Salicylic Acid in Plant Symbioses: Beyond Plant Pathogen Interactions
Abstract
:Simple Summary
Abstract
1. Introduction
2. SA in Plant–Endophyte Interactions
3. SA in the Plant-Mycorrhiza Interactions
Interaction | Activity | Effect | Microbe | Host Plant | Ref. |
---|---|---|---|---|---|
Plant-Endophyte | Establishment of symbiosis | Downregulation of SA accumulation | Bartalinia pondoensis, Fusarium sp., Cochliobolus lunatus | Phaseolus lunatus | [38] |
Epichloë spp. | Lolium multiflorum | [47] | |||
Defense | Antiherbivory | Epichloë spp. | Lolium multiflorum | [47] | |
Enhanced VOC emission | Bartalinia pondoensis, Fusarium sp., Cochliobolus lunatus | Phaseolus lunatus | [38] | ||
Induction of PR genes. | Paenibacillus alvei | Arabidopsis thaliana | [49] | ||
Induction of defense related genes | Pseudomonas fluorescens | Arabidopsis thaliana | [50] | ||
Trichoderma spp. | Arabidopsis thaliana | [51,52] | |||
Solanum lycopersicum | [53] | ||||
Epichloë gansuensis | Achnatherum inebrians | [54] | |||
Plant-Mycorrhiza | Establishment of symbiosis | Regulation of root colonization | Glomus mosseae | Pisum sativum | [61] |
Glomus intraradices, Glomus mosseae | Nicotiana tabacum | [62] | |||
Funneliformis mosseae, Rhizophagus irregularis | Solanum lycopersicum, Glycine max, Zea mays | [63] | |||
Glomus sp. | Solanum tuberosum, Medicago truncatula | [64] | |||
Defense | Defense Priming | Glomus mosseae | Trifolium repens | [65] | |
Rhizofagus irregularis | Vitis vinifera | [66] | |||
Induction of defense related genes | Claroideoglomus etunicatum, Claroideoglomus claroideum, Rhizophagus irregularis, Funneliformis geosporus, Funneliformis mosseae | Pisum sativum | [67] | ||
Glomus sp. | Solanum tuberosum, Medicago truncatula | [68] | |||
Funneliformis mosseae | Triticum aestivum | [69] | |||
Glomus intraradices | Oryza sativa | [70] | |||
Glomus mosseae | Oryza sativa | [59] | |||
Plant-Rhizobia | Establishment of symbiosis | Regulation of root colonization and nodule formation | Mesorhizobium loti | Lotus japonicus, Medicago truncatula | [71] |
Sinorhizobium meliloti | Medicago sativa | [72] | |||
Sinorhizobium meliloti | Medicago sativa | [73] | |||
Decreased innate immunity within nodules | Sinorhizobium spp. | Medicago truncatula | [74] | ||
Sinorhizobium spp | Medicago truncatula | [75] | |||
Defense | Induction of defense related genes | Sinorhizobium spp. | Medicago truncatula | [75] | |
Rhizobium leguminosarum, Sinorhizobium meliloti | Medicago truncatula, Pisum sativum | [76] | |||
Rhizobium leguminosarum | Pisum sativum | [77,78] | |||
Sinorhizobium meliloti | Medicago truncatula | [79] |
4. SA in Plant–Rhizobia Symbiosis
5. The Future Challenges of Hormonal Regulation in Plant-Beneficial Microbe Interactions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dempsey, D.; Klessig, D.F. How Does the Multifaceted Plant Hormone Salicylic Acid Combat Disease in Plants and Are Similar Mechanisms Utilized in Humans? BMC Biol. 2017, 15, 23. [Google Scholar] [CrossRef] [Green Version]
- Thordal-Christensen, H. A Holistic View on Plant Effector-Triggered Immunity Presented as an Iceberg Model. Cell. Mol. Life Sci. 2020, 77, 3963–3976. [Google Scholar] [CrossRef] [Green Version]
- Lukan, T.; Coll, A. Intertwined Roles of Reactive Oxygen Species and Salicylic Acid Signaling Are Crucial for the Plant Response to Biotic Stress. Int. J. Mol. Sci. 2022, 23, 5568. [Google Scholar] [CrossRef]
