UGT72, a Major Glycosyltransferase Family for Flavonoid and Monolignol Homeostasis in Plants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Diversification of UGTs from Algae to Vascular Plants
3. Functional Characteristics of the UGT72 Family
3.1. Substrate Identification of UGT72s
UGT72 | Accession | Species | Monolignol Pathway | Flavonoids | Other Phenolics | Other Compounds | References |
---|---|---|---|---|---|---|---|
UGT72B1 | At4G01070 | A. thaliana | Coniferaldehyde p-coumaraldehyde Coniferyl alcohol DHCA p-coumaryl alcohol Vanillin | - | Umbelliferone 4-methyl-umbelliferone Scopoletin (7-O) Esculetin (6-O) Hydroxybenzoic acids (3-O, 4-O, 5-O) 4-HPPA 4-nitrophenol Phenol 2,4-DCP 3,4-DCP 2,4,5-TCP 2,3,4-TCP 2,3,6-TCP 2-chloro-4-TFMP 1-naphthol Triclosan Alternariol | 3,4-DCA 2,4-DCA 2,4,5-TCA 3,4,5-TCA Picloram | [22,33,39,59,69,70,71,72,73] |
UGT72B3 | At1G01420 | A. thaliana | Coniferaldehyde Sinapaldehyde | Quercetin Fisetin Kaempferol | 4-methyl-umbelliferone Scopoletin (7-O) Esculetin (7-O) Umbelliferone 4-acetic acid 2,4,5-TCP 2-chloro-4-TFMP | - | [22,39,70,72] |
UGT72C1 | At4G36770 | A. thaliana | - | - | Scopoletin (7-O) Esculetin (6-O) 2,4,5-TCP | - | [22,70] |
UGT72D1 | At2G18570 | A. thaliana | - | Luteolin Quercetin Fisetin Kaempferol Taxifolin Catechin Genistein | 4-methyl-umbelliferone Scopoletin (7-O) Esculetin (6-O) Dihydroxylbenzoic acids 2,4,5-TCP | - | [22,70,74] |
UGT72E1 | At3G50740 | A. thaliana | Coniferaldehyde (4-O) Sinapaldehyde (4-O) | Quercetin Fisetin Kaempferol | - | - | [22,36,58] |
UGT72E2 | At5G66690 | A. thaliana | Ferulic acid (4-O) Sinapyl alcohol (4-O) Sinapic acid (4-O) Caffeic acid (4-O) p-coumaric acid (4-O) o-coumaric acid m-coumaric acid Coniferaldehyde (4-O) Sinapaldehyde (4-O) Coniferyl alcohol (4-O) Vanillin | - | Scopoletin (7-O) Esculetin (6-O) 2,4,5-TCP | 3,4-DCA | [22,35,36,58,59,70,75] |
UGT72E3 | At5G26310 | A. thaliana | Sinapic acid (4-O) Caffeic acid (4-O) Ferulic acid (4-O) Coniferyl alcohol Sinapyl alcohol | - | Scopoletin (7-O) Esculetin (6-O) | - | [22,35,36,58,70] |
UGT72AM1 | KY399734 | C. sinensis | Coniferaldehyde (4-O) | Kaempferol (3-O) Quercetin (3-O) Myricetin (3-O) Naringenin (7-O, 4′-O) Eriodictyol Dihydromyricetin Cyanidin (3-O) | - | - | [60,76] |
UGT72X4 | GLYMA8G338100 | G. max | - | Quercetin (3-O) Kaempferol (3-O) Myricetin (3-O) | - | - | [65] |
UGT73 | GLYMA8G338200 | G. max | - | Quercetin (3-O) Kaempferol (3-O) Myricetin (3-O) | - | - | [65] |
UGT72B11 | EU561016 | H. pilosella | - | Baicalein (7-O) Quercetin (3-O, 4′-O) Kaempferol (3-O, 7-O) Apigenin (7-O) Luteolin (7-O, 4′-O) Naringenin (7-O) Eriodictyol Scutellarein Chrysin Myricetin Morin | Umbelliferone Esculetin Catechol Resorcinol Hydroquinone | - | [68] |
UGT72AD1 | AP009657 | L. japonicus | - | Kaempferol (3-O, 7-O) Quercetin (3-O) Myricetin (3-O) | - | - | [66] |
UGT72AF1 | KT895083 | L. japonicus | - | Apigenin Daidzein Genistein | - | - | [66] |
UGT72AH1 | AOG18241 | L. japonicus | - | Kaempferol Quercetin Myricetin | - | - | [66] |
UGT72V3 | KT895088 | L. japonicus | - | Kaempferol Quercetin Myricetin Luteolin Daidzein Genistein | - | - | [66] |
UGT72Z2 | KP410264 | L. japonicus | - | Kaempferol (3-O) Quercetin (3-O) Myricetin (3-O) | - | - | [66] |
UGT72L1 | ACC38470 | M. truncatula | - | Epicatechin (3′-O) Epigallocatechin | - | - | [67] |
UGT72AX1 | Nbv6. 1trP17460 | N. benthamiana | - | Kaempferol | Carvacrol Hydroquinone Scopoletin Carveol Alternariol | 3-cis-hexenol 1-octen-3-ol Benzyl alcohol Lavandulol 2-phenylethanol Farnesol Perillyl alcohol β-ionol Geraniol | [73,77] |
UGT72AY1 | Nbv6. 1trP2283 | N. benthamiana | - | Kaempferol Malvidin | Carvacrol Hydroquinone Scopoletin Carveol Alternariol | Farnesol α-ionol β-ionol 2-phenylethanol Geraniol 3-cis-hexenol 1-octen-3-ol Perillyl alcohol Benzyl alcohol Lavandulol Tyrosol Myrtenol 3-oxo-α-ionol Mandelic acid Mandelonitrile Furanmethanethiol Sotolone Maple furanone Furaneol Homofuraneol | [73,77,78] |
UGT72B34 | Nbv6. 1trP17549 | N. benthamiana | - | Kaempferol | Carvacrol Hydroquinone Scopoletin Carveol | Geraniol 3-cis-hexenol Perillyl alcohol 1-octen-3-ol Benzyl alcohol Lavandulol Tyrosol Myrtenol Farnesol 2-phenylethanol | [77] |
UGT72B35 | Nbv6. 1trP72850 | N. benthamiana | - | Kaempferol | Carvacrol Hydroquinone Scopoletin | Benzyl alcohol Tyrosol Furanmethanethiol α-bisabolol 1-octen-3-ol 2-phenylethanol | [77] |
PtGT1 | HM776516 | P. tomentosa | - | - | - | - | [38] |
UGT72AZ1 | Potri- 7G030300 | P. tremula x P. alba | - | - | - | - | [61] |
