Screw-Type Collar vs. Non-Screw-Type Collar Implants—Comparison of Initial Stability, Soft Tissue Adaptation, and Early Marginal Bone Loss—A Preclinical Study in the Dog
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Novel Design of the Dental Implant
2.2. Implant’s Stability
2.3. Experimental Prospective In Vivo Study
2.3.1. Animals
2.3.2. Implant Distribution
2.3.3. Surgery
2.3.4. Insertion Torque
2.3.5. Soft Tissue Healing
2.3.6. Early Bone Loss
2.4. Statistical Analysis
3. Results
3.1. In Vitro Study on Stability
3.2. Experimental Prospective In Vivo Study
3.2.1. In Vivo Insertion Torque
3.2.2. Soft Tissue Healing
3.2.3. Early Bone Loss
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Branemark, P.I.; Hansson, B.O.; Adell, R.; Breine, U.; Lindstrom, J.; Hallen, O.; Ohman, A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstruct. Surg. Hand Surg. 1977, 16, 1–132. [Google Scholar]
- Albrektsson, T.O.; Johansson, C.B.; Sennerby, L. Biological aspects of implant dentistry: Osseointegration. Periodontology 2000 1994, 4, 58–73. [Google Scholar] [CrossRef]
- Smith, D.E.; Zarb, G.A. Criteria for success of osseointegrated endosseous implants. J. Prosthet. Dent. 1989, 62, 567–572. [Google Scholar] [CrossRef]
- Sanz, M.; Ivanoff, C.J.; Weingart, D.; Wiltfang, J.; Gahlert, M.; Cordaro, L.; Hammerle, C. Clinical and radiologic outcomes after submerged and transmucosal implant placement with two-piece implants in the anterior maxilla and mandible: 3-year results of a randomized controlled clinical trial. Clin. Implant Dent Rel. Res. 2015, 17, 234–246. [Google Scholar] [CrossRef]
- Albrektsson, T.; Buser, D.; Chen, S.T.; Cochran, D.; DeBruyn, H.; Jemt, T.; Wennerberg, A. Statements from the estepona consensus meeting on peri-implantitis. Clin. Implant Dent. Rel. Res. 2012, 14, 781–782. [Google Scholar] [CrossRef]
- Siadat, H.; Panjnoosh, M.; Alikhasi, M.; Alihoseini, M.; Bassir, S.H.; Rokn, A.R. Does implant staging choice affect crestal bone loss? J. Oral Maxillofac. Surg. 2012, 70, 307–313. [Google Scholar] [CrossRef]
- Albrektsson, T.; Branemark, P.I.; Hansson, H.A.; Lindstrom, J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta. Orthop. Scand. 1981, 52, 155–170. [Google Scholar] [CrossRef]
- Laney, W.R. Glossary of oral and maxillofacial implants. Int. J. Oral Maxillofac. Implant. 2017, 32, Gi-G200. [Google Scholar] [CrossRef]
- Astrand, P.; Engquist, B.; Dahlgren, S.; Grondahl, K.; Engquist, E.; Feldmann, H. Astra tech and Branemark system implants: A 5-year prospective study of marginal bone reactions. Clin. Oral Implant. Res. 2004, 15, 413–420. [Google Scholar] [CrossRef]
- Astrand, P.; Engquist, B.; Dahlgren, S.; Engquist, E.; Feldmann, H.; Grondahl, K. Astra tech and Branemark system implants: A prospective 5-year comparative study. Results after one year. Clin. Implant. Dent. Relat. Res. 1999, 1, 17–26. [Google Scholar] [CrossRef]
- Brånemark, P.I.; Adell, R.; Albrektsson, T.; Lekholm, U.; Lundkvist, S.; Rockler, B. Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials 1983, 4, 25–28. [Google Scholar] [CrossRef]
- Froberg, K.K.; Lindh, C.; Ericsson, I. Immediate loading of Branemark System Implants: A comparison between TiUnite and turned implants placed in the anterior mandible. Clin. Implant. Dent. Relat. Res. 2006, 8, 187–197. [Google Scholar] [CrossRef]