- Seyfferth, C.; Tsuda, K. Salicylic Acid Signal Transduction: The Initiation of Biosynthesis, Perception and Transcriptional Reprogramming. Front. Plant Sci. 2014, 5, 697. [Google Scholar] [CrossRef] [Green Version]
- Stael, S.; Kmiecik, P.; Willems, P.; Van Der Kelen, K.; Coll, N.S.; Teige, M.; Van Breusegem, F. Plant Innate Immunity–Sunny Side Up? Trends Plant Sci. 2015, 20, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Conrath, U. Systemic Acquired Resistance. Plant Signal. Behav. 2006, 1, 179–184. [Google Scholar] [CrossRef]
- Fu, Z.Q.; Dong, X. Systemic Acquired Resistance: Turning Local Infection into Global Defense. Annu. Rev. Plant Biol. 2013, 64, 839–863. [Google Scholar] [CrossRef] [Green Version]
- Kachroo, A.; Robin, G.P. Systemic Signaling during Plant Defense. Curr. Opin. Plant Biol. 2013, 16, 527–533. [Google Scholar] [CrossRef]
- Shine, M.; Xiao, X.; Kachroo, P.; Kachroo, A. Signaling Mechanisms Underlying Systemic Acquired Resistance to Microbial Pathogens. Plant Sci. 2019, 279, 81–86. [Google Scholar] [CrossRef]
- Koo, Y.M.; Heo, A.Y.; Choi, H.W. Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathol. J. 2020, 36, 1–10. [Google Scholar] [CrossRef]
- Dong, X. NPR1, All Things Considered. Curr. Opin. Plant Biol. 2004, 7, 547–552. [Google Scholar] [CrossRef]
- Mukhtar, M.S.; Nishimura, M.T.; Dangl, J. NPR1 in Plant Defense: It’s Not over’til It’s Turned Over. Cell 2009, 137, 804–806. [Google Scholar] [CrossRef] [Green Version]
- Withers, J.; Dong, X. Posttranslational Modifications of NPR1: A Single Protein Playing Multiple Roles in Plant Immunity and Physiology. PLoS Pathog. 2016, 12, e1005707. [Google Scholar] [CrossRef]
- Kuai, X.; Després, C. Defining Arabidopsis NPR1 Orthologues in Crops for Translational Plant Immunity. Can. J. Plant Pathol. 2016, 38, 25–30. [Google Scholar] [CrossRef]
- Moreau, M.; Tian, M.; Klessig, D.F. Salicylic Acid Binds NPR3 and NPR4 to Regulate NPR1-Dependent Defense Responses. Cell Res. 2012, 22, 1631–1633. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, T.; Sun, Y.; Zhang, Y.; Radojičić, A.; Ding, Y.; Tian, H.; Huang, X.; Lan, J.; Chen, S. Diverse Roles of the Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Plant Immunity. Plant Cell 2020, 32, 4002–4016. [Google Scholar] [CrossRef]
- Fu, Z.Q.; Yan, S.; Saleh, A.; Wang, W.; Ruble, J.; Oka, N.; Mohan, R.; Spoel, S.H.; Tada, Y.; Zheng, N. NPR3 and NPR4 Are Receptors for the Immune Signal Salicylic Acid in Plants. Nature 2012, 486, 228–232. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Ganai, B.A.; Kamili, A.N.; Bhat, A.A.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Islam, S.T.; Mushtaq, M.; Yadav, P.; et al. Pathogenesis-Related Proteins and Peptides as Promising Tools for Engineering Plants with Multiple Stress Tolerance. Microbiol. Res. 2018, 212–213, 29–37. [Google Scholar] [CrossRef]
- Ali, S.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Chandrashekar, N.; Yadav, P.; Rawat, S.; Sultana, M.; Grover, A. Isolation and Characterization of Systemic Acquired Resistance Marker Gene PR1 and Its Promoter from Brassica Juncea. 3 Biotech 2018, 8, 10. [Google Scholar] [CrossRef]
- Bürger, M.; Chory, J. Stressed out about Hormones: How Plants Orchestrate Immunity. Cell Host Microbe 2019, 26, 163–172. [Google Scholar] [CrossRef]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef] [PubMed]