UGT72AZ2 | Potri- 7G030400 | P. tremula x P. alba | Ferulic acid Sinapic acid | - | - | - | [61] |
UGT72A2 | Potri- 7G030500 | P. tremula x P. alba | - | - | - | - | [27,61] |
UGT72B37 | Potri- 14G096100 | P. tremula x P. alba | p-coumaraldehyde Coniferaldehyde Sinapaldehyde Coniferyl alcohol Sinapyl alcohol | - | - | - | [61] |
UGT72B39 | Potri- 2G168600 | P. tremula x P. alba | Coniferyl alcohol | - | - | - | [61] |
SlUGT5 | HM209439 | S. lycopersicum | Cinnamyl alcohol | Kaempferol | Methyl salicylate Guaiacol Eugenol Hydroquinone Salicyl alcohol (7-O) | Benzyl alcohol | [62] |
UGT72U1 | Not available | V. planifolia | Vanillin | - | - | - | [63] |
UGT72B27 | AM483418 | V. vinifera | Vanillin | - | Trans-resveratrol (3-O, 4′-O) Thymol Carvacrol Eugenol Guaiacol 4-methylguaiacol Syringol 4-methylsyringol m-cresol o-cresol Alternariol | Menthol Sotolone Furaneol Homofuraneol | [64,73,78,79] |
3.2. Possible Roles of UGT72s in Monolignol Homeostasis and in the Regulation of Lignification
3.2.1. Monolignol Homeostasis
3.2.2. Regulation of Lignification
3.3. UGT72s Involved in Flavonoid Homeostasis
3.4. The Subcellular Localization of UGT72s Provides Information on Their Functions
4. Challenges and Perspectives in UGT Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowles, D.; Lim, E.-K.; Poppenberger, B.; Vaistij, F.E. Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 2006, 57, 567–597. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chantreau, M.; Sibout, R.; Hawkins, S. Plant cell wall lignification and monolignol metabolism. Front. Plant Sci. 2013, 4, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- König, S.; Feussner, K.; Kaever, A.; Landesfeind, M.; Thurow, C.; Karlovsky, P.; Gatz, C.; Polle, A.; Feussner, I. Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytol. 2014, 202, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Vogt, T. Glycosyltransferases in secondary plant metabolites tranquilizers and stimulant controllers. Planta 2001, 213, 164–174. [Google Scholar] [CrossRef]
- Osmani, S.A.; Bak, S.; Møller, B.L. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 2009, 70, 325–347. [Google Scholar] [CrossRef]
- CAZY-Carbohydrate-Active Enzymes. Available online: http://www.cazy.org/ (accessed on 31 January 2022).
- Lairson, L.L.; Henrissat, B.; Davies, G.J.; Withers, S.G. Glycosyltransferases: Structures, functions, and mechanisms. Annu. Rev. Biochem. 2008, 77, 521–555. [Google Scholar] [CrossRef] [Green Version]
- Yonekura-Sakakibara, K.; Hanada, K. An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J. 2011, 66, 182–193. [Google Scholar] [CrossRef]
- Caputi, L.; Malnoy, M.; Goremykin, V.; Nikiforova, S.; Martens, S. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J. 2012, 69, 1030–1042. [Google Scholar] [CrossRef]
- Bock, K.W. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution. Biochem. Pharmacol. 2016, 99, 11–17. [Google Scholar] [CrossRef]
- Wilson, A.E.; Tian, L. Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. Plant J. 2019, 100, 1273–1288. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Lynch, J.H.; Guo, L.; Rhodes, D.; Morgan, J.A.; Dudareva, N. Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants. Nat. Commun. 2019, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Widhalm, J.R.; Qian, Y.; Maeda, H.; Cooper, B.R.; Jannasch, A.S.; Gonda, I.; Lewinsohn, E.; Rhodes, D.; Dudareva, N. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nat. Commun. 2013, 4, 2833. [Google Scholar] [CrossRef] [Green Version]
- Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.; Dixon, R.A. Plant phenylalanine/tyrosine ammonia-lyases. Trends Plant Sci. 2020, 25, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, J.; Tschaplinski, T.J.; Tuskan, G.A.; Chen, J.-G.; Muchero, W. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Front. Plant Sci. 2018, 9, 1427. [Google Scholar] [CrossRef] [Green Version]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.G. Phenylpropenes: Occurrence, distribution, and biosynthesis in fruit. J. Agric. Food Chem. 2018, 66, 2259–2272. [Google Scholar] [CrossRef]
- Ross, J.; Li, Y.; Lim, E.; Bowles, D.J. Higher plant glycosyltransferases. Genome Biol. 2001, 2, REVIEWS3004. [Google Scholar] [CrossRef]
- Yang, M.; Fehl, C.; Lees, K.V.; Lim, E.K.; Offen, W.A.; Davies, G.J.; Bowles, D.J.; Davidson, M.G.; Roberts, S.J.; Davis, B.G. Functional and informatics analysis enables glycosyltransferase activity prediction. Nat. Chem. Biol. 2018, 14, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- RCSB-Protein Data Bank. Available online: https://www.rcsb.org/ (accessed on 31 January 2022).