- Meijer, H.J.; Raghoebar, G.M.; Van’t Hof, M.A.; Visser, A. A controlled clinical trial of implant-retained mandibular overdentures: 10 years’ results of clinical aspects and aftercare of IMZ implants and Branemark implants. Clin. Oral Implant. Res. 2004, 15, 421–427. [Google Scholar] [CrossRef]
- Rocci, A.; Martignoni, M.; Gottlow, J. Immediate loading of Branemark System TiUnite and machined-surface implants in the posterior mandible: A randomized open-ended clinical trial. Clin. Implant. Dent. Relat. Res. 2003, 5 (Suppl. S1), 57–63. [Google Scholar] [CrossRef]
- Guerra, F.; Wagner, W.; Wiltfang, J.; Rocha, S.; Moergel, M.; Behrens, E.; Nicolau, P. Platform switch versus platform match in the posterior mandible—1-year results of a multicenter randomized clinical trial. J. Clin. Periodontol. 2014, 41, 521–529. [Google Scholar] [CrossRef]
- Nevins, M.; Camelo, M.; Nevins, M.L.; Schupbach, P.; Kim, D.M. Connective tissue attachment to laser-microgrooved abutments: A human histologic case report. Int. J. Periodontics Restor. Dent. 2012, 32, 384–392. [Google Scholar]
- Oh, T.J.; Yoon, J.; Misch, C.E.; Wang, H.L. The causes of early implant bone loss: Myth or science? J. Periodontol. 2002, 73, 322–333. [Google Scholar]
- Bateli, M.; Att, W.; Strub, J.R. Implant neck configurations for preservation of marginal bone level: A systematic review. Int. J. Oral Maxillofac. Implant. 2011, 26, 290–303. [Google Scholar]
- Niu, W.; Wang, P.; Zhu, S.; Liu, Z.; Ji, P. Marginal bone loss around dental implants with and without microthreads in the neck: A systematic review and meta-analysis. J. Prosthet. Dent. 2017, 117, 34–40. [Google Scholar] [CrossRef]
- Koodaryan, R.; Hafezeqoran, A. Evaluation of implant collar surfaces for marginal boneloss: A systematic review and meta-analysis. Biomed Res. Int. 2016, 2016, 4987526. [Google Scholar] [CrossRef]
- Al-Thobity, A.M.; Kutkut, A.; Almas, K. Microthreaded implants and crestal bone loss: A systematic review. J. Oral Implantol. 2017, 43, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Lovatto, S.T.; Bassani, R.; Sarkis-Onofre, R.; Dos Santos, M.B.F. Influence of different implant geometry in clinical longevity and maintenance of marginal bone: A systematic review. J. Prosthodont. 2019, 28, e713–e721. [Google Scholar] [CrossRef] [PubMed]
- Kapishnikov, S.; Gadyukov, A.; Chaushu, G.; Chaushu, L. Micro-CT analysis of microgap at a novel two-piece dental implant comprising a replaceable sleeve in vitro. Int. J. Oral Maxillofac. Implant. 2021, 36, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 2010, 1, 94–99. [Google Scholar] [CrossRef]
- Tal, H. Spontaneous early exposure of submerged implants: I. Classification and clinical observations. J. Periodontol. 1999, 70, 213–219. [Google Scholar] [CrossRef]
- Tal, H.; Dayan, D. Spontaneous early exposure of submerged implants: II. Histopathology and histomorphometry of nonperforated mucosa covering submerged healed implants. J. Periodontol. 2000, 71, 1224–1230. [Google Scholar] [CrossRef]
- Tal, H.; Dayan, D. Spontaneous early exposure of submerged implants: III. Histopathology of perforated mucosa covering submerged implants. J. Periodontol. 2000, 71, 1231–1235. [Google Scholar] [CrossRef]