- Aerts, N.; Pereira Mendes, M.; Van Wees, S.C. Multiple Levels of Crosstalk in Hormone Networks Regulating Plant Defense. Plant J. 2021, 105, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.L.D.; Berlitz, D.L.; Wiest, S.L.F.; Schünemann, R.; Knaak, N.; Fiuza, L.M. Benefits Associated with the Interaction of Endophytic Bacteria and Plants. Braz. Arch. Biol. Technol. 2018, 61, e18160431. [Google Scholar] [CrossRef] [Green Version]
- Dighton, J. Mycorrhizae. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Oxford, UK, 2009; pp. 153–162. [Google Scholar] [CrossRef]
- Gashgari, R.; Selim, S.; Abdel-Mawgoud, M.; Warrad, M.; Habeeb, T.H.; Saleh, A.M.; AbdElgawad, H. Arbuscular Mycorrhizae Induce a Global Metabolic Change and Improve the Nutritional and Health Benefits of Pennyroyal and Parsley. Acta Physiol. Plant. 2020, 42, 102. [Google Scholar] [CrossRef]
- Jaiswal, S.K.; Mohammed, M.; Ibny, F.Y.; Dakora, F.D. Rhizobia as a Source of Plant Growth-Promoting Molecules: Potential Applications and Possible Operational Mechanisms. Front. Sustain. Food Syst. 2021, 4, 619676. [Google Scholar] [CrossRef]
- Wang, C.; Reid, J.B.; Foo, E. The Art of Self-Control–Autoregulation of Plant–Microbe Symbioses. Front. Plant Sci. 2018, 9, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourion, B.; Berrabah, F.; Ratet, P.; Stacey, G. Rhizobium–Legume Symbioses: The Crucial Role of Plant Immunity. Trends Plant Sci. 2015, 20, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Domonkos, Á.; Kovács, S.; Gombár, A.; Kiss, E.; Horváth, B.; Kováts, G.Z.; Farkas, A.; Tóth, M.T.; Ayaydin, F.; Bóka, K. NAD1 Controls Defense-like Responses in Medicago Truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner. Genes 2017, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Arnold, A.E.; Mejía, L.C.; Kyllo, D.; Rojas, E.I.; Maynard, Z.; Robbins, N.; Herre, E.A. Fungal Endophytes Limit Pathogen Damage in a Tropical Tree. Proc. Natl. Acad. Sci. USA 2003, 100, 15649–15654. [Google Scholar] [CrossRef] [Green Version]
- Saikkonen, K.; Wäli, P.; Helander, M.; Faeth, S.H. Evolution of Endophyte–Plant Symbioses. Trends Plant Sci. 2004, 9, 275–280. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, C.; Lin, F. Role of Diverse Non-Systemic Fungal Endophytes in Plant Performance and Response to Stress: Progress and Approaches. J. Plant Growth Regul. 2010, 29, 116–126. [Google Scholar] [CrossRef]
- Taulé, C.; Vaz-Jauri, P.; Battistoni, F. Insights into the Early Stages of Plant–Endophytic Bacteria Interaction. World J. Microbiol. Biotechnol. 2021, 37, 13. [Google Scholar] [CrossRef]
- Mehrasa, H.; Farnia, A.; Kenarsari, M.J.; Nakhjavan, S. Endophytic Bacteria and SA Application Improve Growth, Biochemical Properties, and Nutrient Uptake in White Beans Under Drought Stress. J. Soil Sci. Plant Nutr. 2022. [Google Scholar] [CrossRef]
- Nanda, S.; Mohanty, B.; Joshi, R.K. Endophyte-Mediated Host Stress Tolerance as a Means for Crop Improvement. In Endophytes and Secondary Metabolites; Reference Series in Phytochemistry; Jha, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–25. [Google Scholar]
- Cheng, T.; Yao, X.-Z.; Wu, C.-Y.; Zhang, W.; He, W.; Dai, C.-C. Endophytic Bacillus Megaterium Triggers Salicylic Acid-Dependent Resistance and Improves the Rhizosphere Bacterial Community to Mitigate Rice Spikelet Rot Disease. Appl. Soil Ecol. 2020, 156, 103710. [Google Scholar] [CrossRef]