- Nair, P.C.; Meech, R.; Mackenzie, P.I.; McKinnon, R.A.; Miners, J.O. Insights into the UDP-sugar selectivities of human UDP-glycosyltransferases (UGT): A molecular modeling perspective. Drug Metab. Rev. 2015, 47, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Walker, S. Remarkable structural similarities between diverse glycosyltransferases. Chem. Biol. 2002, 9, 1287–1296. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-Y.; Li, X. Identification of a residue responsible for UDP-sugar donor selectivity of a dihydroxybenzoic acid glycosyltransferase from Arabidopsis natural accessions. Plant J. 2016, 89, 195–203. [Google Scholar] [CrossRef]
- Behr, M.; Speeckaert, N.; Kurze, E.; Morel, O.; Prévost, M.; Mol, A.; Adamou, N.M.; Baragé, M.; Renaut, J.; Schwab, W.; et al. Leaf necrosis resulting from down-regulation of poplar glycosyltransferase UGT72A2. Tree Physiol. 2021, in press. [Google Scholar] [CrossRef]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Paquette, S.; Møller, B.L.; Bak, S. On the origin of family 1 plant glycosyltransferases. Phytochemistry 2003, 62, 399–413. [Google Scholar] [CrossRef]
- Kubo, A.; Arai, Y.; Nagashima, S.; Yoshikawa, T. Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation. Arch. Biochem. Biophys. 2004, 429, 198–203. [Google Scholar] [CrossRef]
- Shao, H.; He, X.; Achnine, L.; Blount, J.W.; Dixon, R.A.; Wang, X. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 2005, 17, 3141–3154. [Google Scholar] [CrossRef] [Green Version]
- Offen, W.; Martinez-Fleites, C.; Yang, M.; Kiat-Lim, E.; Davis, B.G.; Tarling, C.A.; Ford, C.M.; Bowles, D.J.; Davies, G.J. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J. 2006, 25, 1396–1405. [Google Scholar] [CrossRef] [Green Version]
- Brazier-Hicks, M.; Offen, W.A.; Gershater, M.C.; Revett, T.J.; Lim, E.-K.; Bowles, D.J.; Davies, G.J.; Edwards, R. Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc. Natl. Acad. Sci. USA 2007, 104, 20238–20243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Rawat, V.; Suresh, C.G. Genome-wide identification and tissue-specific expression analysis of UDP-glycosyltransferases genes confirm their abundance in Cicer arietinum (Chickpea) genome. PLoS ONE 2014, 9, e109715. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.K.; Li, Y.; Parr, A.; Jackson, R.; Ashford, D.A.; Bowles, D.J. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J. Biol. Chem. 2001, 276, 4344–4349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanot, A.; Hodge, D.; Jackson, R.G.; George, G.L.; Elias, L.; Lim, E.K.; Vaistij, F.E.; Bowles, D.J. The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana. Plant J. 2006, 48, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Lanot, A.; Hodge, D.; Lim, E.K.; Vaistij, F.E.; Bowles, D.J. Redirection of flux through the phenylpropanoid pathway by increased glucosylation of soluble intermediates. Planta 2008, 228, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Wang, W.C.; Jin, S.H.; Wang, J.; Wang, B.; Hou, B.K. Over-expression of a putative poplar glycosyltransferase gene, PtGT1, in tobacco increases lignin content and causes early flowering. J. Exp. Bot. 2012, 63, 2799–2808. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.S.; Huang, X.X.; Li, Q.; Cao, Y.; Bao, Y.; Meng, X.F.; Li, Y.J.; Fu, C.; Hou, B.K. UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. Plant J. 2016, 88, 26–42. [Google Scholar] [CrossRef] [Green Version]
- Baldacci-Cresp, F.; Le Roy, J.; Huss, B.; Lion, C.; Créach, A.; Spriet, C.; Duponchel, L.; Biot, C.; Baucher, M.; Hawkins, S.; et al. UDP-glycosyltransferase 72e3 plays a role in lignification of secondary cell walls in Arabidopsis. Int. J. Mol. Sci. 2020, 21, 6094. [Google Scholar] [CrossRef]
- Bowman, J.L.; Kohchi, T.; Yamato, K.T.; Jenkins, J.; Shu, S.; Ishizaki, K.; Yamaoka, S.; Nishihama, R.; Nakamura, Y.; Berger, F.; et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 2017, 171, 287–304.e15. [Google Scholar] [CrossRef] [Green Version]
- de Vries, J.; Archibald, J.M. Plant evolution: Landmarks on the path to terrestrial life. New Phytol. 2018, 217, 1428–1434. [Google Scholar] [CrossRef]
- Chae, L.; Kim, T.; Nilo-Poyanco, R.; Rhee, S.Y. Genomic signatures of specialized metabolism in plants. Science 2014, 344, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.W.; Donoghue, P.C.J. Whole-genome duplication and plant macroevolution. Trends Plant Sci. 2018, 23, 933–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- JGI Phytozome 13-The Plant Genomics Resource. Available online: https://phytozome-next.jgi.doe.gov/ (accessed on 31 January 2022).
