Host–Pathogen Interactions of Marine Gram-Positive Bacteria
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pathogen-Centric Approaches
2.1. Adhesion/Host Recognition
Pathogen | Disease (Water Temperature) | Host(s) Marine Fish 1 | Damage to the Host 2 | Main Virulence Factors | References |
---|---|---|---|---|---|
Aerobic acid-fast rods and cocci | |||||
Mycobacterium spp. M. chelonei subsp. piscarium M. fortuitum M. marinum M. neoaurum | Mycobacteriosis/fish tuberculosis (17–30 °C) | Most fish spp: turbot (Scophthalmus maximus), Atlantic salmon (Salmo salar), chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), sea bass (Lateolabrax japonicus) | a. Scale loss, dermal ulceration, pigmentary changes, abnormal behavior and emaciation, and ascites; b. Hemorrhagic ascites, nodular lesions in spleen, liver, kidney; c. Granulomatous inflammation | SecA2 substrate-PknG, PE, PPE family proteins; T7SS, mycolactone, iipA gene - invasion and intracellular persistence protein | [39,40,41] |
Nocardia spp. N. asteroides N. salmonicida N. seriolae | Nocardiosis (24–28 °C) | Most fish spp: grey mullet (Mugil cephalus), seabass, largemouth bass (Micropterus salmoides), yellowtail (Seriola quinqueradita) | a. Erratic swimming, anorexia; b. White-yellow nodules in spleen, kidney, and liver; c. Granulomatous lesions with necrosis | ATP-binding cassette transporters, capsule, sortase A, ESX-1, fibronectin-binding protein, myosin cross-reactive antigen, serine protease, virulence genes for cell invasion and alteration of phagocytic function | [42,43] |
Aerobic rods and cocci | |||||
Renibacterium salmoninarum | Bacterial Kidney Disease (8–15 °C) | 1. Salmonids: Atlantic salmon, brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss), chinook salmon, coho salmon; 2. non-salmonids: ayu (Plecoglossus altivelis), north Pacific hake (Merluccius productus), Pacific herring (Clupea pallasii pallasii), sablefish (Anoplopoma fimbria) | a. Skin darkening, lethargy, ascites, exophthalmia, skin blisters, hemorrhages around the vent, shallow skin ulcers, large cystic cavities in the skeletal muscle; b. Greyish-white nodular lesions in kidney, spleen, liver; enlarged spleen and kidney, pseudomembrane in internal organs, turbid fluid in abdominal/pericardial cavities; c. Bacteremia with chronic granulomatous inflammation | Hemolytic, proteolytic, catalase, DNase, and iron reductase activities, exotoxin, virulence genes - hemolysin (rsh), a zinc-metalloprotease (hly), glucose kinase; capsule, fimbriae, immunosuppressive proteins p57 and p22 | [7,44] |
Rhodococcus sp. | Ocular edema(12 °C) | Atlantic salmon, chinook salmon | a. Ocular melanosis; b. Ocular lesions, nodules in muscle and organs; c. Granulomas in kidney | Very low-level mortality with high dose (5 × 108 bacteria/fish) | [45] |
The “lactic acid bacteria”. | |||||
Lactococcus garviae | Lactococcosis (16–18 °C) | Most fish spp: yellowtail, grey mullet, Japanese or olive flounder (Paralichthys olivaceus), rainbow trout | a. Exophthalmia, lethargy, erosion of tail fin, redness of anal fin, petechiae inside operculum; b. Hemorrhages and petechias at the internal organs’ surface; c. Ocular lesions have fibrous tissue formation with infiltrated inflammatory cells | Hemolysins, capsule, cell-associated toxin NADH oxidase, superoxide dismutase, adhesins, sortase, and phosphoglucomutase encoding genes | [30,46,47] |
Streptococcus iniae | Streptococcosis/Meningoencephalitis (15–18 °C) | Most fish spp: yellowtail, olive flounder, sea bass, barramundi (Lates calcarifer), European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata) | a. Exophthalmia, petechiae around mouth, anus, fins, loss of orientation exophthalmia; b. Fluid in peritoneal cavity; c. Intravascular lesions leading to pericarditis, focal necrosis in liver, spleen, and kidney | Capsular polysaccharide, phosphoglucomutase, fibronectin binding proteins, streptolysin, hemolysins, plasminogen-binding protein, simA M-like protein | [34,48,49,50] |
Streptococcus parauberis | Streptococcosis (>15 °C) | Turbot | a. Bilateral exophthalmia, emaciation; b. Hemorrhages in anal and pectoral fins and eyes, pale liver, congested kidney and spleen; c. Hemorrhagic inflammation in intestine | simA encoding M-like protein, hasA and hasB genes for capsule production and phagocytic resistance | [51,52] |
Streptococcus dysgalactiae | Streptococcosis (>15 °C) | Amberjack (Seriola dumerili), yellowtail | a. Typical form of necrosis in the caudal peduncle; b. Septicemia | Cell hydrophobicity, M protein, streptolysin S, super antigen, streptococcal pyrogenic exotoxin G | [27,31,53] |
Streptococcus phocae | Streptococcosis (5–15 °C) | Atlantic salmon | a. Exophthalmia, hemorrhagic eyes with accumulation of purulent fluid, skin abscesses; b. Hemorrhage in the abdominal fat, pericarditis and enlarged liver, spleen, and kidney; c. Pathological lesions in the spleen, liver, heart, and muscle, leucocytic perivascular infiltration in spleen, moderate vascular degeneration in the liver. | Hemolysins, collagen adhesion protein, capsule, cell hydrophobicity | [54,55] |
2.2. Invasion
2.3. Evasion
2.4. Proliferation and Survival Inside the Host
3. Host-Centric Approaches—Fish Host Immune Response
3.1. Toll-like Receptors (Pathogen Recognition)
3.2. Nutritional Immunity
Host (Tissue/Cell Type) | Pathogen | Method | Host Response * | Reference |
---|---|---|---|---|
Chinook salmon: Wisconsin and Green River stocks (Kidney) | R. salmoninarum ATCC 33209 | qPCR | ↑ interferon response in both stocks (ifnγ, mx1) ↑ iNOS expression and ↑ prevalence of membranous glomerulopathy in lower surviving stock than higher surviving stock ↑ iron-binding protein response (transferrin) in higher surviving stock than lower surviving stock | [183] |
Atlantic salmon (Kidney cell line) | R. salmoninarum: H-2 and DSM20767 with high and low siderophore production ability, respectively | qPCR | ↑ pro-inflammatory cytokines (il1β, tnfα), Gram-positive pattern recognition receptor (TLR), and interferon (ifnγ) Reduced expression of tnfα and TLR1 at 24 hpi Strain (H-2) grown under iron-limited conditions induced significantly higher immune response in host cells than DSM20767 and bacteria grown under normal conditions. | [140] |
Atlantic salmon (Head kidney) | Formalin-killed R. salmoninarum ATCC 33209 | Transcriptomics (44K microarray) and qPCR | ↑ pathogen recognition receptors (tlr5, clec12b) ↑ immunoregulatory receptors (tnfrsf6b, tnfrsf11b) ↑ antimicrobial effectors (hamp) ↑ interferon-induced response (ch25ha) ↑ chemokine (ccl13) and ↓ chemokine receptor (cxcr1) | [162] |
Lumpfish (Cyclopterus lumpus) (Head kidney) | R. salmoninarum ATCC 33209 | qPCR | Early stage (28 dpi): immunosuppressive infection ↑ pro-inflammatory cytokines (il1β, il8a, il8b), anti-inflammatory cytokine (il10), pattern recognition (tlr5a), iron regulation (hamp), and acute phase reactant (saa5) related genes ↑ interferon-induced response (ifnγ, mxa, mxb, mxc, rsad2, stat1) ↓ tnfα and cell-mediated adaptive-immunity-related genes (cd4a, cd4b, cd8α, cd74) Chronic stage (98 dpi): cell-mediated adaptive immunity ↑ ifnγ and cd74 | [184] |
Japanese flounder vaccinated with sagH DNA vaccine (Spleen and blood) | S. iniae SF1 (Serotype I) and 29177 (Serotype II) | qPCR and ELISA | ↑ innate and adaptive immune response (il1β, il1, il6, il8, il10, tnfα, ifnγ, mx, nkef, tgfβ, MHCI and II, cd40, cd8α) ↑ titer of specific serum antibodies | [185] |
Asian seabass vaccinated with a commercial vaccine, Norvax Strep Si (Spleen and head kidney) | S. iniae | Transcriptomics (8 × 60K microarray) and qPCR | Effect of vaccination was early and transient in the spleen (1–7 dpv) compared to the head kidney, which showed delayed response (21 dpv) In vaccinated spleens: ↑ NFkB, chemokine, and toll-like receptor signaling ↑ genes related to proteolysis, phagocytosis, and apoptosis Rapid T-cell-mediated adaptive immune response | [186] |