- Bastías, D.A.; Gianoli, E.; Gundel, P.E. Fungal Endophytes Can Eliminate the Plant Growth–Defence Trade-off. New Phytol. 2021, 230, 2105–2113. [Google Scholar] [CrossRef]
- Navarro-Meléndez, A.L.; Heil, M. Symptomless Endophytic Fungi Suppress Endogenous Levels of Salicylic Acid and Interact with the Jasmonate-Dependent Indirect Defense Traits of Their Host, Lima Bean (Phaseolus Lunatus). J. Chem. Ecol. 2014, 40, 816–825. [Google Scholar] [CrossRef]
- Thaler, J.S.; Humphrey, P.T.; Whiteman, N.K. Evolution of Jasmonate and Salicylate Signal Crosstalk. Trends Plant Sci. 2012, 17, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, T.; Friedrich, L.; Vernooij, B.; Negrotto, D.; Nye, G.; Uknes, S.; Ward, E.; Kessmann, H.; Ryals, J. Requirement of Salicylic Acid for the Induction of Systemic Acquired Resistance. Science 1993, 261, 754–756. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. Salicylic Acid: Biosynthesis, Perception, and Contributions to Plant Immunity. Curr. Opin. Plant Biol. 2019, 50, 29–36. [Google Scholar] [CrossRef]
- Graminha, M.A.; Rocha, E.M.; Prade, R.A.; Martinez-Rossi, N.M. Terbinafine Resistance Mediated by Salicylate 1-Monooxygenase in Aspergillus Nidulans. Antimicrob. Agents Chemother. 2004, 48, 3530–3535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabe, F.; Ajami-Rashidi, Z.; Doehlemann, G.; Kahmann, R.; Djamei, A. Degradation of the Plant Defence Hormone Salicylic Acid by the Biotrophic Fungus U Stilago Maydis. Mol. Microbiol. 2013, 89, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, K.V.; Tian, Z.; Wang, Y.; Smith, J.; Zylstra, G.; Huang, B.; Belanger, F.C. Functional Characterization of Salicylate Hydroxylase from the Fungal Endophyte Epichloë Festucae. Sci. Rep. 2015, 5, 10939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, C.-G.; Dai, C.-C. Jasmonic Acid Is Involved in the Signaling Pathway for Fungal Endophyte-Induced Volatile Oil Accumulation of Atractylodes Lancea Plantlets. BMC Plant Biol. 2012, 12, 128. [Google Scholar] [CrossRef] [Green Version]
- Schmid, J.; Day, R.; Zhang, N.; Dupont, P.-Y.; Cox, M.P.; Schardl, C.L.; Minards, N.; Truglio, M.; Moore, N.; Harris, D.R. Host Tissue Environment Directs Activities of an Epichloë Endophyte, While It Induces Systemic Hormone and Defense Responses in Its Native Perennial Ryegrass Host. Mol. Plant. Microbe Interact. 2017, 30, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Bastias Campos, D.; Martinez-Ghersa, M.A.; Newman, J.A.; Card, S.D.; Mace, W.J.; Gundel, P.E. The Plant Hormone Salicylic Acid Interacts with the Mechanism of Anti-herbivory Conferred by Fungal Endophytes in Grasses. Plant Cell Environ. 2018, 41, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, D.; Matsumura, E. Effects of Salicylic Acid, 1-aminocyclopropan-1-carboxylic Acid and Methyl Jasmonate on the Frequencies of Endophytic Fungi in Quercus Serrata Leaves. For. Pathol. 2012, 42, 393–396. [Google Scholar] [CrossRef]