- Kumar, V.; Hainaut, M.; Delhomme, N.; Mannapperuma, C.; Immerzeel, P.; Street, N.R.; Henrissat, B.; Mellerowicz, E.J. Poplar carbohydrate-active enzymes: Whole-genome annotation and functional analyses based on RNA expression data. Plant J. 2019, 99, 589–609. [Google Scholar] [CrossRef] [PubMed]
- Louveau, T.; Osbourn, A. The sweet side of plant-specialized metabolism. Cold Spring Harb. Perspect. Biol. 2019, 11, a034744. [Google Scholar] [CrossRef] [PubMed]
- Grille, S.; Zaslawski, A.; Thiele, S.; Plat, J.; Warnecke, D. The functions of steryl glycosides come to those who wait: Recent advances in plants, fungi, bacteria and animals. Prog. Lipid Res. 2010, 49, 262–288. [Google Scholar] [CrossRef] [PubMed]
- Stucky, D.F.; Arpin, J.C.; Schrick, K. Functional diversification of two UGT80 enzymes required for steryl glucoside synthesis in Arabidopsis. J. Exp. Bot. 2015, 66, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Mishra, M.K.; Singh, G.; Tiwari, S.; Singh, R.; Kumari, N.; Misra, P. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress. Plant Signal. Behav. 2015, 10, e1075682. [Google Scholar] [CrossRef] [Green Version]
- Stonik, V.A.; Stonik, I.V. Sterol and sphingoid glycoconjugates from microalgae. Mar. Drugs 2018, 16, 514. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, A.; Horikawa, M.; Fukui, Y.; Fukuchi-Mizutani, M.; Iuchi-Okada, A.; Ishiguro, M.; Kiso, Y.; Nakayama, T.; Onoa, E. Local differentiation of sugar donor specificity of flavonoid glycosyltransferase in Lamiales. Plant Cell 2009, 21, 1556–1572. [Google Scholar] [CrossRef] [Green Version]
- MView. Available online: https://www.ebi.ac.uk/Tools/msa/mview/ (accessed on 31 January 2022).
- Zhu, T.; Liu, H.; Wang, P.; Ni, R.; Sun, C.; Yuan, J.; Niu, M.; Lou, H.; Cheng, A. Functional characterization of UDP-glycosyltransferases from the liverwort Plagiochasma appendiculatum and their potential for biosynthesizing flavonoid 7-O-glucosides. Plant Sci. 2020, 299, 110577. [Google Scholar] [CrossRef]
- Yuan, J.; Xiong, R.; Zhu, T.; Ni, R.; Fu, J.; Lou, H.; Cheng, A. Cloning and functional characterization of three flavonoid O-glucosyltransferase genes from the liverworts Marchantia emarginata and Marchantia paleacea. Plant Physiol. Biochem. 2021, 166, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Phylogeny.fr-Robust Phylogenetic Analysis for the Non-Specialist. Available online: http://www.phylogeny.fr/ (accessed on 31 January 2022).
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.-K.; Jackson, R.G.; Bowles, D.J. Identification and characterisation of Arabidopsis glycosyltransferases capable of glucosylating coniferyl aldehyde and sinapyl aldehyde. FEBS Lett. 2005, 579, 2802–2806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, E.H.; Møller, B.L.; Kock, G.R.; Bünner, C.M.; Kristensen, C.; Jensen, O.R.; Okkels, F.T.; Olsen, C.E.; Motawia, M.S.; Hansen, J. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 2009, 75, 2765–2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Dai, X.; Gao, L.; Guo, L.; Zhuang, J.; Liu, Y.; Ma, X.; Wang, R.; Xia, T.; Wang, Y. Functional analysis of an uridine diphosphate glycosyltransferase involved in the biosynthesis of polyphenolic glucoside in tea plants (Camellia sinensis). J. Agric. Food Chem. 2017, 65, 10993–11001. [Google Scholar] [CrossRef]
- Speeckaert, N.; Adamou, N.M.; Hassane, H.A.; Baldacci-Cresp, F.; Mol, A.; Goeminne, G.; Boerjan, W.; Duez, P.; Hawkins, S.; Neutelings, G.; et al. Characterization of the UDP-glycosyltransferase UGT72 family in poplar and identification of genes involved in the glycosylation of monolignols. Int. J. Mol. Sci. 2020, 21, 5018. [Google Scholar] [CrossRef]
- Louveau, T.; Leitao, C.; Green, S.; Hamiaux, C.; Van Der Rest, B.; Dechy-Cabaret, O.; Atkinson, R.G.; Chervin, C. Predicting the substrate specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit. FEBS J. 2011, 278, 390–400. [Google Scholar] [CrossRef] [Green Version]
- Gallage, N.J.; Hansen, E.H.; Kannangara, R.; Olsen, C.E.; Motawia, M.S.; Jørgensen, K.; Holme, I.; Hebelstrup, K.; Grisoni, M.; Møller, B.L. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nat. Commun. 2014, 5, 4037. [Google Scholar] [CrossRef] [Green Version]
- Härtl, K.; Huang, F.C.; Giri, A.P.; Franz-Oberdorf, K.; Frotscher, J.; Shao, Y.; Hoffmann, T.; Schwab, W. Glucosylation of smoke-derived volatiles in grapevine (Vitis vinifera) is catalyzed by a promiscuous resveratrol/guaiacol glucosyltransferase. J. Agric. Food Chem. 2017, 65, 5681–5689. [Google Scholar] [CrossRef]
- Yin, Q.; Shen, G.; Di, S.; Fan, C.; Chang, Z.; Pang, Y. Genome-wide identification and functional characterization of UDP-glucosyltransferase genes involved in flavonoid biosynthesis in Glycine max. Plant Cell Physiol. 2017, 58, 1558–1572. [Google Scholar] [CrossRef]
