Interactions between the Entomopathogenic Fungus Metarhizium anisopliae ICIPE 20 and the Endoparasitoid Dolichogenidea gelechiidivoris, and Implications for Combined Biocontrol of Tuta absoluta
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Metarhizium anisopliae ICIPE 20 Culture and Viability Assessment
2.2. Insect Rearing
2.2.1. Tuta absoluta Colony
2.2.2. Dolichogenidea gelechiidivoris Colony
2.3. Effect of M. anisopliae ICIPE 20 on the Performance and the Longevity of D. gelechiidivoris Adults
2.4. Effect of Metarhizium anisopliae ICIPE 20 on D. gelechiidivoris Larvae
2.5. Dolichogenidea gelechiidivoris Preference for and Performance on M. anisopliae ICIPE 20-Sprayed and T. absoluta Infested Host Plants
2.6. Efficiency of D. gelechiidivoris, M. anisopliae ICIPE 20 and Their Combination on T. absoluta
2.7. Data Analysis
3. Results
3.1. Effect of M. anisopliae ICIPE 20 on the Performance and the Longevity of D. gelechiidivoris Adults
3.2. Effect of M. anisopliae ICIPE 20 on the Development of Parasitised T. absoluta Larvae
3.3. Dolichogenidea gelechiidivoris Preference for and Performance on M. anisopliae ICIPE 20-Sprayed and T. absoluta Infested Host Plants
3.4. Efficiency of D. gelechiidivoris, M. anisopliae ICIPE 20 and Their Combination on T. absoluta
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desneux, N.; Wajnberg, E.; Kris, W.A.G.; Burgio, G.; Arpaia, S.; Narváez-Vasquez, C.A.; González-Cabrera, J.; Ruescas, D.C.; Tabone, E.; Frandon, J.; et al. Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. J. Pest. Sci. 2010, 83, 197–215. [Google Scholar] [CrossRef]
- Chidege, M.; A-zaildi, S.; Hassan, N.; Julie, A.; Kaaya, E.; Mrogoro, S. First record of tomato leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Tanzania. Agric. Food Secur. 2016, 5, 17. [Google Scholar] [CrossRef]
- Karlsson, F.M.; Rachidatou, S.; Sahadatou, M.S.; Joseph, Z.A.; Georg, G. First report of Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) in the Republic of Benin. BioInvasions Rec. 2018, 7, 463–468. [Google Scholar] [CrossRef]
- Han, P.; Bayram, Y.; Shaltiel-Harpaz, L.; Sohrabi, F.; Saji, A.; Esenali, U.T.; Jalilov, A.; Ali, A.; Shashank, P.R.; Ismoilov, K.; et al. Tuta absoluta continues to disperse in Asia: Damage, ongoing management and future challenges. J. Pest. Sci. 2019, 92, 1317–1327. [Google Scholar] [CrossRef]
- Mansour, R.; Brévault, T.; Chailleux, A.; Cherif, A.; Grissa-Lebdi, K.; Haddi, K.; Mohamed, S.A.; Nofemela, R.S.; Oke, A.; Sylla, S.; et al. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol. Gen. 2018, 38, 83–112. [Google Scholar] [CrossRef]
- Aigbedion-Atalor, P.O.; Hill, M.P.; Zalucki, M.P.; Obala, F.; Idriss, G.E.; Midingoyi, S.K.; Chidege, M.; Ekesi, S.; Mohamed, S.A. The South America Tomato Leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), Spreads Its Wings in Eastern Africa: Distribution and Socioeconomic Impacts. J. Econ. Entomol. 2019, 112, 2797–2807. [Google Scholar] [CrossRef]
- Biondi, A.; Guedes, R.N.C.R.; Wan, F.-H.F.; Desneux, N. Ecology, Worldwide Spread, and Management of the Invasive South American Tomato Pinworm, Tuta absoluta: Past, Present, and Future. Annu. Rev. Entomol. 2018, 63, 239–258. [Google Scholar] [CrossRef]