- Tjamos, S.E.; Flemetakis, E.; Paplomatas, E.J.; Katinakis, P. Induction of Resistance to Verticillium Dahliae in Arabidopsis Thaliana by the Biocontrol Agent K-165 and Pathogenesis-Related Proteins Gene Expression. Mol. Plant. Microbe Interact. 2005, 18, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Mortel, J.E.; de Vos, R.C.; Dekkers, E.; Pineda, A.; Guillod, L.; Bouwmeester, K.; van Loon, J.J.; Dicke, M.; Raaijmakers, J.M. Metabolic and Transcriptomic Changes Induced in Arabidopsis by the Rhizobacterium Pseudomonas Fluorescens SS101. Plant Physiol. 2012, 160, 2173–2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Beltrán-Peña, E.; Herrera-Estrella, A.; López-Bucio, J. Trichoderma-Induced Plant Immunity Likely Involves Both Hormonal-and Camalexin-Dependent Mechanisms in Arabidopsis Thaliana and Confers Resistance against Necrotrophic Fungi Botrytis Cinerea. Plant Signal. Behav. 2011, 6, 1554–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathys, J.; De Cremer, K.; Timmermans, P.; Van Kerkhove, S.; Lievens, B.; Vanhaecke, M.; Cammue, B.; De Coninck, B. Genome-Wide Characterization of ISR Induced in Arabidopsis Thaliana by Trichoderma Hamatum T382 against Botrytis Cinerea Infection. Front. Plant Sci. 2012, 3, 108. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Medina, A.; Fernández, I.; Sánchez-Guzmán, M.J.; Jung, S.C.; Pascual, J.A.; Pozo, M.J. Deciphering the Hormonal Signalling Network behind the Systemic Resistance Induced by Trichoderma Harzianum in Tomato. Front. Plant Sci. 2013, 4, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kou, M.-Z.; Bastías, D.A.; Christensen, M.J.; Zhong, R.; Nan, Z.-B.; Zhang, X.-X. The Plant Salicylic Acid Signalling Pathway Regulates the Infection of a Biotrophic Pathogen in Grasses Associated with an Epichloë Endophyte. J. Fungi 2021, 7, 633. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M. Mycorrhizal Types Differ in Ecophysiology and Alter Plant Nutrition and Soil Processes. Biol. Rev. 2019, 94, 1857–1880. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-S. Arbuscular Mycorrhizas and Stress Tolerance of Plants, 1st ed.; Springer: Singapore, 2017. [Google Scholar]
- García-Garrido, J.M.; Ocampo, J.A. Regulation of the Plant Defence Response in Arbuscular Mycorrhizal Symbiosis. J. Exp. Bot. 2002, 53, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J.; Hermosa, R.; Monte, E.; Nicolás, C. Trichoderma Harzianum Favours the Access of Arbuscular Mycorrhizal Fungi to Non-Host Brassicaceae Roots and Increases Plant Productivity. Sci. Rep. 2019, 9, 11650. [Google Scholar] [CrossRef] [Green Version]
- Blilou, I.; Ocampo, J.A.; García-Garrido, J.M. Induction of Ltp (Lipid Transfer Protein) and Pal (Phenylalanine Ammonia-lyase) Gene Expression in Rice Roots Colonized by the Arbuscular Mycorrhizal Fungus Glomus Mosseae. J. Exp. Bot. 2000, 51, 1969–1977. [Google Scholar] [CrossRef] [Green Version]
- Blilou, I.; Bueno, P.; Ocampo, J.A.; García-Garrido, J.M. Induction of Catalase and Ascorbate Peroxidase Activities in Tobacco Roots Inoculated with the Arbuscular Mycorrhizal Glomus Mosseae. Mycol. Res. 2000, 104, 722–725. [Google Scholar] [CrossRef]
- Blilou, I.; Ocampo, J.A.; García-Garrido, J.M. Resistance of Pea Roots to Endomycorrhizal Fungus or Rhizobium Correlates with Enhanced Levels of Endogenous Salicylic Acid. J. Exp. Bot. 1999, 50, 1663–1668. [Google Scholar] [CrossRef]
- Medina, M.J.H.; Gagnon, H.; Piché, Y.; Ocampo, J.A.; Garrido, J.M.G.; Vierheilig, H. Root Colonization by Arbuscular Mycorrhizal Fungi Is Affected by the Salicylic Acid Content of the Plant. Plant Sci. 2003, 164, 993–998. [Google Scholar] [CrossRef]
- Fernández, I.; Merlos, M.; López-Ráez, J.; Martínez-Medina, A.; Ferrol, N.; Azcón, C.; Bonfante, P.; Flors, V.; Pozo, M. Defense Related Phytohormones Regulation in Arbuscular Mycorrhizal Symbioses Depends on the Partner Genotypes. J. Chem. Ecol. 2014, 40, 791–803. [Google Scholar] [CrossRef]