Atlantic salmon and rainbow trout(Mucus, serum, and macrophages) | S. phocae subsp. salmonis isolates: two from Atlantic salmon (LM-08-Sp and LM-13-Sp) and two from seal (ATCC 51973T and P23) | Comparative innate immune response analysis | ↑ lysozyme activity, phagocytic and bactericidal activity, reactive oxygen species, and NO production in rainbow trout compared to the Atlantic salmon Rainbow trout was more resistant to S. phocae than Atlantic salmon in terms of non-specific humoral and cellular barriers. | [187] |
European Seabass (Spleen, head kidney, and blood) | M. marinum: virulent (Eilat) and heat-killed avirulent mutant (iipA::kan) strains | qPCR, ELISA | ↑ specific immunoglobulin (IgM) response (1 and 2 mpc) ↑ tnfα in spleen at 1 mpc and return to basal levels in spleen and head kidney at 2 mpc High survival (75%), strong immune response and moderate tissue damage in avirulent mutant strain. | [188] |
Amur sturgeon (Acipenser schrenckii) (Liver) | M. marinum ASCy-1.0 | De novo transcriptome analysis (Illumina RNA seq) and qPCR | Total differentially expressed contigs (DEC): 4043 (↑ 2479, ↓1564) 78 DEC—innate immune response (iNos2, saa), phagocytosis, antigen processing and presentation (mhc1), chemotaxis (ccl19), and leucocyte regulation (il8) Strong leptin expression—Th1 immunity Immune pathways: TNF signaling and Toll-like receptor signaling | [189] |
Amberjack vaccinated with formalin-killed N. seriolae cells + mixture of six recombinant amberjack IL-12 (rIL-12) as adjuvant (Head kidney and spleen leucocytes) | Formalin-killed N. seriolae 024013 strain | qPCR | ↑ Th1-specific transcriptional factors (ifnγ and T-bet) ↓ Th2-related genes (il10 and GATA-3) ↓ primary and secondary humoral immune response rIL-12 proved to be a CMI-inducible adjuvant that produced Th1 immunity cells with antigen memory | [190] |
Largemouth bass (Spleen) | N. seriolae | de novo transcriptome analysis (RNA seq using Illumina hiseq) and qPCR | ↑ 1384 genes, ↓1542 genes ↑ pro-inflammatory cytokines and signal-transduction-related genes (il1β, il8, tnfα, TNF receptors, CXC chemokines, tgfβ) Antibacterial mechanism at early-stage infection (24 hpi) involved cytokine–cytokine receptor interactions Immune pathway: JAK-STAT signaling | [155] |
Grey mullet (Head kidney and spleen) | L. garviae | De novo transcriptome analysis (RNA seq using Illumina hiseq) and qPCR | Spleen: ↑ 3598 genes, ↓ 3682 genes (Total: 7280) Head kidney: ↑ 4211 genes, ↓ 2981 genes (Total: 7192) ↑ Pro-inflammatory cytokines, Fc receptor, and Ig, il10, mhc-I, mhc-II, cd4, and cd8 ↓ il8 and tnfα Immune pathways: complement and coagulation cascade, TLR signaling, antigen processing and presentation | [154] |
3.3. Innate and Adaptive (Humoral and Cell-Mediated) Immunity
3.4. Fish Resistance/Tolerance/Susceptibility to Marine Gram-Positive Bacteria
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Garrity, G.M.; Winters, M.; Searles, D.B. Taxonomic Outline of the Procaryotic Genera. In Bergey’s Manual of Systematic Bacteriology; Garrity, G.M., Boone, D.R., Castenholz, R.W., Eds.; Springer-Verlag: New York, NY, USA, 2001; pp. 155–166. [Google Scholar]
- Jensen, P.R.; Fenical, W. The Relative Abundance and Seawater Requirements of Gram-Positive Bacteria in near-Shore Tropical Marine Samples. Microb. Ecol. 1995, 29, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Tamames, J.; Abellán, J.J.; Pignatelli, M.; Camacho, A.; Moya, A. Environmental Distribution of Prokaryotic Taxa. BMC Microbiol. 2010, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Bolhuis, H.; Cretoiu, M.S. What Is so Special About Marine Microorganisms? Introduction to the Marine Microbiome—From Diversity to Biotechnological Potential. In The Marine Microbiome; Stal, L.J., Silvia, M., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Zobell, C.E.; Upham, H.C. A List of Marine Bacteria Including Descriptions of Sixty New Species. Bull. Scripps. Inst. Oceanog. Univ. Calif. 1944, 5, 239–292. [Google Scholar]
- Goodfellow, M.; Haynes, J.A. Actinomycetes in Marine Sediments. In Biological, Biochemical and Biomedical Aspects of Actinomycetes; Ortiz-Ortiz, L., Ed.; Academic Press: New York, NY, USA, 1984; pp. 453–472. [Google Scholar]
- Wiens, G.D. Bacterial Kidney Disease (Renibacterium salmoninarum). In Fish Diseases and Disorders; Woo, P.T.K., Bruno, D.W., Eds.; CABI: Wallingford, UK, 2011; pp. 338–374. [Google Scholar]
- Wiens, G.D.; Rockey, D.D.; Wu, Z.; Chang, J.; Levy, R.; Crane, S.; Chen, D.S.; Capri, G.R.; Burnett, J.R.; Sudheesh, P.S.; et al. Genome Sequence of the Fish Pathogen Renibacterium salmoninarum Suggests Reductive Evolution Away from an Environmental Arthrobacter Ancestor. J. Bacteriol. 2008, 190, 6970–6982. [Google Scholar] [CrossRef]
- Caipang, C.M.A.; Suharman, I.; Avillanosa, A.L.; Bargoyo, V.T. Host-Derived Probiotics for Finfish Aquaculture. IOP Conf. Ser. Earth Environ. Sci. 2020, 430, 012026. [Google Scholar] [CrossRef]
- Teasdale, M.E.; Donovan, K.A.; Forschner-Dancause, S.R.; Rowley, D.C. Gram-Positive Marine Bacteria as a Potential Resource for the Discovery of Quorum Sensing Inhibitors. Mar. Biotechnol. 2011, 13, 722–732. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Park, C.I.; Kim, D.H. Improved Growth Rate and Disease Resistance in Olive Flounder, Paralichthys olivaceus, by Probiotic Lactococcus lactis WFLU12 Isolated from Wild Marine Fish. Aquaculture 2017, 471, 113–120. [Google Scholar] [CrossRef]
- Roberts, R.J. The Bacteriology of Teleosts. In Fish pathology; Roberts, R.J., Ed.; Wiley-Blackwell: West Sussex, UK, 2012; pp. 339–382. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.A. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish, 6th ed.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Aronson, J.D. Spontaneous Tuberculosis in Saltwater Fish. J. Infect. Dis. 1926, 39, 312–320. [Google Scholar] [CrossRef]
- Fryer, J.L.; Sanders, J.E. Bacterial Kidney Disease of Salmonid Fish. Annu. Rev. Microbiol. 1981, 35, 273–298. [Google Scholar] [CrossRef]
- Munn, C.B. Pathogens in the Sea: An Overview. In Ocean and Health: Pathogens in Marine Environment; Belkin, S., Colwel, R.R., Eds.; Springer Science: Boston, MA, USA, 2005. [Google Scholar] [CrossRef]
- Munn, C.B. Microbial Diseases of Marine Organisms. In Marine Microbiology Ecology and Applications; Taylor and Francis CRC Ebook Account: New York, NY, USA, 2011; pp. 244–245. [Google Scholar] [CrossRef]
- Casadevall, A.; Pirofski, L.A. Host-Pathogen Interactions: Redefining the Basic Concepts of Virulence and Pathogenicity. Infect. Immun. 1999, 67, 3703–3713. [Google Scholar] [CrossRef]
- Casadevall, A.; Pirofski, L.A. What Is a Host? Incorporating the Microbiota into the Damage-Response Framework. Infect. Immun. 2015, 83, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Alizon, S.; Hurford, A.; Mideo, N.; Van Baalen, M. Virulence Evolution and the Trade-off Hypothesis: History, Current State of Affairs and the Future. J. Evol. Biol. 2009, 22, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Méthot, P.O.; Alizon, S. What Is a Pathogen? Toward a Process View of Host-Parasite Interactions. Virulence 2014, 5, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Pirofski, L. Host-pathogen Interactions: The Attributes of Virulence. J. Infect. Dis. 2001, 184, 337–344. [Google Scholar] [CrossRef]
- Snieszko, S.F. Nutritional Fish Diseases. In Fish Nutrition; Elsevier: Amsterdam, The Netherlands, 1972; pp. 403–437. [Google Scholar] [CrossRef]
- Lafferty, K.D.; Harvell, C.D.; Conrad, J.M.; Friedman, C.S.; Kent, M.L.; Kuris, A.M.; Powell, E.N.; Rondeau, D.; Saksida, S.M. Infectious Diseases Affect Marine Fisheries and Aquaculture Economics. Ann. Rev. Mar. Sci. 2015, 7, 471–496. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.W.; Schurr, M.J.; LeBlanc, C.L.; Ramamurthy, R.; Buchanan, K.L.; Nickerson, C.A. Mechanisms of Bacterial Pathogenicity. Postgrad. Med. J. 2002, 78, 216–224. [Google Scholar] [CrossRef]
- Esperanza Cortés, M.; Consuegra Bonilla, J.; Dario Sinisterra, R. Biofilm Formation, Control and Novel Strategies for Eradication. Sci. Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 2, 896–905. [Google Scholar]
- Abdelsalam, M.; Chen, S.C.; Yoshida, T. Surface Properties of Streptococcus dysgalactiae Strains Isolated from Marine Fish. Bull. Eur. Assoc. Fish Pathol. 2009, 29, 16–24. [Google Scholar]