- Grant, C.; Jacobson, R.; Bass, C. Parthenogenesis in UK field populations of the tomato leaf miner, Tuta absoluta, exposed to the mating disruptor Isonet T. Pest. Manag. Sci. 2021, 77, 3445–3449. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Roditakis, E.; Campos, M.R.; Haddi, K.; Bielza, P.; Siqueira, H.A.A.; Tsagkarakou, A.; Vontas, J.; Nauen, R. Insecticide resistance in the tomato pinworm Tuta absoluta: Patterns, spread, mechanisms, management and outlook. J. Pest. Sci. 2019, 92, 1329–1342. [Google Scholar] [CrossRef]
- Rwomushana, I.; Day, R.; Gonzalez-moreno, P. Evidence Note Tomato Leafminer Impacts and Coping Strategies for Africa; CABI: Wallingford, UK, 2019. [Google Scholar]
- Marete, G.M.; Lalah, J.O.; Mputhia, J.; Wekesa, V.W. Pesticide usage practices as sources of occupational exposure and health impacts on horticultural farmers in Meru County, Kenya. Heliyon 2021, 7, e06118. [Google Scholar] [CrossRef]
- Mama Sambo, S.; Ndlela, S.; Plessis, H.; Obala, F.; Mohamed, S.A. Identification, Microhabitat, and Ecological Niche Prediction of Two Promising Native Parasitoids of Tuta absoluta in Kenya. Insect 2022, 16, 496. [Google Scholar] [CrossRef] [PubMed]
- Salas Gervassio, N.G.; Aquino, D.; Vallina, C.; Biondi, A.; Luna, M.G. A re-examination of Tuta absoluta parasitoids in South America for optimized biological control. J. Pest. Sci. 2019, 92, 1343–1357. [Google Scholar] [CrossRef]
- Agbessenou, A.; Akutse, K.S.; Yusuf, A.A.; Ekesi, S.; Subramanian, S.; Khamis, F.M. Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera: Gelechiidae) through a hidden friendship and cryptic battle. Sci. Rep. 2020, 10, 22195. [Google Scholar] [CrossRef]
- Akutse, K.S.; Subramanian, S.; Khamis, F.M.; Ekesi, S.; Mohamed, S.A. Entomopathogenic fungus isolates for adult Tuta absoluta (Lepidoptera: Gelechiidae) management and their compatibility with Tuta pheromone. J. Appl. Entomol. 2020, 144, 777–787. [Google Scholar] [CrossRef]
- Aigbedion-Atalor, P.O.; Hill, M.P.; Ayelo, P.M.; Ndlela, S.; Zalucki, M.P.; Mohamed, S.A. Can the combined use of the mirid predator Nesidiocoris tenuis and a braconid larval endoparasitoid Dolichogenidea gelechiidivoris improve the biological control of Tuta absoluta? Insects 2021, 12, 1004. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.O.; Wesseler, J.H.H. A socioeconomic analysis of biocontrol in integrated pest management: A review of the effects of uncertainty, irreversibility and flexibility. NJAS-Wageningen J. Life Sci. 2016, 77, 53–60. [Google Scholar] [CrossRef]
- Farrar, J.J.; Baur, M.E.; Elliott, S.F. Measuring IPM impacts in California and Arizona. J. Integr. Pest. Manag. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- van Lenteren, J.C. The state of commercial augmentative biological control: Plenty of natural. BioControl 2018, 57, 1–20. [Google Scholar] [CrossRef]
- Aigbedion-Atalor, P.O.; Abuelgasim, S.; Hill, M.P.; Zalucki, M.P.; Azrag, A.G.A.; Srinivasan, R.; Ekesi, S. Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa. Biol. Control. 2020, 144, 104215. [Google Scholar] [CrossRef]