- Gallou, A.; Declerck, S.; Cranenbrouck, S. Transcriptional Regulation of Defence Genes and Involvement of the WRKY Transcription Factor in Arbuscular Mycorrhizal Potato Root Colonization. Funct. Integr. Genom. 2012, 12, 183–198. [Google Scholar] [CrossRef]
- Zhang, R.-Q.; Zhu, H.-H.; Zhao, H.-Q.; Yao, Q. Arbuscular Mycorrhizal Fungal Inoculation Increases Phenolic Synthesis in Clover Roots via Hydrogen Peroxide, Salicylic Acid and Nitric Oxide Signaling Pathways. J. Plant Physiol. 2013, 170, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.-L.; Belval, L.; Martin, I.R.; Roth, L.; Laloue, H.; Deglène-Benbrahim, L.; Valat, L.; Bertsch, C.; Chong, J. Arbuscular Mycorrhizal Symbiosis Triggers Major Changes in Primary Metabolism Together with Modification of Defense Responses and Signaling in Both Roots and Leaves of Vitis Vinifera. Front. Plant Sci. 2021, 12, 721614. [Google Scholar] [CrossRef]
- Ranjbar Sistani, N.; Desalegn, G.; Kaul, H.-P.; Wienkoop, S. Seed Metabolism and Pathogen Resistance Enhancement in Pisum Sativum during Colonization of Arbuscular Mycorrhizal Fungi: An Integrative Metabolomics-Proteomics Approach. Front. Plant Sci. 2020, 11, 872. [Google Scholar] [CrossRef]
- Gallou, A.; Mosquera, H.P.L.; Cranenbrouck, S.; Suárez, J.P.; Declerck, S. Mycorrhiza Induced Resistance in Potato Plantlets Challenged by Phytophthora Infestans. Physiol. Mol. Plant Pathol. 2011, 76, 20–26. [Google Scholar] [CrossRef]
- Fiorilli, V.; Vannini, C.; Ortolani, F.; Garcia-Seco, D.; Chiapello, M.; Novero, M.; Domingo, G.; Terzi, V.; Morcia, C.; Bagnaresi, P. Omics Approaches Revealed How Arbuscular Mycorrhizal Symbiosis Enhances Yield and Resistance to Leaf Pathogen in Wheat. Sci. Rep. 2018, 8, 9625. [Google Scholar] [CrossRef] [PubMed]
- Campos-Soriano, L.; García-Martínez, J.; SEGUNDO, B.S. The Arbuscular Mycorrhizal Symbiosis Promotes the Systemic Induction of Regulatory Defence-related Genes in Rice Leaves and Confers Resistance to Pathogen Infection. Mol. Plant Pathol. 2012, 13, 579–592. [Google Scholar] [CrossRef]
- Stacey, G.; McAlvin, C.B.; Kim, S.-Y.; Olivares, J.; Soto, M.J. Effects of Endogenous Salicylic Acid on Nodulation in the Model Legumes Lotus Japonicus and Medicago Truncatula. Plant Physiol. 2006, 141, 1473–1481. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Abarca, F.; Herrera-Cervera, J.; Bueno, P.; Sanjuan, J.; Bisseling, T.; Olivares, J. Involvement of Salicylic Acid in the Establishment of the Rhizobium Meliloti-Alfalfa Symbiosis. Mol. Plant. Microbe Interact. 1998, 11, 153–155. [Google Scholar] [CrossRef] [Green Version]
- Vasse, J.; de Billy, F.; Truchet, G. Abortion of Infection during the Rhizobium Meliloti—Alfalfa Symbiotic Interaction Is Accompanied by a Hypersensitive Reaction. Plant J. 1993, 4, 555–566. [Google Scholar] [CrossRef]
- Berrabah, F.; Ratet, P.; Gourion, B. Multiple Steps Control Immunity during the Intracellular Accommodation of Rhizobia. J. Exp. Bot. 2015, 66, 1977–1985. [Google Scholar] [CrossRef] [Green Version]
- Benezech, C.; Berrabah, F.; Jardinaud, M.-F.; Le Scornet, A.; Milhes, M.; Jiang, G.; George, J.; Ratet, P.; Vailleau, F.; Gourion, B. Medicago-Sinorhizobium-Ralstonia Co-Infection Reveals Legume Nodules as Pathogen Confined Infection Sites Developing Weak Defenses. Curr. Biol. 2020, 30, 351–358. [Google Scholar] [CrossRef]