- Bruno, D. The Relationship between Auto-Agglutination, Cell Surface Hydrophobicity and Virulence of the Fish Pathogen Renibacterium salmoninarum. FEMS Microbiol. Lett. 1988, 51, 135–139. [Google Scholar] [CrossRef]
- Izumi, É.; Domingues Pires, P.; Bittencourt De Marques, E.; Suzart, S. Hemagglutinating and Hemolytic Activities of Enterococcus faecalis Strains Isolated from Different Human Clinical Sources. Res. Microbiol. 2005, 156, 583–587. [Google Scholar] [CrossRef]
- Ooyama, T.; Hirokawa, Y.; Minami, T.; Yasuda, H.; Nakai, T.; Endo, M.; Ruangpan, L.; Yoshida, T. Cell-Surface Properties of Lactococcus garvieae Strains and Their Immunogenicity in the Yellowtail Seriola quinqueradiata. Dis. Aquat. Organ. 2002, 51, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Nomoto, R.; Munasinghe, L.I.; Jin, D.-H.; Shimahara, Y.; Yasuda, H.; Nakamura, A.; Misawa, N.; Itami, T.; Yoshida, T. Lancefield Group C Streptococcus dysgalactiae Infection Responsible for Fish Mortalities in Japan. J. Fish Dis. 2004, 27, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Ellen, R.P.; Gibbons, R.J. M Protein-Associated Adherence of Streptococcus pyogenes to Epithelial Surfaces: Prerequisite for Virulence. Infect. Immun. 1972, 5, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Caparon, M.G.; Stephens, D.S.; Olsén, A.; Scott, J.R. Role of M Protein in Adherence of Group A Streptococci. Infect. Immun. 1991, 59, 1811–1817. [Google Scholar] [CrossRef]
- Locke, J.B.; Aziz, R.K.; Vicknair, M.R.; Nizet, V.; Buchanan, J.T. Streptococcus iniae M-like Protein Contributes to Virulence in Fish and Is a Target for Live Attenuated Vaccine Development. PLoS ONE 2008, 3, e2824. [Google Scholar] [CrossRef]
- Wiens, G.D.; Chien, M.S.; Winton, J.R.; Kaattari, S.L. Antigenic and Functional Characterization of p57 Produced by Renibacterium salmoninarum. Dis. Aquat. Organ. 1999, 37, 43–52. [Google Scholar] [CrossRef]
- Wiens, G.D.; Kaattari, S.L. Monoclonal Antibody Characterization of a Leukoagglutinin Produced by Renibacterium salmoninarum. Infect. Immun. 1991, 59, 631–637. [Google Scholar] [CrossRef] [Green Version]
- Daly, J.G.; Stevenson, R.M.W. Characterization of the Renibacterium salmoninarum Haemagglutinin. J. Gen. Microbiol. 1990, 136, 949–953. [Google Scholar] [CrossRef]
- Dubreuil, J.D.; Jacques, M.; Graham, L.; Lallier, R. Purification, and Biochemical and Structural Characterization of a Fimbrial Haemagglutinin of Renibacterium salmoninarum. J. Gen. Microbiol. 1990, 136, 2443–2448. [Google Scholar] [CrossRef]
- Gao, L.-Y.; Pak, M.; Kish, R.; Kajihara, K.; Brown, E.J. A Mycobacterial Operon Essential for Virulence in vivo and Invasion and Intracellular Persistence in Macrophages. Infect. Immun. 2006, 74, 1757–1767. [Google Scholar] [CrossRef]
- Gauthier, D.T.; Rhodes, M.W. Mycobacteriosis in Fishes: A Review. Vet. J. 2009, 180, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Hashish, E.; Merwad, A.; Elgaml, S.; Amer, A.; Kamal, H.; Elsadek, A.; Marei, A.; Sitohy, M. Mycobacterium marinum Infection in Fish and Man: Epidemiology, Pathophysiology and Management; a Review. Vet. Q. 2018, 38, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, S.; Yoshida, T.; Wang, P.C.; Chen, S.C. Current Knowledge of Nocardiosis in Teleost Fish. J. Fish Dis. 2018, 41, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Yasuike, M.; Nishiki, I.; Iwasaki, Y.; Nakamura, Y.; Fujiwara, A.; Shimahara, Y.; Kamaishi, T.; Yoshida, T.; Nagai, S.; Kobayashi, T.; et al. Analysis of the Complete Genome Sequence of Nocardia seriolae UTF1, the Causative Agent of Fish Nocardiosis: The First Reference Genome Sequence of the Fish Pathogenic Nocardia Species. PLoS ONE 2017, 12, 1–23. [Google Scholar] [CrossRef]
- Eliott, D.G. Renibacterium salmoninarum. In Fish Viruses and Bacteria: Pathobiology and Protection; Woo, P.T.K., Ciaprino, R., Eds.; CABI: Wallingford, UK, 2017; pp. 286–297. [Google Scholar]
- Speare, D.J.; Brocklebank, J.; Macnair, N.; Bernard, K.A. Experimental Transmission of a Salmonid Rhodococcus sp. Isolate to Juvenile Atlantic Salmon, Salmo salar L. J. Fish Dis. 1995, 18, 587–597. [Google Scholar] [CrossRef]
- Vendrell, D.; Balcázar, J.L.; Ruiz-Zarzuela, I.; de Blas, I.; Gironés, O.; Múzquiz, J.L. Lactococcus garvieae in Fish: A Review. Comp. Immunol. Microbiol. Infect. Dis. 2006, 29, 177–198. [Google Scholar] [CrossRef]
- Teker, T.; Albayrak, G.; Akayli, T.; Urku, C. Detection of Haemolysin Genes as Genetic Determinants of Virulence in Lactococcus garvieae. Turk. J. Fish. Aquat. Sci. 2019, 19, 625–634. [Google Scholar] [CrossRef]
- Bromage, E.S.; Owens, L. Infection of Barramundi Lates calcarifer with Streptococcus iniae: Effects of Different Routes of Exposure. Dis. Aquat. Organ. 2002, 52, 199–205. [Google Scholar] [CrossRef]
- Buchanan, J.T.; Stannard, J.A.; Lauth, X.; Ostland, V.E.; Powell, H.C.; Westerman, M.E.; Nizet, V. Streptococcus iniae Phosphoglucomutase is a Virulence Factor and a Target for Vaccine Development. Infect. Immun. 2005, 73, 6935–6944. [Google Scholar] [CrossRef]
- Locke, J.B.; Colvin, K.M.; Datta, A.K.; Patel, S.K.; Naidu, N.N.; Neely, M.N.; Nizet, V.; Buchanan, J.T. Streptococcus iniae Capsule Impairs Phagocytic Clearance and Contributes to Virulence in Fish. J. Bacteriol. 2007, 189, 1279–1287. [Google Scholar] [CrossRef]
- Doménech, A.; Fernández-Garayzábal, J.F.; Pascual, C.; Garcia, J.A.; Cutuli, M.T.; Moreno, M.A.; Collins, M.D.; Dominguez, L. Streptococcosis in Cultured Turbot, Scopthalmus maximus (L.), Associated with Streptococcus parauberis. J. Fish Dis. 1996, 19, 33–38. [Google Scholar] [CrossRef]
- Nho, S.W.; Hikima, J.; Cha, I.S.; Park, S.B.; Jang, H.B.; del Castillo, C.S.; Kondo, H.; Hirono, I.; Aoki, T.; Jung, T.S. Complete Genome Sequence and Immunoproteomic Analyses of the Bacterial Fish Pathogen Streptococcus parauberis. J. Bacteriol. 2011, 193, 3356–3366. [Google Scholar] [CrossRef]
- Abdelsalam, M.; Chen, S.C.; Yoshida, T. Dissemination of Streptococcal Pyrogenic Exotoxin G (Spegg) with an IS-like Element in Fish Isolates of Streptococcus dysgalactiae. FEMS Microbiol. Lett. 2010, 309, 105–113. [Google Scholar] [CrossRef]
- Romalde, J.L.; Ravelo, C.; Valdés, I.; Magariños, B.; de la Fuente, E.; Martín, C.S.; Avendaño-Herrera, R.; Toranzo, A.E. Streptococcus phocae, an Emerging Pathogen for Salmonid Culture. Vet. Microbiol. 2008, 130, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Yañez, A.J.; Godoy, M.G.; Gallardo, A.; Avendaño-Herrera, R. Identification of Streptococcus phocae Strains Associated with Mortality of Atlantic Salmon (Salmo salar) Farmed at Low Temperature in Chile. Bull. Eur. Assoc. Fish Pathol. 2013, 33, 59–66. [Google Scholar]
- Roberts, R.J. Bacteria from Fish and Other Aquatic Animals: A Practical Identification Manual; CABI Publishing: Wallingford, UK, 2005; Volume 28. [Google Scholar] [CrossRef]
- Zlotkin, A.; Chilmonczyk, S.; Eyngor, M.; Hurvitz, A.; Ghittino, C.; Eldar, A. Trojan Horse Effect: Phagocyte-Mediated Streptococcus iniae Infection of Fish. Infect. Immun. 2003, 71, 2318–2325. [Google Scholar] [CrossRef] [PubMed]
- Fredriksen, Å.; Endresen, C.; Wergeland, H.I. Immunosuppressive Effect of a Low Molecular Weight Surface Protein from Renibacterium salmoninarum on Lymphocytes from Atlantic Salmon (Salmo salar L.). Fish Shellfish Immunol. 1997, 7, 273–282. [Google Scholar] [CrossRef]
- Brynildsrud, O.; Gulla, S.; Feil, E.J.; Nørstebø, S.F.; Rhodes, L.D. Identifying Copy Number Variation of the Dominant Virulence Factors msa and p22 within Genomes of the Fish Pathogen Renibacterium salmoninarum. Microb. Genom. 2016, 2, e000055. [Google Scholar] [CrossRef] [PubMed]
- Kroniger, T.; Flender, D.; Schlüter, R.; Köllner, B.; Trautwein-Schult, A.; Becher, D. Proteome Analysis of the Gram-Positive Fish Pathogen Renibacterium salmoninarum Reveals Putative Role of Membrane Vesicles in Virulence. Sci. Rep. 2022, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rockey, D.D.; Turaga, P.S.D.; Wiens, G.D.; Cook, B.A.; Kaattari, S.L. Serine Proteinase of Renibacterium salmoninarum Digests a Major Autologous Extracellular and Cell-Surface Protein. Can. J. Microbiol. 1991, 37, 758–763. [Google Scholar] [CrossRef]