- Yin, Q.; Shen, G.; Chang, Z.; Tang, Y.; Gao, H.; Pang, Y. Involvement of three putative glucosyltransferases from the UGT72 family in flavonol glucoside/rhamnoside biosynthesis in Lotus japonicus seeds. J. Exp. Bot. 2017, 68, 597–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, Y.; Peel, G.J.; Sharma, S.B.; Tang, Y.; Dixon, R.A. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc. Natl. Acad. Sci. USA 2008, 105, 14210–14215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witte, S.; Moco, S.; Vervoort, J.; Matern, U.; Martens, S. Recombinant expression and functional characterisation of regiospecific flavonoid glucosyltransferases from Hieracium pilosella L. Planta 2009, 229, 1135–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, E.K.; Doucet, C.J.; Li, Y.; Elias, L.; Worrall, D.; Spencer, S.P.; Ross, J.; Bowles, D.J. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J. Biol. Chem. 2002, 277, 586–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, E.K.; Baldauf, S.; Li, Y.; Elias, L.; Worrall, D.; Spencer, S.P.; Jackson, R.G.; Taguchi, G.; Ross, J.; Bowles, D.J. Evolution of substrate recognition across a multigene family of glycosyltransferases in Arabidopsis. Glycobiology 2003, 13, 139–145. [Google Scholar] [CrossRef]
- Loutre, C.; Dixon, D.P.; Brazier, M.; Slater, M.; Cole, D.J.; Edwards, R.; Group, C.P.; Sciences, B.; Road, F. Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant. Plant J. 2003, 34, 485–493. [Google Scholar] [CrossRef]
- Brazier-Hicks, M.; Gershater, M.; Dixon, D.; Edwards, R. Substrate specificity and safener inducibility of the plant UDP-glucose-dependent family 1 glycosyltransferase super-family. Plant Biotechnol. J. 2018, 16, 337–348. [Google Scholar] [CrossRef]
- Scheibenzuber, S.; Hoffmann, T.; Effenberger, I.; Schwab, W.; Asam, S.; Rychlik, M. Enzymatic synthesis of modified Alternaria mycotoxins using a whole-cell biotransformation system. Toxins 2020, 12, 264. [Google Scholar] [CrossRef] [Green Version]
- Chapelle, A. Caractérisation de Gènes de β-Glucosidase et d’UDP-Glycosyltransférase Potentiellement Impliqués dans la Lignification Chez Arabidopsis thaliana. Ph.D. Thesis, l’Université Paris 11, Orsay, Paris, France, 2009. Thèse Pour L’obtention du Grade Docteur en Sci. [Google Scholar]
- Han, D.Y.; Lee, H.R.; Kim, B.G.; Ahn, J.H. Biosynthesis of ferulic acid 4-O-glucoside and feruloyl glucoside using Escherichia coli harboring regioselective glucosyltransferases. Appl. Biol. Chem. 2016, 59, 481–484. [Google Scholar] [CrossRef]
- He, X.; Zhao, X.; Gao, L.; Shi, X.; Dai, X.; Liu, Y.; Xia, T.; Wang, Y. Isolation and characterization of key genes that promote flavonoid accumulation in purple-leaf tea (Camellia sinensis L.). Sci. Rep. 2018, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Strebl, M.; Merz, M.; Blamberg, R.; Huang, F.C.; McGraphery, K.; Hoffmann, T.; Schwab, W. Glucosylation of the phytoalexin N-feruloyl tyramine modulates the levels of pathogen-responsive metabolites in Nicotiana benthamiana. Plant J. 2019, 100, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Effenberger, I.; Hoffmann, T.; Jonczyk, R.; Schwab, W. Novel biotechnological glucosylation of high-impact aroma chemicals, 3(2H)- and 2(5H)-furanones. Sci. Rep. 2019, 9, 10943. [Google Scholar] [CrossRef] [Green Version]
- Kurze, E.; Ruß, V.; Syam, N.; Effenberger, I.; Jonczyk, R.; Liao, J.; Song, C.; Hoffmann, T.; Schwab, W. Glucosylation of (±)-menthol by uridine-diphosphate-sugar dependent glucosyltransferases from plants. Molecules 2021, 26, 5511. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Liu, C. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proc. Natl. Acad. Sci. USA 2010, 107, 22728–22733. [Google Scholar] [CrossRef] [Green Version]
- Vermaas, J.V.; Dixon, R.A.; Chen, F.; Mansfield, S.D.; Boerjan, W.; Ralph, J.; Crowley, M.F.; Beckham, G.T. Passive membrane transport of lignin-related compounds. Proc. Natl. Acad. Sci. USA 2019, 116, 23117–23123. [Google Scholar] [CrossRef] [PubMed]
- Perkins, M.; Smith, R.A.; Samuels, L. The transport of monomers during lignification in plants: Anything goes but how? Curr. Opin. Biotechnol. 2019, 56, 69–74. [Google Scholar] [CrossRef]
- Miyagawa, Y.; Tobimatsu, Y.; Ying Lam, P.; Mizukami, T.; Sakurai, S.; Kamitakahara, H.; Takano, T. Possible mechanisms for generation of phenyl-glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides. Plant J. 2020, 104, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Alejandro, S.; Lee, Y.; Tohge, T.; Sudre, D.; Osorio, S.; Park, J.; Bovet, L.; Lee, Y.; Geldner, N.; Fernie, A.R.; et al. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr. Biol. 2012, 22, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Väisänen, E.; Takahashi, J.; Obudulu, O.; Bygdell, J.; Karhunen, P.; Blokhina, O.; Laitinen, T.; Teeri, T.H.; Wingsle, G.; Fagerstedt, K..V.; et al. Hunting monolignol transporters: Membrane proteomics and biochemical transport assays with membrane vesicles of Norway spruce. J. Exp. Bot. 2020, 71, 6379–6395. [Google Scholar] [CrossRef]
