerbation of PD pathology [25] | AM1241 (selective CB2R agonist) | regenerated dopaminergic neurons reversed the decreased CB2R level in the PD mouse brain [104] | |
currently therapy for PD is symptomatic whose efficacy is limited due to side effects | CB1R | neuroprotective properties against excitotoxicity and oxidative stress neuroinflammation, which are also associated with PD [104] | Clinical study on PD patients | CBD | change in patients’ lives possible neuroprotective effects assessed [106] |
Mechanisms of HD Pathogenesis | Implications of the ECS in HD | Cannabinoid Receptor Ligands with Potential Benefits in Therapeutic Management of HD | |||
---|---|---|---|---|---|
Target Components | Physiological Function | Disease Model and Species | Compound/Intervention | Biological Effect | |
mHTT - direct repressive effect on CB1R gene transcription→ Loss of CB1R binding in the striatum→ Reduction of CB1R [130,133] | CB1 Ractivation | CB1R are necessary to counteract neuronal degeneration [133] Activation of CB1R pathway is associated with a protective effect [135] CB1R activation protects neurons from NMDA-induced excitotoxicity and inhibits presynaptic release of glutamate [60] | R6/1 transgenic HD mouse model | WIN 55,212-2 | Antihyperkinetic activity prevention of motor impairment [147] |
Environment enrichment | Upregulation of CB1R binding → behavioral improvement [134] | ||||
R6/2 mouse model of HD | Δ9-THC | ↓ of motor coordination deficits improvement of motor and exploratory behavior ↓ of striatal atrophy and HTT aggregate accumulation [136] | |||
3NP animal model of HD | CBD | Reversibility or attenuation of alterations induced by 3NP [146] | |||
CBG | Prevention of striatal neuron death Improvement of motor deficits Reduction of inflammatory markers [153] | ||||
R6/2 model of HD | GAT211 GAT228 GAT229 (positive allosteric modulators) | Improvement measures of health GAT211 and GAT229 reduced psychoactivity, without tolerance or dependence [137,138,139] | |||
N171-82Q transgenic model | CB1R gene inactivation | Earlier and exacerbated motor alternations Increased striatal aggregation frequency [136] | |||
3NP animal model of HD | CB1R are necessary to counteract neuronal degeneration [133] | ||||
Rat model of HDExcitotoxicity was increased through striatal injection of quinolinic acid | WIN 55,212-2 CBD | Decreased bothglutamate levels and the effect of quinolinic acid on corticostriatal local field potential recordings [148] | |||
Cell culture model of HD with mHTT expressive cells | CBD Δ8-THC Δ9-THC | 51–84% protection against HTT-induced cell death [155] Remark: Effects might be independent of CB1R and due to antioxidant mechanisms | |||
Microglial CB2R → induced in HD patients and animal models CB2R ablation exacerbates microglial activation and accelerates appearance of symptoms [140] | CB2R | CB2R activation → neuroprotective effect in HD models → control of deleterious microglial activity [140] | Quinolinic-acid lesioned mice model of HD | HU-308 | Reduction of neuronal damage in the striatum by attenuating glial activation [140] |
Malonate-lesion rat model of HD | Accelerated progression of the HD phenotype Increased glial activation Higher sensitivity to striatal neurodegeneration induced by excitotoxic processes [140] | ||||
R6/2 mice model | CB2R ablation | Faster progression of the disease phenotype Increased glial activation Higher sensitivity to striatal neurodegeneration induced by excitotoxic processes [140] | |||
CB1R/CB2R | Human studies-patients with HD | Nabilone Sativex® | Improvements in chorea Improvements in the neuropsychiatric index Trend for improvements in the Unified HD Rating scale motor score, dystonia subscore and behavior score [151] | ||
Human studies-patients with early-onset HD | Nabilone Sativex® Dronabinol | Improvement of dystonia Quality of life improvement Behavior improvement [152] | |||
TRPV1 | HD rat model with bilateral striatal injection of 3NP | AM404 (ECB reuptake inhibitor) | Reduction of hyperkinetic activity and restoration of neurochemical alterations [1,145] |