- Grayson, T.H.; Evenden, A.J.; Gilpin, M.L.; Munn, C.B. Production of the Major Soluble Antigen of Renibacterium salmoninarum in Escherichia coli K12. Dis. Aquat. Organ. 1995, 22, 227–231. [Google Scholar] [CrossRef]
- Avendaño-Herrera, R.; Saldivia, P.; Bethke, J.; Vargas, C.; Hernández, M. Proteomic Analysis Reveals Renibacterium salmoninarum Grown under Iron-limited Conditions Induces Iron Uptake Mechanisms and Overproduction of the 57-kDa Protein. J. Fish Dis. 2022, 45, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Benhamed, S.; Guardiola, F.A.; Mars, M.; Esteban, M.Á. Pathogen Bacteria Adhesion to Skin Mucus of Fishes. Vet. Microbiol. 2014, 171, 1–12. [Google Scholar] [CrossRef]
- González-Contreras, A.; Magariños, B.; Godoy, M.; Irgang, R.; Toranzo, A.E.; Avendaño-Herrera, R. Surface Properties of Streptococcus phocae Strains Isolated from Diseased Atlantic Salmon, Salmo salar L. J. Fish Dis. 2011, 34, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Sudheesh, P.S.; Crane, S.; Cain, K.D.; Strom, M.S. Sortase Inhibitor Phenyl Vinyl Sulfone Inhibits Renibacterium salmoninarum Adherence and Invasion of Host Cells. Dis. Aquat. Organ. 2007, 78, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Joh, D.; Wann, E.R.; Kreikemeyer, B.; Speziale, P.; Höök, M. Role of Fibronectin-Binding MSCRAMMs in Bacterial Adherence and Entry into Mammalian Cells. Matrix Biol. 1999, 18, 211–223. [Google Scholar] [CrossRef]
- Marraffini, L.A.; DeDent, A.C.; Schneewind, O. Sortases and the Art of Anchoring Proteins to the Envelopes of Gram-Positive Bacteria. Microbiol. Mol. Biol. Rev. 2006, 70, 192–221. [Google Scholar] [CrossRef] [Green Version]
- OECD. Bacteria: Pathogenicity Factors. In Safety Assessment of Transgenic Organisms in the Environment, Volume 5: OECD Consensus Documents; OECD Publishing: Paris, France, 2016; Volume 5. [Google Scholar] [CrossRef]
- Nitsche-Schmitz, D.P.; Rohde, M.; Chhatwal, G.S. Invasion Mechanisms of Gram-Positive Pathogenic Cocci. Thromb. Haemost. 2007, 98, 488–496. [Google Scholar] [CrossRef]
- Cortez-San Martin, M.; González-Contreras, A.; Avendaño-Herrera, R. Infectivity Study of Streptococcus phocae to Seven Fish and Mammalian Cell Lines by Confocal Microscopy. J. Fish Dis. 2012, 35, 431–436. [Google Scholar] [CrossRef]
- Eyngor, M.; Chilmonczyk, S.; Zlotkin, A.; Manuali, E.; Lahav, D.; Ghittino, C.; Shapira, R.; Hurvitz, A.; Eldar, A. Transcytosis of Streptococcus iniae through Skin Epithelial Barriers: An in vitro Study. FEMS Microbiol. Lett. 2007, 277, 238–248. [Google Scholar] [CrossRef]
- Shieh, H.S. An Extracellular Toxin Produced by Fish Kidney Disease Bacterium, Renibacterium salmoninarum. Microbios Lett. 1988, 38, 27–30. [Google Scholar]
- Ranger, B.S.; Mahrous, E.A.; Mosi, L.; Adusumilli, S.; Lee, R.E.; Colorni, A.; Rhodes, M.; Small, P.L.C. Globally Distributed Mycobacterial Fish Pathogens Produce a Novel Plasmid-Encoded Toxic Macrolide, Mycolactone, F. Infect. Immun. 2006, 74, 6037–6045. [Google Scholar] [CrossRef] [PubMed]
- Skaar, E.P. The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS Pathog. 2010, 6, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Goebel, W.; Chakraborty, T.; Kreft, J. Bacterial Hemolysins as Virulence Factors. Antonie Van Leeuwenhoek 1988, 54, 453–463. [Google Scholar] [CrossRef]
- Locke, J.B.; Colvin, K.M.; Varki, N.; Vicknair, M.R.; Nizet, V.; Buchanan, J.T. Streptococcus iniae β-Hemolysin Streptolysin S Is a Virulence Factor in Fish Infection. Dis. Aquat. Organ. 2007, 76, 17–26. [Google Scholar] [CrossRef]
- Kim, M.S.; Choi, S.H.; Lee, E.H.; Nam, Y.K.; Kim, S.K.; Kim, K.H. α-Enolase, a Plasmin (Ogen) Binding and Cell Wall Associating Protein from a Fish Pathogenic Streptococcus iniae Strain. Aquaculture 2007, 265, 55–60. [Google Scholar] [CrossRef]
- Eberhard, T.; Kronvall, G.; Ullberg, M. Surface Bound Plasmin Promotes Migration of Streptococcus pneumoniae through Reconstituted Basement Membranes. Microb. Pathog. 1999, 26, 175–181. [Google Scholar] [CrossRef]
- Green, E.R.; Mecsas, J. Bacterial Secretion Systems: An Overview. Microbiol. Spectr. 2016, 4, 1–4. [Google Scholar] [CrossRef]
- Ribet, D.; Cossart, P. How Bacterial Pathogens Colonize Their Hosts and Invade Deeper Tissues. Microbes Infect. 2015, 17, 173–183. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Gey van Pittius, N.C.; Champion, P.A.D.; Cox, J.; Luirink, J.; Vandenbroucke-Grauls, C.M.J.E.; Appelmelk, B.J.; Bitter, W. Type VII Secretion-Mycobacteria Show the Way. Nat. Rev. Microbiol. 2007, 5, 883–891. [Google Scholar] [CrossRef]
- Bottai, D.; Brosch, R. Mycobacterial PE, PPE and ESX Clusters: Novel Insights into the Secretion of These Most Unusual Protein Families. Mol. Microbiol. 2009, 73, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, A.M.; Verboom, T.; Hannes, F.; Safi, M.; Strong, M.; Eisenberg, D.; Musters, R.J.P.; Vandenbroucke-Grauls, C.M.J.E.; Appelmelk, B.J.; Luirink, J.; et al. A Specific Secretion System Mediates PPE41 Transport in Pathogenic Mycobacteria. Mol. Microbiol. 2006, 62, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Weerdenburg, E.M.; Abdallah, A.M.; Rangkuti, F.; El Ghany, M.A.; Otto, T.D.; Adroub, S.A.; Molenaar, D.; Ummels, R.; ter Veen, K.; van Stempvoort, G.; et al. Genome-Wide Transposon Mutagenesis Indicates That Mycobacterium marinum Customizes Its Virulence Mechanisms for Survival and Replication in Different Hosts. Infect. Immun. 2015, 83, 1778–1788. [Google Scholar] [CrossRef] [PubMed]
- Gröschel, M.I.; Sayes, F.; Simeone, R.; Majlessi, L.; Brosch, R. ESX Secretion Systems: Mycobacterial Evolution to Counter Host Immunity. Nat. Rev. Microbiol. 2016, 14, 677–691. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Verboom, T.; Weerdenburg, E.M.; Gey van Pittius, N.C.; Mahasha, P.W.; Jimenez, C.; Parra, M.; Cadieux, N.; Brennan, M.J.; Appelmelk, B.J.; et al. PPE and PE_PGRS Proteins of Mycobacterium marinum Are Transported via the Type VII Secretion System ESX-5. Mol. Microbiol. 2009, 73, 329–340. [Google Scholar] [CrossRef]
- Brennan, M.J.; Delogu, G.; Chen, Y.; Bardarov, S.; Kriakov, J.; Alavi, M.; Jacobs, W.R.J. Evidence That Mycobacterial PE_PGRS Proteins Are Cell Surface Constituents That Influence Interactions with Other Cells. Infect. Immun. 2001, 69, 7326–7333. [Google Scholar] [CrossRef]
- Banu, S.; Honoré, N.; Saint-Joanis, B.; Philpott, D.; Prévost, M.-C.; Cole, S.T. Are the PE-PGRS Proteins of Mycobacterium tuberculosis Variable Surface Antigens? Mol. Microbiol. 2002, 44, 9–19. [Google Scholar] [CrossRef]
- Delogu, G.; Pusceddu, C.; Bua, A.; Fadda, G.; Brennan, M.J.; Zanetti, S. Rv1818c-Encoded PE_PGRS Protein of Mycobacterium tuberculosis Is Surface Exposed and Influences Bacterial Cell Structure. Mol. Microbiol. 2004, 52, 725–733. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Savage, N.D.L.; van Zon, M.; Wilson, L.; Vandenbroucke-Grauls, C.M.J.E.; van der Wel, N.N.; Ottenhoff, T.H.M.; Bitter, W. The ESX-5 Secretion System of Mycobacterium marinum Modulates the Macrophage Response. J. Immunol. 2008, 181, 7166–7175. [Google Scholar] [CrossRef]
- Weerdenburg, E.M.; Abdallah, A.M.; Mitra, S.; De Punder, K.; Van der Wel, N.N.; Bird, S.; Appelmelk, B.J.; Bitter, W.; Van der Sar, A.M. ESX-5-Deficient Mycobacterium marinum Is Hypervirulent in Adult Zebrafish. Cell. Microbiol. 2012, 14, 728–739. [Google Scholar] [CrossRef]
- Zhang, W.; Rong, C.; Chen, C.; Gao, G.F. Type-IVC Secretion System: A Novel Subclass of Type IV Secretion System (T4SS) Common Existing in Gram-positive Genus Streptococcus. PLoS ONE 2012, 7, e46390. [Google Scholar] [CrossRef] [PubMed]
- Flano, E.; Kaattari, S.L.; Razquin, B.; Villena, A.J. Histopathology of the Thymus of Coho Salmon Oncorhynchus kisutch Experimentally Infected with Renibacterium salmoninarum. Dis. Aquat. Org. 1996, 26, 11–18. [Google Scholar] [CrossRef]
- Rose, A.S.; Levine, R.P. Complement-Mediated Opsonisation and Phagocytosis of Renibacterium salmoninarum. Fish Shellfish Immunol. 1992, 2, 223–240. [Google Scholar] [CrossRef]