- Zhao, Q.; Nakashima, J.; Chen, F.; Yin, Y.; Fu, C.; Yun, J.; Shao, H.; Wang, X.; Wang, Z.-Y.; Dixon, R.A. LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell 2013, 25, 3976–3987. [Google Scholar] [CrossRef] [Green Version]
- Perkins, M.L.; Schuetz, M.; Unda, F.; Smith, R.A.; Sibout, R.; Hoffmann, N.J.; Wong, D.C.J.; Castellarin, S.D.; Mansfield, S.D.; Samuels, L. Dwarfism of high-monolignol Arabidopsis plants is rescued by ectopic LACCASE overexpression. Plant Direct 2020, 4, e00265. [Google Scholar] [CrossRef] [PubMed]
- Herrero, J.; Fernández-Pérez, F.; Yebra, T.; Novo-Uzal, E.; Pomar, F.; Pedreño, M.Á.; Cuello, J.; Guéra, A.; Esteban-Carrasco, A.; Zapata, J.M. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta 2013, 237, 1599–1612. [Google Scholar] [CrossRef] [PubMed]
- Herrero, J.; Esteban-Carrasco, A.; Zapata, J.M. Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis. Plant Physiol. Biochem. 2013, 67, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, J.; Huss, B.; Creach, A.; Hawkins, S.; Neutelings, G. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front. Plant Sci. 2016, 7, 735. [Google Scholar] [CrossRef] [Green Version]
- Samanta, A.; Das, G.; Das, K.S. Roles of flavonoids in plants. Int. J. Pharm. Sci. Technol. 2011, 6, 12–35. [Google Scholar]
- Behr, M.; Neutelings, G.; El Jaziri, M.; Baucher, M. You want it sweeter: How glycosylation affects plant response to oxidative stress. Front. Plant Sci. 2020, 11, 571399. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq; Patel, S.; Pan, X.; Naz, S.; Silva, S.A.; Saeed, F.; Suleria, R.H.A. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef]
- Dixon, R.A.; Sarnala, S. Proanthocyanidin biosynthesis—A matter of protection. Plant Physiol. 2020, 184, 579–591. [Google Scholar] [CrossRef]
- Pang, Y.; Cheng, X.; Huhman, D.V.; Ma, J.; Peel, G.J.; Yonekura-Sakakibara, K.; Saito, K.; Shen, G.; Sumner, L.W.; Tang, Y.; et al. Medicago glucosyltransferase UGT72L1: Potential roles in proanthocyanidin biosynthesis. Planta 2013, 238, 139–154. [Google Scholar] [CrossRef]
- Zhao, J.; Dixon, R.A. MATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 2009, 21, 2323–2340. [Google Scholar] [CrossRef] [Green Version]
- Rehman, H.M.; Nawaz, M.A.; Shah, Z.H.; Ludwig-Müller, J.; Chung, G.; Ahmad, M.Q.; Yang, S.H.; Lee, S.I. Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. Nature 2018, 8, 1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourlay, G.; Constabel, C.P. Condensed tannins are inducible antioxidants and protect hybrid poplar against oxidative stress. Tree Physiol. 2019, 39, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Han, K.; Heller, W.; Albert, A.; Dobrev, P.I.; Zažímalová, E.; Schäffner, A.R. Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytol. 2014, 201, 466–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Li, C.Y.; Qi, Y.; Park, S.; Gibson, S.I. SIS8, a putative mitogen-activated protein kinase kinase kinase, regulates sugar-resistant seedling development in Arabidopsis. Plant J. 2014, 77, 577–588. [Google Scholar] [CrossRef] [Green Version]
- Feucht, W.; Dithmar, H.; Polster, J. Nuclei of tea flowers as targets for flavanols. Plant Biol. 2004, 6, 696–701. [Google Scholar] [CrossRef]
- Feucht, W.; Treutter, D.; Polster, J. Flavanol binding of nuclei from tree species. Plant Cell Rep. 2004, 22, 430–436. [Google Scholar] [CrossRef]
- Saslowsky, D.E.; Warek, U.; Winkel, B.S.J. Nuclear localization of flavonoid enzymes in Arabidopsis. J. Biol. Chem. 2005, 280, 23735–23740. [Google Scholar] [CrossRef] [Green Version]
- Hernández, I.; Alegre, L.; Van Breusegem, F.; Munné-Bosch, S. How relevant are flavonoids as antioxidants in plants? Trends Plant Sci. 2009, 14, 125–132. [Google Scholar] [CrossRef]
- Feucht, W.; Schmid, M.; Treutter, D. DNA and flavonoids leach out from active nuclei of Taxus and Tsuga after extreme climate stresses. Plants 2015, 4, 710–727. [Google Scholar] [CrossRef]
- Inoue, S.; Morita, R.; Kuwata, K.; Kunieda, T.; Ueda, H.; Hara-Nishimura, I.; Minami, Y. Tissue-specific and intracellular localization of indican synthase from Polygonum tinctorium. Plant Physiol. Biochem. 2018, 132, 138–144. [Google Scholar] [CrossRef]