- Tal, H.; Artzi, Z.; Moses, O.; Nemcovsky, C.E.; Kozlovsky, A. Spontaneous early exposure of submerged endosseous implants resulting in crestal bone loss: A clinical evaluation between stage I and stage II surgery. Int. J. Oral Maxillofac. Implants 2001, 16, 514–521. [Google Scholar]
- Lee, D.W.; Choi, Y.S.; Park, K.H.; Kim, C.S.; Moon, I.S. Effect of micro thread on the maintenance of marginal bone level: A 3-year prospective study. Clin. Oral Implant. Res. 2007, 18, 465–470. [Google Scholar] [CrossRef]
- Hashim, D.; Cionca, N.; Courvoisier, D.S.; Mombelli, A. A systematic review of the clinical survival of zirconia implants. Clin. Oral Investig. 2016, 20, 1403–1417. [Google Scholar] [CrossRef]
- Brunski, J.B. Biomaterials and biomechanics in dental implant design. Int. J. Oral Maxillofac. Implant. 1988, 3, 85–97. [Google Scholar]
- Al-Zordk, W.; Ghazy, M.; El-Anwar, M. Stress analysis around reduced-diameter zirconia and titanium one-piece implants with and without micro threads in the neck: Experimental and finite element analysis. Int. J. Oral Maxillofac. Implant. 2020, 35, 305–312. [Google Scholar] [CrossRef]
- Szalma, J.; Lovász, B.V.; Vajta, L.; Soós, B.; Lempel, E.; Möhlhenrich, S.C. The influence of the chosen in vitro bone simulation model on intraosseous temperatures and drilling times. Sci. Rep. 2019, 9, 11817. [Google Scholar] [CrossRef]
- Rangert, B.; Krogh, P.H.; Langer, B.; Van Roekel, N. Bending overload and implant fracture: A retrospective clinical analysis. Int. J. Oral Maxillofac. Implant. 1995, 10, 326–334. [Google Scholar]
- Natali, A.N.; Pavan, P.G.; Ruggero, A.L. Analysis of bone–implant interaction phenomena by using a numerical approach. Clin. Oral Implant. Res. 2006, 17, 67–74. [Google Scholar] [CrossRef]
- Hayes, W.C. Biomechanics of Cortical and Trabecular Bone: Implication for Assessment of Fracture Risk; Reven Press: New York, NY, USA, 1991; pp. 130–144. [Google Scholar]
- Pilliar, R.M.; Desporter, D.A.; Watson, P.A.; Valiquette, N. Dental implant design—Effect on bone remodeling. J. Biomed Mater. Res. 1991, 25, 467–483. [Google Scholar] [CrossRef]
- Vaillancourt, H.; Pilliar, R.M.; McCammond, D. Factors affecting crestal bone loss with dental implants partially covered with a porous coating: A finite element analysis. Int. J. Oral Maxillofac. Implant. 1996, 11, 351–359. [Google Scholar]
- Schrotenboer, J.; Tsao, Y.P.; Kinariwala, V.; Wang, H.L. Effect of microthreads and platform switching on crestal bone stress levels: A finite element analysis. J. Periodontol. 2008, 79, 2166–2172. [Google Scholar] [CrossRef]
- Messias, A.; Nicolau, P.; Guerra, F. Titanium dental implants with different collar design and surface modifications: A systematic review on survival rates and marginal bone levels. Clin. Oral Implant. Res. 2019, 30, 20–48. [Google Scholar] [CrossRef]
- Spray, J.R.; Black, C.G.; Morris, H.F.; Ochi, S. The influence of bone thickness on facial marginal bone response: Stage 1 placement through stage 2 uncovering. Ann. Periodontol. 2000, 5, 119–128. [Google Scholar] [CrossRef]
- Albeshri, S.; Greenstein, G. Significance of facial bone thickness after dental implantations in healed ridges: A literature review. Compend. Contin. Educ. Dent. 2021, 42, 528–535. [Google Scholar]
- Aizcorbe-Vicente, J.; Peñarrocha-Oltra, D.; Canullo, L.; Soto-Peñaloza, D.; Peñarrocha-Diago, M. Influence of facial bone thickness after implant placement into the healed ridges on the remodeled facial bone and considering soft tissue recession: A systematic review. Int. J. Oral Maxillofac. Implant. 2020, 35, 107–119. [Google Scholar] [CrossRef]