- Bruno, D.W. Histopathology of Bacterial Kidney Disease in Laboratory Infected Rainbow Trout, Salmo gairdneri Richardson, and Atlantic Salmon, Salmo salar L., with Reference to Naturally Infected Fish. J. Fish Dis. 1986, 9, 523–537. [Google Scholar] [CrossRef]
- Gao, L.-Y.; Laval, F.; Lawson, E.H.; Groger, R.K.; Woodruff, A.; Morisaki, J.H.; Cox, J.S.; Daffe, M.; Brown, E.J. Requirement for KasB in Mycobacterium Mycolic Acid Biosynthesis, Cell Wall Impermeability and Intracellular Survival: Implications for Therapy. Mol. Microbiol. 2003, 49, 1547–1563. [Google Scholar] [CrossRef] [PubMed]
- Ooyama, T.; Kera, A.; Okada, T.; Inglis, V.; Yoshida, T. The Protective Immune Response of Yellowtail Seriola quinqueradiata to the Bacterial Fish Pathogen Lactococcus garvieae. Dis. Aquat. Organ. 1999, 37, 121–126. [Google Scholar] [CrossRef]
- Buchanan, J.T.; Colvin, K.M.; Vicknair, M.R.; Patel, S.K.; Timmer, A.M.; Nizet, V. Strain-Associated Virulence Factors of Streptococcus iniae in Hybrid-Striped Bass. Vet. Microbiol. 2008, 131, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Raghunathan, A.; Reed, J.; Shin, S.; Palsson, B.; Daefler, S. Constraint-Based Analysis of Metabolic Capacity of Salmonella Typhimurium during Host-Pathogen Interaction. BMC Syst. Biol. 2009, 3, 38. [Google Scholar] [CrossRef]
- Slauch, J.M. How Does the Oxidative Burst of Macrophages Kill Bacteria? Still an Open Question. Mol. Microbiol. 2011, 80, 580–583. [Google Scholar] [CrossRef]
- Uribe-Quero, E.; Rosales, C. Control of Phagocytosis by Microbial Pathogens. Front. Immunol. 2017, 8, 1–23. [Google Scholar] [CrossRef]
- Ordal, E.J.; Earp, B.J. Cultivation and Transmission of Etiological Agent of Kidney Disease in Salmonid Fishes. Proc. Soc. Exp. Biol. Med. 1956, 92, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Campos-Pérez, J.J.; Ellis, A.E.; Secombes, C.J. Investigation of Factors Influencing the Ability of Renibacterium salmoninarum to Stimulate Rainbow Trout Macrophage Respiratory Burst Activity. Fish Shellfish Immunol. 1997, 7, 555–566. [Google Scholar] [CrossRef]
- Ellis, A.E. Immunity to Bacteria in Fish. Fish Shellfish Immunol. 1999, 9, 291–308. [Google Scholar] [CrossRef]
- Gutenberger, S.K.; Duimstra, J.R.; Rohovec, J.S.; Fryer, J.L. Intracellular Survival of Renibacterium salmoninarum in Trout Mononuclear Phagocytes. Dis. Aquat. Org. 1997, 28, 93–106. [Google Scholar] [CrossRef]
- Grayson, T.H.; Gilpin, M.L.; Evenden, A.J.; Munn, C.B. Evidence for the Immune Recognition of Two Haemolysins of Renibacterium salmoninarum by Fish Displaying Clinical Symptoms of Bacterial Kidney Disease (BKD). Fish Shellfish Immunol. 2001, 11, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Evenden, A.J.; Gilpin, M.L.; Munn, C.B. The Cloning and Expression of a Gene Encoding Haemolytic Activity from the Fish Pathogen Renibacterium salmoninarum. FEMS Microbiol. Lett. 1990, 59, 31–34. [Google Scholar] [CrossRef]
- McIntosh, D.; Flaño, E.; Grayson, T.H.; Gilpin, M.L.; Austin, B.; Villena, A.J. Production of Putative Virulence Factors by Renibacterium salmoninarum Grown in Cell Culture. Microbiology 1997, 143, 3349–3356. [Google Scholar] [CrossRef] [Green Version]
- Elanco. Technical Report: An Overview of Emerging Diseases in the Salmonid Farming Industry. Elanco Canada Ltd., 2018. Available online: https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2019/an-overview-of-emerging-diseases-in-the-salmonid-farming-industry-technical-report/_/attachment/download/879fcbae-cc63-4a88-9391-fff0c18580f9:d79c3cf13885c938419d77c9cca12e5e1ab2b4d6/Emerging%20diseases%20techinical%20report%20-%20january%202019.pdf (accessed on 21 November 2021).
- Pascho, R.J.; Elliott, D.G.; Chase, D.M. Comparison of Traditional and Molecular Methods for Detection of Renibacterium salmoninarum. In Molecular Diagnosis of Salmonid Diseases; Springer Dordrecht: Dordrecht, The Netherlands, 2002; pp. 157–209. [Google Scholar] [CrossRef]
- Stamm, L.M.; Morisaki, J.H.; Gao, L.Y.; Jeng, R.L.; McDonald, K.L.; Roth, R.; Takeshita, S.; Heuser, J.; Welch, M.D.; Brown, E.J. Mycobacterium marinum Escapes from Phagosomes and Is Propelled by Actin-Based Motility. J. Exp. Med. 2003, 198, 1361–1368. [Google Scholar] [CrossRef]
- Garin, J.; Diez, R.; Kieffer, S.; Dermine, J.F.; Duclos, S.; Gagnon, E.; Sadoul, R.; Rondeau, C.; Desjardins, M. The Phagosome Proteome: Insight into Phagosome Functions. J. Cell Biol. 2001, 152, 165–180. [Google Scholar] [CrossRef]
- Gauthier, D.T.; Vogelbein, W.K.; Ottinger, C.A. Ultrastructure of Mycobacterium marinum Granuloma in Striped Bass Morone saxatilis. Dis. Aquat. Organ. 2004, 62, 121–132. [Google Scholar] [CrossRef]
- Chen, S.C.; Adams, A.; Thompson, K.D.; Richards, R.H. Electron Microscope Studies of the in Vitro Phagocytosis of Mycobacterium Spp. by Rainbow Trout Oncorhynchus mykiss Head Kidney Macrophages. Dis. Aquat. Organ. 1998, 32, 99–110. [Google Scholar] [CrossRef] [PubMed]
- El-Etr, S.H.; Yan, L.; Cirillo, J.D. Fish Monocytes as a Model for Mycobacterial Host-Pathogen Interactions. Infect. Immun. 2001, 69, 7310–7317. [Google Scholar] [CrossRef]
- Walburger, A.; Koul, A.; Ferrari, G.; Nguyen, L.; Prescianotto-Baschong, C.; Huygen, K.; Klebl, B.; Thompson, C.; Bacher, G.; Pieters, J. Protein Kinase G from Pathogenic Mycobacteria Promotes Survival within Macrophages. Science 2004, 304, 1800–1804. [Google Scholar] [CrossRef] [PubMed]
- Braunstein, M.; Espinosa, B.J.; Chan, J.; Belisle, J.T.; Jacobs, W.R.J. SecA2 Functions in the Secretion of Superoxide Dismutase A and in the Virulence of Mycobacterium tuberculosis. Mol. Microbiol. 2003, 48, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.; Ranganathan, U.D.K.; Van Rompay, K.K.A.; Canfield, D.R.; Khan, I.; Ravindran, R.; Luciw, P.A.; Jacobs, W.R.J.; Fennelly, G.; Larsen, M.H.; et al. A Recombinant Attenuated Mycobacterium tuberculosis Vaccine Strain Is Safe in Immunosuppressed Simian Immunodeficiency Virus-Infected Infant Macaques. Clin. Vaccine Immunol. 2012, 19, 1170–1181. [Google Scholar] [CrossRef] [PubMed]
- Watkins, B.Y.; Joshi, S.A.; Ball, D.A.; Leggett, H.; Park, S.; Kim, J.; Austin, C.D.; Paler-Martinez, A.; Xu, M.; Downing, K.H.; et al. Mycobacterium marinum SecA2 Promotes Stable Granulomas and Induces Tumor Necrosis Factor Alpha in vivo. Infect. Immun. 2012, 80, 3512–3520. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, J.T.; Young, E.F.; McCann, J.R.; Braunstein, M. The Mycobacterium tuberculosis SecA2 System Subverts Phagosome Maturation to Promote Growth in Macrophages. Infect. Immun. 2012, 80, 996–1006. [Google Scholar] [CrossRef]
- Van der Woude, A.D.; Stoop, E.J.M.; Stiess, M.; Wang, S.; Ummels, R.; van Stempvoort, G.; Piersma, S.R.; Cascioferro, A.; Jiménez, C.R.; Houben, E.N.G.; et al. Analysis of SecA2-Dependent Substrates in Mycobacterium marinum Identifies Protein Kinase G (PknG) as a Virulence Effector. Cell. Microbiol. 2014, 16, 280–295. [Google Scholar] [CrossRef]
- Weddle, E.; Agaisse, H. Principles of Intracellular Bacterial Pathogen Spread from Cell to Cell. PLoS Pathog. 2018, 14, e1007380. [Google Scholar] [CrossRef]
- Parikka, M.; Hammarén, M.M.; Harjula, S.K.E.; Halfpenny, N.J.A.; Oksanen, K.E.; Lahtinen, M.J.; Pajula, E.T.; Iivanainen, A.; Pesu, M.; Rämet, M. Mycobacterium marinum Causes a Latent Infection That Can Be Reactivated by Gamma Irradiation in Adult Zebrafish. PLoS Pathog. 2012, 8, e1002944. [Google Scholar] [CrossRef]
- Bhavsar, A.P.; Guttman, J.A.; Finlay, B.B. Manipulation of Host-Cell Pathways by Bacterial Pathogens. Nature 2007, 449, 827–834. [Google Scholar] [CrossRef]
- Southwood, D.; Ranganathan, S. Host-Pathogen Interactions; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; Volume 1–3. [Google Scholar] [CrossRef]
- Kehl-Fie, T.E.; Skaar, E.P. Nutritional Immunity beyond Iron: A Role for Manganese and Zinc. Curr. Opin. Chem. Biol. 2010, 14, 218–224. [Google Scholar] [CrossRef]
- Hood, M.I.; Skaar, E.P. Nutritional Immunity: Transition Metals at the Pathogen-Host Interface. Nat. Rev. Microbiol. 2012, 10, 525–537. [Google Scholar] [CrossRef]