- Morales, J.A.; Muñóz, L.Y.; Rodríguez Caicedo, D.; Cantor, F. Combined Action of Sex Pheromone and Wasp Apanteles gelechiidivoris in Greenhouse Tomato Crops. Acta Biol Colomb 2014, 19, 175–184. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Dubois, T.; Azrag, A.G.A.; Ndlela, S.; Neuenschwander, P. Classical biological of key horticultural pests in Africa: Successes, challenges, and opportunities. Curr. Opin. Insect Sci. 2022, 53, 100945. [Google Scholar] [CrossRef] [PubMed]
- Aigbedion-Atalor, P.O.; Hill, M.P.; Azrag, A.G.A.; Zalucki, M.P.; Mohamed, S.A. Disentangling thermal effects using life cycle simulation modelling on the biology and demographic parameters of Dolichogenidea gelechiidivoris, a parasitoid of Tuta absoluta. J. Therm. Biol. 2022, 107, 103260. [Google Scholar] [CrossRef] [PubMed]
- Agboka, K.M.; Tonnang, H.E.Z.; Abdel-rahman, E.M.; Odindi, J.; Mutanga, O.; Mohamed, S.A. A Fuzzy-Based Model to Predict the Spatio-Temporal Performance of the Dolichogenidea gelechiidivoris Natural Enemy against Tuta absoluta under Climate Change. Biology 2022, 11, 1280. [Google Scholar] [CrossRef]
- Abdel-baky, N.F.; Alhewairini, S.S.; Al-azzazy, M.M.; Qureshi, Z.; Al-deghairi, M.A.; Hajjar, J. Efficacy of Metarhizium anisopliae and Beauveria bassiana against Tuta absoluta (Lepidoptera: Gelechiidae) eggs under laboratory conditions. Pakistan J. Agric. Sci. 2021, 58, 743–750. [Google Scholar] [CrossRef]
- Ndereyimana, A.; Nyalala, S.; Murerwa, P.; Gaidashova, S. Pathogenicity of some commercial formulations of entomopathogenic fungi on the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egypt. J. Biol. Pest. Control. 2019, 29, 70. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Denaxa, N.K. Efficacy of Metarhizium anisopliae and Bacillus thuringiensis against Tomato Leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). Curr. Agric. Res. J. 2019, 7, 37–45. [Google Scholar] [CrossRef]
- Contreras, A.J.; Mendoza, J.E.; Izquierdo, J.; Bielza, P.; Garci, L. Efficacy of Enthomopathogenic Fungus Metarhizium anisopliae Against Tuta absoluta (Lepidoptera: Gelechiidae). Biol. Microb. Control. 2014, 107, 121–124. [Google Scholar] [CrossRef]
- Erasmus, R.; Van Den Berg, J.; du Plessis, H. Susceptibility of Tuta absoluta (Lepidoptera: Gelechiidae) Pupae to Soil Applied Entomopathogenic Fungal Biopesticides. Insects 2021, 12, 515. [Google Scholar] [CrossRef]
- Zekeya, N.; Dubois, T.; Smith, J.; Ramasamy, S. Field effectiveness of Metarhizium anisopliae and pheromone traps against Phthorimaea absoluta on tomato in Tanzania. Crop Prot. 2022, 156, 105942. [Google Scholar] [CrossRef]
- Nielsen, C.; Skovgård, H.; Steenberg, T. Effect of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) on survival and reproduction of the filth fly parasitoid, Spalangia cameroni (Hymenoptera: Pteromalidae). Environ. Entomol. 2005, 34, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Labbé, R.M.; Gillespie, D.R.; Cloutier, C.; Brodeur, J. Compatibility of an entomopathogenic fungus with a predator and a parasitoid in the biological control of greenhouse whitefly. Biocontrol. Sci. Technol. 2009, 19, 429–446. [Google Scholar] [CrossRef]