- Reinedahl, D.; Chrcanovic, B.; Albrektsson, T.; Tengvall, P.; Wennerberg, A. Ligature-induced experimental peri-implantitis—A systematic review. J. Clin. Med. 2018, 7, 492. [Google Scholar] [CrossRef]
Dog No. | Implant No. | |||
---|---|---|---|---|
Group I | Group II | Group III | Group IV | |
1 | 55 | 55 | 55 | 55 |
2 | 55 | 55 | 55 | 55 |
3 | 55 | 55 | 55 | 55 |
4 | 55 | 55 | 55 | 55 |
5 | 40 | 40 | 55 | 55 |
6 | 55 | 55 | 55 | 55 |
7 | 55 | 55 | 55 | 55 |
Average | 52.86 | 52.86 | 55.00 | 55.00 |
5.67 | 5.67 | 0 | 0 | |
p | NS | NS |
Dog No. | Implant No. | |||
---|---|---|---|---|
Group I | Group II | Group III | Group IV | |
1 | 0 | 0 | 0 | 0 |
2 | 2 | 4 | 4 | 0 |
3 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 4 | 0 |
6 | 1 | 1 | 1 | 1 |
7 | 0 | 0 | 0 | 0 |
Average | 0.43 | 0.71 | 1.43 | 0.14 |
SD | 0.79 | 1.50 | 1.81 | 0.38 |
p | NS | 0.091 | ||
Group III | Group IV | Total | ||
N | 7 | 7 | 14 | |
∑χ | 10 | 1 | 11 | |
Mean | 1.4286 | 0.1429 | 0.786 | |
∑χ2 | 34 | 1 | 35 | |
Std.Dev | 1.8127 | 0.378 | 1.4239 | |
SS | df | MS | ||
Between treatments | 5.7857 | 1 | 5.7857 | |
Within treatments | 20.5714 | 12 | 1.7143 | F = 3.375 |
Total | 26.3571 | 13 |
No. | Implant No. | |||
---|---|---|---|---|
I | II | III | IV | |
1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 2 | 0 |
3 | 0 | 0 | 3 | 0 |
4 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 1 | 0 |
6 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 |
Average | 0 | 0 | 0.86 | 0 |
SD | 0 | 0 | 1.21 | 0 |
p | NS | 0.087 | ||
Group 1 | Group 2 | Total | ||
N | 7 | 7 | 14 | |
∑χ | b6 | 0 | 6 | |
Mean | 0.8571 | 0 | 0.429 | |
∑χ2 | 14 | 0 | 14 | |
Std.Dev | 1.215 | 0 | 0.9376 | |
SS | df | MS | ||
Between treatments | 2.5714 | 1 | 2.5714 | |
Within treatments | 8.8571 | 12 | 0.7381 | F = 3.48387 |
Total | 11.4286 | 13 | 0.429 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tal, H.; Reiser, V.; Naishlos, S.; Avishai, G.; Kolerman, R.; Chaushu, L. Screw-Type Collar vs. Non-Screw-Type Collar Implants—Comparison of Initial Stability, Soft Tissue Adaptation, and Early Marginal Bone Loss—A Preclinical Study in the Dog. Biology 2022, 11, 1213. https://doi.org/10.3390/biology11081213
Tal H, Reiser V, Naishlos S, Avishai G, Kolerman R, Chaushu L. Screw-Type Collar vs. Non-Screw-Type Collar Implants—Comparison of Initial Stability, Soft Tissue Adaptation, and Early Marginal Bone Loss—A Preclinical Study in the Dog. Biology. 2022; 11(8):1213. https://doi.org/10.3390/biology11081213
Chicago/Turabian StyleTal, Haim, Vadim Reiser, Sarit Naishlos, Gal Avishai, Roni Kolerman, and Liat Chaushu. 2022. "Screw-Type Collar vs. Non-Screw-Type Collar Implants—Comparison of Initial Stability, Soft Tissue Adaptation, and Early Marginal Bone Loss—A Preclinical Study in the Dog" Biology 11, no. 8: 1213. https://doi.org/10.3390/biology11081213
APA StyleTal, H., Reiser, V., Naishlos, S., Avishai, G., Kolerman, R., & Chaushu, L. (2022). Screw-Type Collar vs. Non-Screw-Type Collar Implants—Comparison of Initial Stability, Soft Tissue Adaptation, and Early Marginal Bone Loss—A Preclinical Study in the Dog. Biology, 11(8), 1213. https://doi.org/10.3390/biology11081213