- Wilson, B.R.; Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. Trends Mol. Med. 2016, 22, 1077–1090. [Google Scholar] [CrossRef]
- Andreini, C.; Bertini, I.; Cavallaro, G.; Holliday, G.L.; Thornton, J.M. Metal Ions in Biological Catalysis: From Enzyme Databases to General Principles. J. Biol. Inorg. Chem. 2008, 13, 1205–1218. [Google Scholar] [CrossRef]
- Miethke, M.; Marahiel, M.A. Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007, 71, 413–451. [Google Scholar] [CrossRef]
- Weinberg, E.D. Iron and Infection. Microbiol. Rev. 1978, 42, 45–66. [Google Scholar] [CrossRef]
- Barber, M.F.; Elde, N.C. Buried Treasure: Evolutionary Perspectives on Microbial Iron Piracy. Trends Genet. 2015, 31, 627–636. [Google Scholar] [CrossRef]
- Litwin, C.M.; Calderwood, S.B. Role of Iron in Regulation of Virulence Genes. Clin. Microbiol. Rev. 1993, 6, 137–149. [Google Scholar] [CrossRef]
- Grayson, T.H.; Bruno, D.W.; Evenden, A.J.; Gilpin, M.L.; Munn, C.B. Iron Acquisition by Renibacterium salmoninarum: Contribution of Iron Reductase. Dis. Aquat. Organ. 1995, 22, 157–162. [Google Scholar] [CrossRef]
- Bethke, J.; Poblete-Morales, M.; Irgang, R.; Yáñez, A.; Avendaño-Herrera, R. Iron Acquisition and Siderophore Production in the Fish Pathogen Renibacterium salmoninarum. J. Fish Dis. 2016, 39, 1275–1283. [Google Scholar] [CrossRef]
- Adams, T.J.; Vartivarian, S.; Cowart, R.E. Iron Acquisition Systems of Listeria Monocytogenes. Infect. Immun. 1990, 58, 2715–2718. [Google Scholar] [CrossRef]
- Johnson, W.; Varner, L.; Poch, M. Acquisition of Iron by Legionella pneumophila: Role of Iron Reductase. Infect. Immun. 1991, 59, 2376–2381. [Google Scholar] [CrossRef]
- Ratledge, C. Iron Metabolism and Infection. Food Nutr. Bull. 2007, 28, S515–S523. [Google Scholar] [CrossRef] [PubMed]
- Bethke, J.; Arias-Muñoz, E.; Yáñez, A.; Avendaño-Herrera, R. Renibacterium salmoninarum Iron-Acquisition Mechanisms and ASK Cell Line Infection: Virulence and Immune Response. J. Fish Dis. 2019, 42, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Bethke, J.; Yáñez, A.J.; Avendaño-Herrera, R. Comparative Genomic Analysis of Two Chilean Renibacterium salmoninarum Isolates and the Type Strain ATCC 33209T. Genome Biol. Evol. 2018, 10, 1816–1822. [Google Scholar] [CrossRef] [PubMed]
- Nobles, C.L.; Maresso, A.W. The Theft of Host Heme by Gram-Positive Pathogenic Bacteria. Metallomics 2011, 3, 788–796. [Google Scholar] [CrossRef]
- Allen, C.E.; Burgos, J.M.; Schmitt, M.P. Analysis of Novel Iron-Regulated, Surface-Anchored Hemin-Binding Proteins in Corynebacterium diphtheriae. J. Bacteriol. 2013, 195, 2852–2863. [Google Scholar] [CrossRef]
- Banner, C.R.; Rohovec, J.S.; Fryer, J.L. A New Value for Mol Percent Guanine + Cytosine of DNA for the Salmonid Fish Pathogen Renibacterium salmoninarum. FEMS Microbiol. Lett. 1991, 63, 57–59. [Google Scholar] [CrossRef]
- Andrews, S.C.; Robinson, A.K.; Rodríguez-Quiñones, F. Bacterial Iron Homeostasis. FEMS Microbiol. Rev. 2003, 27, 215–237. [Google Scholar] [CrossRef]
- Retamales, J.; González-Contreras, A.; Salazar, S.; Toranzo, A.E.; Avendaño-Herrera, R. Iron Utilization and Siderophore Production by Streptococcus phocae Isolated from Diseased Atlantic Salmon (Salmo salar). Aquaculture 2012, 364–365, 305–311. [Google Scholar] [CrossRef]
- Brown, J.S.; Holden, D.W. Iron Acquisition by Gram-Positive Bacterial Pathogens. Microbes Infect. 2002, 4, 1149–1156. [Google Scholar] [CrossRef]
- Boltaña, S.; Roher, N.; Goetz, F.W.; MacKenzie, S.A. PAMPs, PRRs and the Genomics of Gram Negative Bacterial Recognition in Fish. Dev. Comp. Immunol. 2011, 35, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.R. Structure of Fish Toll-like Receptors (TLR) and NOD-like Receptors (NLR). Int. J. Biol. Macromol. 2020, 161, 1602–1617. [Google Scholar] [CrossRef]
- Palti, Y. Toll-like Receptors in Bony Fish: From Genomics to Function. Dev. Comp. Immunol. 2011, 35, 1263–1272. [Google Scholar] [CrossRef]
- Foster, S.L.; Hargreaves, D.C.; Medzhitov, R. Gene-Specific Control of Inflammation by TLR-Induced Chromatin Modifications. Nature 2007, 447, 972–978. [Google Scholar] [CrossRef]
- Iwasaki, A.; Medzhitov, R. Regulation of Adaptive Immunity by the Innate Immune System. Science 2010, 327, 291–295. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef]
- Byadgi, O.; Chen, Y.C.; Barnes, A.C.; Tsai, M.A.; Wang, P.C.; Chen, S.C. Transcriptome Analysis of Grey Mullet (Mugil cephalus) after Challenge with Lactococcus garvieae. Fish Shellfish Immunol. 2016, 58, 593–603. [Google Scholar] [CrossRef]
- Byadgi, O.; Chen, C.W.; Wang, P.C.; Tsai, M.A.; Chen, S.C. De Novo Transcriptome Analysis of Differential Functional Gene Expression in Largemouth Bass (Micropterus salmoides) after Challenge with Nocardia seriolae. Int. J. Mol. Sci. 2016, 17, 1315. [Google Scholar] [CrossRef]
- Qi, Z.; Wu, P.; Zhang, Q.; Wei, Y.; Wang, Z.; Qiu, M.; Shao, R.; Li, Y.; Gao, Q. Transcriptome Analysis of Soiny Mullet (Liza Haematocheila) Spleen in Response to Streptococcus dysgalactiae. Fish Shellfish Immunol. 2016, 49, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kong, X.; Zhou, C.; Li, L.; Nie, G.; Li, X. Toll-like Receptor Recognition of Bacteria in Fish: Ligand Specificity and Signal Pathways. Fish Shellfish Immunol. 2014, 41, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Meijer, A.H.; Krens, S.F.G.; Rodriguez, I.A.M.; He, S.; Bitter, W.; Snaar-Jagalska, B.E.; Spaink, H.P. Expression Analysis of the Toll-like Receptor and TIR Domain Adaptor Families of Zebrafish. Mol. Immunol. 2004, 40, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, M.; Sareneva, T.; Julkunen, I.; Matikainen, S. IFNs Activate Toll-like Receptor Gene Expression in Viral Infections. Genes Immun. 2001, 2, 349–355. [Google Scholar] [CrossRef]
- Pietretti, D.; Wiegertjes, G.F. Ligand Specificities of Toll-like Receptors in Fish: Indications from Infection Studies. Dev. Comp. Immunol. 2014, 43, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Su, B.; Fu, Q.; Shang, M.; Gao, C.; Tan, F.; Li, C. Identification, Characterization and Expression Analysis of TLR5 in the Mucosal Tissues of Turbot (Scophthalmus maximus L.) Following Bacterial Challenge. Fish Shellfish Immunol. 2017, 68, 272–279. [Google Scholar] [CrossRef]
- Eslamloo, K.; Kumar, S.; Caballero-Solares, A.; Gnanagobal, H.; Santander, J.; Rise, M.L. Profiling the Transcriptome Response of Atlantic Salmon Head Kidney to Formalin-Killed Renibacterium salmoninarum. Fish Shellfish Immunol. 2020, 98, 937–949. [Google Scholar] [CrossRef]
- Eslamloo, K.; Caballero-Solares, A.; Inkpen, S.M.; Emam, M.; Kumar, S.; Bouniot, C.; Avendaño-Herrera, R.; Jakob, E.; Rise, M.L. Transcriptomic Profiling of the Adaptive and Innate Immune Responses of Atlantic Salmon to Renibacterium salmoninarum Infection. Front. Immunol. 2020, 11, 567838. [Google Scholar] [CrossRef]
- Sullivan, C.; Charette, J.; Catchen, J.; Lage, C.R.; Giasson, G.; Postlethwait, J.H.; Millard, P.J.; Kim, C.H. The Gene History of Zebrafish Tlr4a and Tlr4b Is Predictive of Their Divergent Functions. J. Immunol. 2009, 183, 5896–5908. [Google Scholar] [CrossRef]
- Hwang, S.D.; Kondo, H.; Hirono, I.; Aoki, T. Molecular Cloning and Characterization of Toll-like Receptor 14 in Japanese Flounder, Paralichthys olivaceus. Fish Shellfish Immunol. 2011, 30, 425–429. [Google Scholar] [CrossRef]
- Ford, M.J. Molecular Evolution of Transferrin: Evidence for Positive Selection in Salmonids. Mol. Biol. Evol. 2001, 18, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Pooley, N.J.; Mohd-Adnan, A.; Martin, S.A.M. Cloning and Characterisation of Multiple Ferritin Isoforms in the Atlantic Salmon (Salmo salar). PLoS ONE 2014, 9, e103729. [Google Scholar] [CrossRef] [PubMed]
- Buhler, D.R. Studies on Fish Hemoglobins. J. Biol. Chem. 1962, 238, 1665–1674. [Google Scholar] [CrossRef]
- Wicher, K.B.; Fries, E. Haptoglobin, a Hemoglobin-Binding Plasma Protein, Is Present in Bony Fish and Mammals but Not in Frog and Chicken. Proc. Natl. Acad. Sci. USA 2006, 103, 4168–4173. [Google Scholar] [CrossRef]