- Smigielski, L.; Laubach, E.-M.; Pesch, L.; Glock, J.M.L.; Albrecht, F.; Slusarenko, A.; Panstruga, R.; Kuhn, H. Nodulation Induces Systemic Resistance of Medicago Truncatula and Pisum Sativum against Erysiphe Pisi and Primes for Powdery Mildew-Triggered Salicylic Acid Accumulation. Mol. Plant. Microbe Interact. 2019, 32, 1243–1255. [Google Scholar] [CrossRef]
- Desalegn, G.; Turetschek, R.; Kaul, H.-P.; Wienkoop, S. Microbial Symbionts Affect Pisum Sativum Proteome and Metabolome under Didymella Pinodes Infection. J. Proteom. 2016, 143, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Ranjbar Sistani, N.; Kaul, H.-P.; Desalegn, G.; Wienkoop, S. Rhizobium Impacts on Seed Productivity, Quality, and Protection of Pisum Sativum upon Disease Stress Caused by Didymella Pinodes: Phenotypic, Proteomic, and Metabolomic Traits. Front. Plant Sci. 2017, 8, 1961. [Google Scholar] [CrossRef] [Green Version]
- Pandharikar, G.; Gatti, J.-L.; Simon, J.-C.; Frendo, P.; Poirié, M. Aphid Infestation Differently Affects the Defences of Nitrate-Fed and Nitrogen-Fixing Medicago Truncatula and Alters Symbiotic Nitrogen Fixation. Proc. R. Soc. B 2020, 287, 20201493. [Google Scholar] [CrossRef]
- Ludwig-Müller, J.; Bennett, R.N.; García-Garrido, J.M.; Piché, Y.; Vierheilig, H. Reduced Arbuscular Mycorrhizal Root Colonization in Tropaeolum Majus and Carica Papaya after Jasmonic Acid Application Can Not Be Attributed to Increased Glucosinolate Levels. J. Plant Physiol. 2002, 159, 517–523. [Google Scholar] [CrossRef]
- Campos-Soriano, L.; García-Garrido, J.M.; Segundo, B.S. Activation of Basal Defense Mechanisms of Rice Plants by Glomus Intraradices Does Not Affect the Arbuscular Mycorrhizal Symbiosis. New Phytol. 2010, 188, 597–614. [Google Scholar] [CrossRef] [PubMed]
- Khaosaad, T.; Garcia-Garrido, J.; Steinkellner, S.; Vierheilig, H. Take-All Disease Is Systemically Reduced in Roots of Mycorrhizal Barley Plants. Soil Biol. Biochem. 2007, 39, 727–734. [Google Scholar] [CrossRef]
- Fujita, M.; Kusajima, M.; Fukagawa, M.; Okumura, Y.; Nakajima, M.; Akiyama, K.; Asami, T.; Yoneyama, K.; Kato, H.; Nakashita, H. Response of Tomatoes Primed by Mycorrhizal Colonization to Virulent and Avirulent Bacterial Pathogens. Sci. Rep. 2022, 12, 4686. [Google Scholar] [CrossRef]
- Cordier, C.; Pozo, M.J.; Barea, J.-M.; Gianinazzi, S.; Gianinazzi-Pearson, V. Cell Defense Responses Associated with Localized and Systemic Resistance to Phytophthora Parasitica Induced in Tomato by an Arbuscular Mycorrhizal Fungus. Mol. Plant. Microbe Interact. 1998, 11, 1017–1028. [Google Scholar] [CrossRef] [Green Version]
- Pozo, M.J.; Cordier, C.; Dumas-Gaudot, E.; Gianinazzi, S.; Barea, J.M.; Azcón-Aguilar, C. Localized versus Systemic Effect of Arbuscular Mycorrhizal Fungi on Defence Responses to Phytophthora Infection in Tomato Plants. J. Exp. Bot. 2002, 53, 525–534. [Google Scholar] [CrossRef]
- Zhu, H.; Yao, Q. Localized and Systemic Increase of Phenols in Tomato Roots Induced by Glomus Versiforme Inhibits Ralstonia Solanacearum. J. Phytopathol. 2004, 152, 537–542. [Google Scholar] [CrossRef]
- Jung, S.C.; Martinez-Medina, A.; Lopez-Raez, J.A.; Pozo, M.J. Mycorrhiza-Induced Resistance and Priming of Plant Defenses. J. Chem. Ecol. 2012, 38, 651–664. [Google Scholar] [CrossRef]
- Lokhandwala, A.; Hoeksema, J.D. Priming by Arbuscular Mycorrhizal Fungi of Plant Antioxidant Enzyme Production: A Meta-Analysis. Annu. Plant Rev. 2019, 2, 1069–1084. [Google Scholar]