- Cheng, X.; Muhammad, A.; Li, G.; Zhang, J.; Cheng, J.; Qiu, J.; Jiang, T.; Jin, Q.; Cai, Y.; Lin, Y. Family-1 UDP glycosyltransferases in pear (Pyrus bretschneideri): Molecular identification, phylogenomic characterization and expression profiling during stone cell formation. Mol. Biol. Rep. 2019, 46, 2153–2175. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.P.; Liu, B.; Sun, Y.; Chiang, V.L.; Sederoff, R.R. Enzyme-enzyme interactions in monolignol biosynthesis. Front. Plant Sci. 2019, 9, 1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassard, J.E.; Richert, L.; Geerinck, J.; Renault, H.; Duval, F.; Ullmann, P.; Schmitt, M.; Meyer, E.; Mutterer, J.; Boerjan, W.; et al. Protein-protein and protein-membrane associations in the lignin pathway. Plant Cell 2012, 24, 4465–4482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, J.A.; McClure, J.W. The distribution of flavonoids in chloroplasts of twenty five species of vascular plants. Phytochemistry 1976, 15, 809–810. [Google Scholar] [CrossRef]
- Zaprometov, M.N.; Nikolaeva, T.N. Chloroplasts isolated from kidney bean leaves are capable of phenolic compound biosynthesis. Russ. J. Plant Physiol. 2003, 50, 623–626. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, L.; Xia, T.; Zhao, L. Investigation of the site-specific accumulation of catechins in the tea plant (Camellia sinensis (L.) O. Kuntze) via vanillin-HCl staining. J. Agric. Food Chem. 2009, 57, 10371–10376. [Google Scholar] [CrossRef]
- Khorobrykh, S.; Havurinne, V.; Mattila, H.; Tyystjärvi, E. Oxygen and ROS in photosynthesis. Plants 2020, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, K.; Hanioka, N.; Ikushiro, S.; Yamano, S.; Narimatsu, S. The effects of N-glycosylation on the glucuronidation of zidovudine and morphine by UGT2B7 expressed in HEK293 cells. Drug Metab. Pharmacokinet. 2012, 27, 388–397. [Google Scholar] [CrossRef]
- Huang, F.C.; Giri, A.; Daniilidis, M.; Sun, G.; Härtl, K.; Hoffmann, T.; Schwab, W. Structural and functional analysis of UGT92G6 suggests an evolutionary link between mono- and disaccharide glycoside-forming transferases. Plant Cell Physiol. 2018, 59, 857–870. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, X.; Hu, Y.; Wang, Y.; Sun, B.; Chen, T.; Luo, Y.; Zhang, Y.; Li, M.; Liu, Z.; et al. Broaden the sugar donor selectivity of blackberry glycosyltransferase UGT78H2 through residual substitutions. Int. J. Biol. Macromol. 2021, 166, 277–287. [Google Scholar] [CrossRef]
- Tiwari, P.; Sangwan, R.S.; Sangwan, N.S. Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes. Biotechnol. Adv. 2016, 34, 714–739. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.Y.; Nam, K.H.; Kim, A.R.; Park, J.; Yoo, E.S.; Baik, K.U.; Yu, Y.H.; Park, M.H. In-vitro and in-vivo immunomodulatory effects of syringin. J. Pharm. Pharmacol. 2001, 53, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Shin, K.M.; Park, H.J.; Jung, H.J.; Kim, H.J.; Lee, Y.S.; Rew, J.H.; Lee, K.T. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Med. 2004, 70, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.S.; Liu, I.M.; Cheng, J.T.; Lin, C.L.; Hsu, F.L. Hypoglycemic effect of syringin from Eleutherococcus senticosus in streptozotocin-induced diabetic rats. Planta Med. 2008, 74, 109–113. [Google Scholar] [CrossRef]
- Chu, Y.; Kwon, T.; Nam, J. Enzymatic and metabolic engineering for efficient production of syringin, sinapyl alcohol 4-O-glucoside, in Arabidopsis thaliana. Phytochemistry 2014, 102, 55–63. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.P.; Shih, Y.T.; Lin, B.R.; Chiu, C.F.; Lin, C.C. Inhibitory effect and mechanisms of an anthocyanins- and anthocyanidins-rich extract from purple-shoot tea on colorectal carcinoma cell proliferation. J. Agric. Food Chem. 2012, 60, 3686–3692. [Google Scholar] [CrossRef]
- Vanholme, B.; Desmet, T.; Ronsse, F.; Rabaey, K.; Van Breusegem, F.; De Mey, M.; Soetaert, W.; Boerjan, W. Towards a carbon-negative sustainable bio-based economy. Front. Plant Sci. 2013, 4, 174. [Google Scholar] [CrossRef] [Green Version]
Taxon | Species | Number of UGTs | References |
---|---|---|---|
Green Algae–Chlamydomonadaceae | C. reinhardtii | 5 | [45] (Pfam: PF00201) |
Marchantiophytes–Marchantiaceae | Marchantia polymorpha | 41 | [41] |
Bryophytes–Funariaceae | Physcomitrella patens | 30 | [11] |
Lycopodiophytes–Selaginellaceae | Selaginella moellendorffi | 137 | |
Gymnosperms–Ginkgoaceae | Ginkgo biloba | 129 | |
Gymnosperms–Pinaceae | P. taeda | 243 | |
Angiosperm dicotyledons–Solanaceae | Solanum lycopersicum | 162 | |
Angiosperm dicotyledons–Brassicaceae | A. thaliana | 123 | |
Angiosperm dicotyledons–Salicaceae | P. trichocarpa | 281 | [46] |
Angiosperms monocotyledons–Poaceae | O. sativa | 184 | [11] |
Gene (Species) | Preferential Expression (by RT-qPCR) | Promoter Activity (by GUS Assay) | Mutation/Silencing | Overexpression | References |
---|---|---|---|---|---|
UGT72B1 (A. thaliana) | Young stem (6-week-old) | Cortex, xylem and pith of the young stem (about 6-week-old); xylem of the old stem (about 6-week-old) | Mutation: 3-fold more coniferin in young stem; increased (1.6-fold more lignin) and ectopic lignification in floral stems; 4-fold higher S/G ratio; 4-fold thicker secondary cell walls; repression of shoot growth | 1.7-fold more coniferin in young stem | [39] |