- Hirayama, M.; Kobiyama, A.; Kinoshita, S.; Watabe, S. The Occurrence of Two Types of Hemopexin-like Protein in Medaka and Differences in Their Affinity to Heme. J. Exp. Biol. 2004, 207, 1387–1398. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Feng, C.; Liu, X.; Liu, S. 3nLcn2, a Teleost Lipocalin 2 That Possesses Antimicrobial Activity and Inhibits Bacterial Infection in Triploid Crucian Carp. Fish Shellfish Immunol. 2020, 102, 47–55. [Google Scholar] [CrossRef]
- Zou, J.; Secombes, C.J. The Function of Fish Cytokines. Biology 2016, 5, 23. [Google Scholar] [CrossRef]
- Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.; Ganz, T.; Kaplan, J. Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization. Science 2004, 306, 2090–2093. [Google Scholar] [CrossRef]
- Nemeth, E.; Ganz, T. Regulation of Iron Metabolism by Hepcidin. Annu. Rev. Nutr. 2006, 26, 323–342. [Google Scholar] [CrossRef]
- Bury, N.; Grosell, M. Iron Acquisition by Teleost Fish. Comp. Biochem. Physiol. 2003, 135, 97–105. [Google Scholar] [CrossRef]
- Torti, F.M.; Torti, S.V. Regulation of Ferritin Genes and Protein. Blood 2002, 99, 3505–3516. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.L.; Fromm, P.O. Metabolism of Iron by Normal and Iron Deficient Rainbow Trout. Comp. Biochem. Physiol. A Comp. Physiol. 1976, 55, 311–318. [Google Scholar] [CrossRef]
- Ganz, T. Iron and Infection. Int. J. Hematol. 2018, 107, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Neves, J.V.; Caldas, C.; Vieira, I.; Ramos, M.F.; Rodrigues, P.N.S. Multiple Hepcidins in a Teleost Fish, Dicentrarchus labrax: Different Hepcidins for Different Roles. J. Immunol. 2015, 195, 2696–2709. [Google Scholar] [CrossRef] [PubMed]
- Lauth, X.; Babon, J.J.; Stannard, J.A.; Singh, S.; Nizet, V.; Carlberg, J.M.; Ostland, V.E.; Pennington, M.W.; Norton, R.S.; Westerman, M.E. Bass Hepcidin Synthesis, Solution Structure, Antimicrobial Activities and Synergism, and in vivo Hepatic Response to Bacterial Infections. J. Biol. Chem. 2005, 280, 9272–9282. [Google Scholar] [CrossRef] [Green Version]
- Neves, J.V.; Ramos, M.F.; Moreira, A.C.; Silva, T.; Gomes, M.S.; Rodrigues, P.N.S. Hamp1 but Not Hamp2 Regulates Ferroportin in Fish with Two Functionally Distinct Hepcidin Types. Sci. Rep. 2017, 7, 14793. [Google Scholar] [CrossRef]
- Hirono, I.; Hwang, J.-Y.; Ono, Y.; Kurobe, T.; Ohira, T.; Nozaki, R.; Aoki, T. Two Different Types of Hepcidins from the Japanese Flounder Paralichthys olivaceus. FEBS J. 2005, 272, 5257–5264. [Google Scholar] [CrossRef]
- Metzger, D.C.; Elliott, D.G.; Wargo, A.; Park, L.K.; Purcell, M.K. Pathological and Immunological Responses Associated with Differential Survival of Chinook Salmon Following Renibacterium salmoninarum Challenge. Dis. Aquat. Organ. 2010, 90, 31–41. [Google Scholar] [CrossRef]
- Gnanagobal, H.; Cao, T.; Hossain, A.; Dang, M.; Hall, J.R.; Kumar, S.; Van Cuong, D.; Boyce, D.; Santander, J. Lumpfish (Cyclopterus lumpus) Is Susceptible to Renibacterium salmoninarum Infection and Induces Cell-Mediated Immunity in the Chronic Stage. Fron. Immunol. 2021, 12, 733266. [Google Scholar] [CrossRef]
- Liu, C.; Hu, X.; Cao, Z.; Sun, Y.; Chen, X.; Zhang, Z. Construction and Characterization of a DNA Vaccine Encoding the SagH against Streptococcus iniae. Fish Shellfish Immunol. 2019, 89, 71–75. [Google Scholar] [CrossRef]
- Jiang, J.; Miyata, M.; Chan, C.; Ngoh, S.Y.; Liew, W.C.; Saju, J.M.; Ng, K.S.; Wong, F.S.; Lee, Y.S.; Chang, S.F.; et al. Differential Transcriptomic Response in the Spleen and Head Kidney Following Vaccination and Infection of Asian Seabass with Streptococcus iniae. PLoS ONE 2014, 9, e99128. [Google Scholar] [CrossRef]
- Salazar, S.; Oliver, C.; Yáñez, A.J.; Avendaño-Herrera, R. Comparative Analysis of Innate Immune Responses to Streptococcus phocae Strains in Atlantic Salmon (Salmo salar) and Rainbow Trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2016, 51, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Ziklo, N.; Colorni, A.; Gao, L.Y.; Du, S.J.; Ucko, M. Humoral and Cellular Immune Response of European Seabass Dicentrarchus labrax Vaccinated with Heat-Killed Mycobacterium marinum (iipA::Kan Mutant). J. Aquat. Anim. Health 2018, 30, 312–324. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Zhang, D.; Long, M.; Wu, Z.; Feng, Y.; Hao, J.; Wang, S.; Liao, Q.; Li, A. De Novo Assembly and Analysis of Amur Sturgeon (Acipenser schrenckii) Transcriptome in Response to Mycobacterium marinum Infection to Identify Putative Genes Involved in Immunity. J. Microbiol. Biotechnol. 2019, 29, 1324–1334. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Araki, K.; Hayashi, K.; Takeuchi, Y.; Shiozaki, K.; Suetake, H.; Yamamoto, A. Adjuvant Effect of Recombinant Interleukin-12 in the Nocardiosis Formalin-Killed Vaccine of the Amberjack Seriola dumerili. Fish Shellfish Immunol. 2017, 67, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Bayne, C.J.; Gerwick, L. The Acute Phase Response and Innate Immunity of Fish. Dev. Comp. Immunol. 2001, 25, 725–743. [Google Scholar] [CrossRef]
- Sussman, M. Iron and Infection. In Iron in Biochemistry and Medicine; Jacobs, A., Worwood, M., Eds.; Academic Press: New York, NY, USA, 1974; pp. 649–679. [Google Scholar]
- Suzumoto, B.K.; Schreck, C.B.; McIntyre, J.D. Relative Resistances of Three Transferrin Genotypes of Coho Salmon (Oncorhynchus kisutch) and Their Hematological Responses to Bacterial Kidney Disease. J. Fish. Res. Board Canada 1977, 34, 1–8. [Google Scholar] [CrossRef]
- Winter, G.W.; Schreck, C.B.; McIntyre, J.D. Resistance of Different Stocks and Transferrin Genotypes of Coho Salmon, Oncorhynchus kisutch, and Steelhead Trout, Salmo Gairdneri, to Bacterial Kidney Disease and Vibriosis. Fish. Bull. 1980, 77, 795–802. [Google Scholar]
- Stafford, J.L.; Belosevic, M. Transferrin and the Innate Immune Response of Fish: Identification of a Novel Mechanism of Macrophage Activation. Dev. Comp. Immunol. 2003, 27, 539–554. [Google Scholar] [CrossRef]
- Stafford, J.L.; Neumann, N.F.; Belosevic, M. Products of Proteolytic Cleavage of Transferrin Induce Nitric Oxide Response of Goldfish Macrophages. Dev. Comp. Immunol. 2001, 25, 101–115. [Google Scholar] [CrossRef]
- Clifton, M.C.; Corrent, C.; Strong, R.K. Siderocalins: Siderophore-Binding Proteins of the Innate Immune System. Biometals 2009, 22, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; MacKinnon, S.L.; Ross, N.W. A Comparative Study on Innate Immune Parameters in the Epidermal Mucus of Various Fish Species. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 2007, 148, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Brogden, G.; Propsting, M.; Adamek, M.; Naim, H.Y.; Steinhagen, D. Isolation and Analysis of Membrane Lipids and Lipid Rafts in Common Carp (Cyprinus carpio L.). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2014, 169, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Ben Hamed, S.; Tavares Ranzani-Paiva, M.J.; Tachibana, L.; de Carla Dias, D.; Ishikawa, C.M.; Esteban, M.A. Fish Pathogen Bacteria: Adhesion, Parameters Influencing Virulence and Interaction with Host Cells. Fish Shellfish Immunol. 2018, 80, 550–562. [Google Scholar] [CrossRef]
- Grayson, T.H.; Cooper, L.F.; Wrathmell, A.B.; Roper, J.; Evenden, A.J.; Gilpin, M.L. Host Responses to Renibacterium salmoninarum and Specific Components of the Pathogen Reveal the Mechanisms of Immune Suppression and Activation. Immunology 2002, 106, 273–283. [Google Scholar] [CrossRef]
- Pandey, A.K.; Yang, Y.; Jiang, Z.; Fortune, S.M.; Coulombe, F.; Behr, M.A.; Fitzgerald, K.A.; Sassetti, C.M.; Kelliher, M.A. NOD2, RIP2 and IRF5 Play a Critical Role in the Type I Interferon Response to Mycobacterium tuberculosis. PLoS Pathog. 2009, 5, e1000500. [Google Scholar] [CrossRef]
- Leong, J.C.; Trobridge, G.D.; Kim, C.H.; Johnson, M.; Simon, B. Interferon-Inducible Mx Proteins in Fish. Immunol. Rev. 1998, 166, 349–363. [Google Scholar] [CrossRef]
- Kim, C.H.; Johnson, M.C.; Drennan, J.D.; Simon, B.E.; Thomann, E.; Leong, J.A. DNA Vaccines Encoding Viral Glycoproteins Induce Nonspecific Immunity and Mx Protein Synthesis in Fish. J. Virol. 2000, 74, 7048–7054. [Google Scholar] [CrossRef]