- Bedini, A.; Mercy, L.; Schneider, C.; Franken, P.; Lucic-Mercy, E. Unraveling the Initial Plant Hormone Signaling, Metabolic Mechanisms and Plant Defense Triggering the Endomycorrhizal Symbiosis Behavior. Front. Plant Sci. 2018, 9, 1800. [Google Scholar] [CrossRef] [Green Version]
- Miozzi, L.; Vaira, A.M.; Catoni, M.; Fiorilli, V.; Accotto, G.P.; Lanfranco, L. Arbuscular Mycorrhizal Symbiosis: Plant Friend or Foe in the Fight Against Viruses? Front. Microbiol. 2019, 10, 1238. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of Nitrogen in Agriculture and Environment: Agronomic, Eco-Physiological and Molecular Approaches to Improve Nitrogen Use Efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Desbrosses, G.J.; Stougaard, J. Root Nodulation: A Paradigm for How Plant-Microbe Symbiosis Influences Host Developmental Pathways. Cell Host Microbe 2011, 10, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liu, J.; Zhu, H. Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. Front. Plant Sci. 2018, 9, 313. [Google Scholar] [CrossRef]
- Jones, K.M.; Kobayashi, H.; Davies, B.W.; Taga, M.E.; Walker, G.C. How Rhizobial Symbionts Invade Plants: The Sinorhizobium–Medicago Model. Nat. Rev. Microbiol. 2007, 5, 619–633. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.; Lagunas, B.; Gifford, M.L. Determinants of Host Range Specificity in Legume-Rhizobia Symbiosis. Front. Microbiol. 2020, 11, 3028. [Google Scholar] [CrossRef]
- Bueno, P.; Soto, M.J.; Rodríguez-Rosales, M.P.; Sanjuan, J.; Olivares, J.; Donaire, J.P. Time-course of Lipoxygenase, Antioxidant Enzyme Activities and H2O2 Accumulation during the Early Stages of Rhizobium–Legume Symbiosis. New Phytol. 2001, 152, 91–96. [Google Scholar] [CrossRef]
- Pucciariello, C.; Innocenti, G.; Van de Velde, W.; Lambert, A.; Hopkins, J.; Clément, M.; Ponchet, M.; Pauly, N.; Goormachtig, S.; Holsters, M. (Homo) Glutathione Depletion Modulates Host Gene Expression during the Symbiotic Interaction between Medicago Truncatula and Sinorhizobium Meliloti. Plant Physiol. 2009, 151, 1186–1196. [Google Scholar] [CrossRef] [Green Version]
- Caetano-Anollés, G.; Gresshoff, P.M. Plant Genetic Control of Nodulation. Annu. Rev. Microbiol. 1991, 45, 345–382. [Google Scholar] [CrossRef]
- Lin, J.; Frank, M.; Reid, D. No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. Plant Commun. 2020, 1, 100104. [Google Scholar] [CrossRef]
- van Spronsen, P.C.; Tak, T.; Rood, A.M.; van Brussel, A.A.; Kijne, J.W.; Boot, K.J. Salicylic Acid Inhibits Indeterminate-Type Nodulation but Not Determinate-Type Nodulation. Mol. Plant. Microbe Interact. 2003, 16, 83–91. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benjamin, G.; Pandharikar, G.; Frendo, P. Salicylic Acid in Plant Symbioses: Beyond Plant Pathogen Interactions. Biology 2022, 11, 861. https://doi.org/10.3390/biology11060861
Benjamin G, Pandharikar G, Frendo P. Salicylic Acid in Plant Symbioses: Beyond Plant Pathogen Interactions. Biology. 2022; 11(6):861. https://doi.org/10.3390/biology11060861
Chicago/Turabian StyleBenjamin, Goodluck, Gaurav Pandharikar, and Pierre Frendo. 2022. "Salicylic Acid in Plant Symbioses: Beyond Plant Pathogen Interactions" Biology 11, no. 6: 861. https://doi.org/10.3390/biology11060861
APA StyleBenjamin, G., Pandharikar, G., & Frendo, P. (2022). Salicylic Acid in Plant Symbioses: Beyond Plant Pathogen Interactions. Biology, 11(6), 861. https://doi.org/10.3390/biology11060861