UGT72E1 (A. thaliana) | 2-day-old seedling; 14-day-old root; 14-day-old aerial part; 4-week-old leaf; 4-week-old senescent leaf | Root of the seedling (10-day-old); base of trichome (10-day-old); base of the silique | / | 2-fold more coniferin in light-grown roots; accumulation of coniferin in leaves | [36,37] |
UGT72E2 (A. thaliana) | 2-day-old seedling; 14-day-old root | Vascular tissue of the leaf (4-week-old), flower (4-week-old) and seedling (10-day-old) | Silencing: 2-fold less coniferin and syringin in light-grown roots | 10-fold more coniferin and 2-fold more syringin in light-grown roots; accumulation of coniferin and syringin in leaves; 6-fold less sinapoyl malate in leaves; accumulation of ferulic acid glucoside in leaves; less susceptible to Verticillum longisporum | [36] |
UGT72E3 (A. thaliana) | Seedling (2-day-old); root (14-day-old); flower (4-week-old); silique | Vascular tissue of the flower (4-week-old) and seedling (10-day-old) | Mutation: 40% more lignin in xylem and interfascicular fibers of the young part of the floral stem; higher capacity of monolignol incorporation in the cell wall | 3-fold more coniferin and 2-fold more syringin in light-grown roots; accumulation of coniferin and syringin in leaves; 15-fold less sinapoyl malate in leaves; accumulation of ferulic acid and sinapic acid glucosides in leaves | [36,37,40] |
PtGT1 (P. tomentosa) | Upper stem (2-month-old) | ns | ns | Early flowering (40% less leaves at bolting); 60% more lignin in stem (when expressed in Nicotiana tabacum) | [38] |
UGT72AZ1 (P. tremula × P. alba) | Phloem of the stem (4-month-old) | Phloem in the stem and leaf (4-month-old) | ns | Accumulation of coniferin and syringin in leaves | [61] |
UGT72AZ2 (P. tremula × P. alba) | Young root (4-month-old) | Cortex, phloem and differentiating xylem in the root (4-month-old) | ns | Accumulation of coniferin in leaves | [61] |
UGT72B37 (P. tremula × P. alba) | Secondary xylem of the stem (4-month-old) | Xylem of the stem (4-month-old) | ns | / | [61] |
UGT72B39 (P. tremula × P. alba) | Secondary xylem of the stem (4-month-old); young root (4-month-old) | Xylem of the stem (4-month-old) | ns | / | [61] |
UGT72 (Species) | Preferential Expression (RT-qPCR) | Promoter Activity (GUS Assay) | Mutation/Silencing | Overexpression | References |
---|---|---|---|---|---|
UGT72L1 (M. truncatula) | ns | Expressed in A. thaliana: junction hypocotyl-root; base of the rosette leaves; tip of the cotyledon; leaf trichome; mid-rib of rosette leaves; peduncles of siliques and inflorescence; immature seed | Mutation: 30% less epicatechin, epicatechin 3′-O-glucoside; 50% less extractable proanthocyanidins in the seeds | Hairy root: 100% more extractable proanthocyanidins; 25% more non-extractable proanthocyanidins; 40% less anthocyanins | [95] |
UGT72A2 (P. tremula × P. alba) | Young stem; young leaf | Primary xylem of the stem | Silencing: leaf yellowing and necrosis; in leaves: 50% higher lipid peroxidation; 30% less total flavonoids; 40% less anthocyanins; 20% less phenolics; 5-fold more soluble proanthocyanidins; 3-fold more insoluble proanthocyanidins; 3-fold less soluble peroxidase activity; 2-fold lower NADPH/NADP+ ratio; higher tolerance to methyl viologen | 30% more total flavonoids in leaf | [27,61] |
UGT72AD1 (L. japonicus) | Seed (20 days after pollination) | ns | ns | Hairy root: 1.8-fold more flavonol. Expressed in A. thaliana: 2-fold more flavonoid and flavonol in seedling; inhibition of root growth | [66] |
UGT72Z2 (L. japonicus) | Seed (16 days after pollination) | ns | ns | Hairy root: 1.6-fold more flavonol. Expressed in A. thaliana: 1.7-fold more flavonoid and 1.5-fold more flavonol in seedling; inhibition of root growth | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speeckaert, N.; El Jaziri, M.; Baucher, M.; Behr, M. UGT72, a Major Glycosyltransferase Family for Flavonoid and Monolignol Homeostasis in Plants. Biology 2022, 11, 441. https://doi.org/10.3390/biology11030441
Speeckaert N, El Jaziri M, Baucher M, Behr M. UGT72, a Major Glycosyltransferase Family for Flavonoid and Monolignol Homeostasis in Plants. Biology. 2022; 11(3):441. https://doi.org/10.3390/biology11030441
Chicago/Turabian StyleSpeeckaert, Nathanaël, Mondher El Jaziri, Marie Baucher, and Marc Behr. 2022. "UGT72, a Major Glycosyltransferase Family for Flavonoid and Monolignol Homeostasis in Plants" Biology 11, no. 3: 441. https://doi.org/10.3390/biology11030441
APA StyleSpeeckaert, N., El Jaziri, M., Baucher, M., & Behr, M. (2022). UGT72, a Major Glycosyltransferase Family for Flavonoid and Monolignol Homeostasis in Plants. Biology, 11(3), 441. https://doi.org/10.3390/biology11030441