- Collet, B.; Secombes, C.J. The Rainbow Trout (Oncorhynchus mykiss) Mx1 Promoter. Structural and Functional Characterization. Eur. J. Biochem. 2001, 268, 1577–1584. [Google Scholar] [CrossRef]
- Rhodes, L.D.; Wallis, S.; Demlow, S.E. Genes Associated with an Effective Host Response by Chinook Salmon to Renibacterium salmoninarum. Dev. Comp. Immunol. 2009, 33, 176–186. [Google Scholar] [CrossRef]
- Elliott, D.G.; Wiens, G.D.; Hammell, K.L.; Rhodes, L.D. Vaccination against Bacterial Kidney Disease. Fish Vaccin. 2014, 9780470674, 255–272. [Google Scholar] [CrossRef]
- Munang’andu, H. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish. Microorganisms 2018, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Sami, S.; Fischer-Scherl, T.; Hoffmann, R.W.; Pfeil-Putzien, C. Immune Complex-Mediated Glomerulonephritis Associated with Bacterial Kidney Disease in the Rainbow Trout (Oncorhynchus mykiss). Vet. Pathol. 1992, 29, 169–174. [Google Scholar] [CrossRef]
- Lumsden, J.S.; Russell, S.; Huber, P.; Wybourne, B.A.; Ostland, V.E.; Minamikawa, M.; Ferguson, H.W. An Immune-Complex Glomerulonephritis of Chinook Salmon, Oncorhynchus tshawytscha (Walbaum). J. Fish Dis. 2008, 31, 889–898. [Google Scholar] [CrossRef]
- Kaattari, S.L.; Piganelli, J.D. Immunization with Bacterial Antigens: Bacterial Kidney Disease. Dev. Biol. Stand. 1997, 90, 145–152. [Google Scholar] [PubMed]
- Hardie, L.J.; Ellis, A.E.; Secombes, C.J. in vitro Activation of Rainbow Trout Macrophages Stimulates Inhibition of Renibacterium salmoninarum Growth Concomitant with Augmented Generation of Respiratory Burst Products. Dis. Aquat. Organ. 1996, 25, 175–183. [Google Scholar] [CrossRef]
- Campos-Perez, J.J.; Ward, M.; Grabowski, P.S.; Ellis, A.E.; Secombes, C.J. The Gills Are an Important Site of INOS Expression in Rainbow Trout Oncorhynchus mykiss after Challenge with the Gram-positive Pathogen Renibacterium salmoninarum. Immunology 2000, 99, 153–161. [Google Scholar] [CrossRef]
- Jansson, E.; Hongslo, T.; Johannisson, A.; Pilström, L.; Timmusk, S.; Norrgren, L. Bacterial Kidney Disease as a Model for Studies of Cell Mediated Immunity in Rainbow Trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2003, 14, 347–362. [Google Scholar] [CrossRef]
- Sakai, M.; Atsuta, S.; Kobayashi, M. Protective Immune Response in Rainbow Trout, Oncorhynchus mykiss, Vaccinated with β-Haemolytic Streptococcal Bacterin. Fish Pathol. 1989, 24, 169–173. [Google Scholar] [CrossRef]
- Jiang, J.; Fisher, E.M.; Murasko, D.M. CD8 T Cell Responses to Influenza Virus Infection in Aged Mice. Ageing Res. Rev. 2011, 10, 422–427. [Google Scholar] [CrossRef]
- Raberg, L.; Sim, D.; Read, A.F. Disentangling Genetic Variation for Resistance and Tolerance to Infectious Diseases in Animals. Science 2007, 318, 812–814. [Google Scholar] [CrossRef] [PubMed]
- Sako, H. Acquired Immunity of Yellowtail, Seriola quinqueradiata Recovered from Experimental Infection with β-Hemolytic Streptococcus Sp. Aquac. Sci. 1992, 40, 389–392. [Google Scholar]
- Purcell, M.K.; McKibben, C.L.; Pearman-Gillman, S.; Elliott, D.G.; Winton, J.R. Effects of Temperature on Renibacterium salmoninarum Infection and Transmission Potential in Chinook Salmon, Oncorhynchus tshawytscha (Walbaum). J. Fish Dis. 2016, 39, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Yanong, R.P.E.; Francis-floyd, R. Circular 57: Streptococcal Infections of Fish. University of Florida. 2013, pp. 1–5. Available online: https://edis.ifas.ufl.edu/pdf/FA/FA05700.pdf (accessed on 22 November 2021).
- Rozas-Serri, M.; Lobos, C.; Correa, R.; Ildefonso, R.; Vásquez, J.; Muñoz, A.; Maldonado, L.; Jaramillo, V.; Coñuecar, D.; Oyarzún, C. Atlantic Salmon Pre-Smolt Survivors of Renibacterium salmoninarum Infection Show Inhibited Cell-Mediated Adaptive Immune Response and a Higher Risk of Death during the Late Stage of Infection at Lower Water Temperatures. Front. Immunol. 2020, 11, 1378. [Google Scholar] [CrossRef]
- Horzinek, M.C.; Schijns, V.E.C.; Denis, M.; Desmettre, P.; Babiuk, L.A. General Description of Vaccines. In Vet. Vaccinology; Pastoret, P.P., Blancou, J., Vannier, P., Verschueren, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 131–152. [Google Scholar]
- Kum, C.; Sekki, S. The Immune System Drugs in Fish: Immune Function, Immunoassay, Drugs. Recent Adv. Fish Farms 2011. [Google Scholar] [CrossRef]
- Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019, 7, 569. [Google Scholar] [CrossRef]
- Salonius, K.; Siderakis, C.; MacKinnon, A.M.; Griffiths, S.G. Use of Arthrobacter davidanieli as a Live Vaccine against Renibacterium salmoninarum and Piscirickettsia salmonis in Salmonids. Dev. Biol. 2005, 121, 189–197. [Google Scholar]
- Sun, Y.; Hu, Y.; Liu, C.; Sun, L. Construction and Analysis of an Experimental Streptococcus iniae DNA Vaccine. Vaccine 2010, 28, 3905–3912. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, L.; Xing, M.; Liu, C.; Hu, Y. SagE Induces Highly Effective Protective Immunity against Streptococcus iniae Mainly through an Immunogenic Domain in the Extracellular Region. Acta Vet. Scand. 2013, 55, 1–9. [Google Scholar] [CrossRef]
- Sheng, X.; Liu, M.; Liu, H.; Tang, X.; Xing, J.; Zhan, W. Identification of Immunogenic Proteins and Evaluation of Recombinant PDHA1 and GAPDH as Potential Vaccine Candidates against Streptococcus iniae Infection in Flounder (Paralichthys olivaceus). PLoS ONE 2018, 13, e0195450. [Google Scholar] [CrossRef]
- Fields, K.A.; Straley, S.C. LcrV of Yersinia pestis Enters Infected Eukaryotic Cells by a Virulence Plasmid-Independent Mechanism. Infect. Immun. 1999, 67, 4801–4813. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.; Leary, S.E.C.; Griffin, K.F.; Williamson, E.D.; Titball, R.W. Regions of Yersinia pestis V Antigen That Contribute to Protection against Plague Identified by Passive and Active Immunization. Infect. Immun. 1997, 65, 4476–4482. [Google Scholar] [CrossRef]
- Overheim, K.A.; DePaolo, R.W.; Debord, K.L.; Morrin, E.M.; Anderson, D.M.; Green, N.M.; Brubaker, R.R.; Jabri, B.; Schneewind, O. LcrV Plague Vaccine with Altered Immunomodulatory Properties. Infect. Immun. 2005, 73, 5152–5159. [Google Scholar] [CrossRef] [PubMed]
- Vernazza, C.; Lingard, B.; Flick-Smith, H.C.; Baillie, L.W.J.; Hill, J.; Atkins, H.S. Small Protective Fragments of the Yersinia pestis V Antigen. Vaccine 2009, 27, 2775–2780. [Google Scholar] [CrossRef]
- Sudheesh, P.S.; Al-Ghabshi, A.; Al-Mazrooei, N.; Al-Habsi, S. Comparative Pathogenomics of Bacteria Causing Infectious Diseases in Fish. Int. J. Evol. Biol. 2012, 2012, 457264. [Google Scholar] [CrossRef] [PubMed]
- Chukwu-Osazuwa, J.; Cao, T.; Vasquez, I.; Gnanagobal, H.; Hossain, A.; Machimbirike, V.I.; Santander, J. Comparative Reverse Vaccinology of Piscirickettsia salmonis, Aeromonas salmonicida, Yersinia ruckeri, Vibrio anguillarum and Moritella viscosa, Frequent Pathogens of Atlantic Salmon and Lumpfish Aquaculture. Vaccines 2022, 10, 473. [Google Scholar] [CrossRef]
- Yoshida, T.; Sakai, M.; Kitao, T.; Khlil, S.M.; Araki, S.; Saitoh, R.; Ineno, T.; Inglis, V. Immunomodulatory Effects of the Fermented Products of Chicken Egg, EF203, on Rainbow Trout, Oncorhynchus mykiss. Aquaculture 1993, 109, 207–214. [Google Scholar] [CrossRef]
- Sakai, M.; Yoshida, T.; Kobayashi, M. Influence of the Immunostimulant, EF203, on the Immune Responses of Rainbow Trout, Oncorhynchus mykiss, to Renibacterium salmoninarum. Aquaculture 1995, 138, 61–67. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnanagobal, H.; Santander, J. Host–Pathogen Interactions of Marine Gram-Positive Bacteria. Biology 2022, 11, 1316. https://doi.org/10.3390/biology11091316
Gnanagobal H, Santander J. Host–Pathogen Interactions of Marine Gram-Positive Bacteria. Biology. 2022; 11(9):1316. https://doi.org/10.3390/biology11091316
Chicago/Turabian StyleGnanagobal, Hajarooba, and Javier Santander. 2022. "Host–Pathogen Interactions of Marine Gram-Positive Bacteria" Biology 11, no. 9: 1316. https://doi.org/10.3390/biology11091316
APA StyleGnanagobal, H., & Santander, J. (2022). Host–Pathogen Interactions of Marine Gram-Positive Bacteria. Biology, 11(9), 1316. https://doi.org/10.3390/biology11091316