Mechanisms of MS Pathogenesis | The Endocannabinoid System and Its Implications in MS | Cannabinoid Receptor Ligands with Potential Benefits in Therapeutic Management of MS | |||
---|---|---|---|---|---|
Target Components | Physiological Function | Disease Model and Species | Compound | Biological Effect | |
spasticity → the mainly observed symptom in MS is associated with spasms, pain and sleep disturbance [176,177] | CB1R and CB2R | CB1R inhibits synaptic transmission → main target for control of spasticity [204] | chronic relapsing EAE | Δ9-THC methanandamide (analogue of AEA) (CB1R agonists) WIN 55,212-2 (CB1R/CB2R agonist) JWH-133 (CB2-R agonist) | amelioration of some motor symptoms such as limb spasticity, tremor and paralysis [203] |
inflamamation→ recruitment of leukocytes from the blood into the CNS adhesion to endothelial cells (added space) cerebrospinal fluid: increased glutamate level, differential expression of glutamate receptors [232] increased glutamate level → neurodegeneration due to excitotoxicity [210,216] | CB1R and CB2R | CB2R have immunomodulatory properties [209] | EAE induced C57BL/6 mice immunized with MOG35–55 + pertussis toxin | WIN 55,212-2 SR 141716A (CB1R antagonist) SR144528 (CB2R antagonist) | CB1R antagonist → no influence on the protective effect → key role in the protective effect of WIN55212-2 [212] stimulation → attenuated EAE progression potential target to inhibit leukocyte trafficking in EAE [209] |
CB1R | activation of cannabinoid receptors inhibits the release of glutamate presynaptically [217] | Rat hippocampal neurons culture | AEA Memantine Δ9-THC | (added space) antiglutamatergic effects by ↓ of Mg2+ concentration →↓ excitation level in the entire network of neurons in the culture glutamatergic excitatory postsynaptic currents elicited by direct stimulation of the presynaptic neuron [217] | |
EAE induced C57BL/6 mice—i.p. administration for 3 consecutive days | CBD | (added space) Low dose of CBD → ↓ inflammation → axonal damage ↓ spinal activation of glia inhibition of T-cell migration in the spinal cord [220] High dose of CBD → ↓microglial activity↓ ↓cell infiltration and demyelination ↓axonal damage ↓levels of IL-6 [221] | |||
CB1R and CB2R | involvement in treating of neurodegenerative diseases driven by chronic neuro-inflammation | EAE-induced C57BL/6 mice immunized with MOG35–55 + pertussis toxin | Δ9-THC + CBD | Δ9-THC + CBD→attenuates the development of EAE [157] | |
CB1R | immunosuppressive effects on astrocytes | In vitro method TMEV-infected astrocytes | AEA | dose-dependent potentiating of IL-6 [219] inhibition of astrocytes activation →the production of IL-6 [231] inhibition IL-1β, IL-6, IL-12 and IL-23 release in myeloid dendritic cells inhibition of microglial activation [161] | |
Mouse model TMEV-induced demyelinating disease | PEA | ↓ expression of IL-1, TNF-α↓ microglial activation in the spinal cord of mice [228] | |||
UCM707 WIN 55,212-2 JWH-015 ACEA | ↓ microglial activation inhibition of MHC class II antigen expression ↓ of spinal cord infiltrating CD4T cells– ↓ the production of IL-1β, IL-6 and TNF-α [229,230] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasincu, A.; Rusu, R.-N.; Ababei, D.-C.; Larion, M.; Bild, W.; Stanciu, G.D.; Solcan, C.; Bild, V. Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty. Biology 2022, 11, 440. https://doi.org/10.3390/biology11030440
Vasincu A, Rusu R-N, Ababei D-C, Larion M, Bild W, Stanciu GD, Solcan C, Bild V. Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty. Biology. 2022; 11(3):440. https://doi.org/10.3390/biology11030440
Chicago/Turabian StyleVasincu, Alexandru, Răzvan-Nicolae Rusu, Daniela-Carmen Ababei, Mădălina Larion, Walther Bild, Gabriela Dumitrița Stanciu, Carmen Solcan, and Veronica Bild. 2022. "Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty" Biology 11, no. 3: 440. https://doi.org/10.3390/biology11030440
APA StyleVasincu, A., Rusu, R.-N., Ababei, D.-C., Larion, M., Bild, W., Stanciu, G. D., Solcan, C., & Bild, V. (2022). Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty. Biology, 11(3), 440. https://doi.org/10.3390/biology11030440