- Rännbäck, L.M.; Cotes, B.; Anderson, P.; Rämert, B.; Meyling, N.V. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae. J. Invertebr. Pathol. 2015, 124, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Potrich, M.; Alves, L.F.A.; Lozano, E.R.; Bonini, A.K.; Neves, P.M.O.J. Potential Side Effects of the Entomopathogenic Fungus Metarhizium anisopliae on the Egg Parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) under Controlled Conditions. J. Econ. Entomol. 2017, 110, 2318–2324. [Google Scholar] [CrossRef]
- Mas, N.G.; Medina, M.C.; Sánchez, F.G.; Moraga, E.Q. Bottom-up effects of endophytic Beauveria bassiana on multitrophic interactions between the cotton aphid, Aphis gossypii, and its natural enemies in melon. J. Pest. Sci. 2019, 92, 1271–1281. [Google Scholar] [CrossRef]
- Wu, S.; Gao, Y.; Xu, X.; Goettel, M.S.; Lei, Z. Compatibility of Beauveria bassiana with Neoseiulus barkeri for Control of Frankliniella occidentalis. J. Integr. Agric. 2015, 14, 98–105. [Google Scholar] [CrossRef]
- Fazeli-Dinan, M.; Talaei-Hassanloui, R.; Goettel, M. Virulence of the entomopathogenic fungus Lecanicillium longisporum against the greenhouse whitefly, Trialeurodes vaporariorum and its parasitoid Encarsia formosa. Int. J. Pest. Manag. 2016, 62, 251–260. [Google Scholar] [CrossRef]
- Miranda-fuentes, P.; Quesada-moraga, E.; Aldebis, H.K.; Yousef-naef, M. Compatibility between the endoparasitoid Hyposoter didymator and the entomopathogenic fungus Metarhizium brunneum: A laboratory simulation for the simultaneous use to control Spodoptera littoralis. Pest. Manag. Sci. 2019, 76, 1060–1070. [Google Scholar] [CrossRef]
- Domingues, M.M.; Becchi, L.K.; Graziele, S.; Velozo, M.; de Souza, A.R.; Barbosa, L.R.; Soares, M.A.; Serrão, J.E.; Zanuncio, J.C.; Wilcken, C.F. Selectivity of mycoinsecticides and a pyrethroid to the egg parasitoid Cleruchoides noackae (Hymenoptera: Mymaridae). Sci. Rep. 2020, 10, 14617. [Google Scholar] [CrossRef]
- Goettel, M.S.; Inglis, D.G. Fungi: Hyphomycetes. In Manual of Techniques in Insect Pathology; Lacey, L.A., Ed.; Academic Press: London, UK, 1997; pp. 213–249. [Google Scholar]
- Mama Sambo, S.; Ndlela, S.; Plessis, H.; Obala, F.; Mohamed, S.A. Ratio dependence effects of the parasitoid Dolichogenidea gelechiidivoris on its associated host Tuta absoluta. Biocontrol. Sci. Technol. 2022, 32, 497–510. [Google Scholar] [CrossRef]
- Wamiti, L.G.; Khamis, F.M.; Abd-Alla, A.M.M.; Ombura, F.L.O.; Akutse, K.S.; Subramanian, S.; Odiwuor, S.O.; Ochieng, S.J.; Ekesi, S.; Maniania, N.K. Metarhizium anisopliae infection reduces Trypanosoma congolense reproduction in Glossina fuscipes fuscipes and its ability to acquire or transmit the parasite. BMC Microbiol. 2018, 18, 272–292. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Cho, M.; Ki, C.S. Correct use of repeated measures analysis of variance. Korean J. Lab. Med. 2009, 29, 1–9. [Google Scholar] [CrossRef]
- Bathke, A.C.; Friedrich, S.; Pauly, M.; Konietschke, F.; Staffen, W.; Strobl, N.; Höller, Y. Testing Mean Differences among Groups: Multivariate and Repeated Measures Analysis with Minimal Assumptions. Multivariate Behav. Res. 2018, 53, 348–359. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https//www.R-project.org/ (accessed on 2 January 2022).
- Hajek, A.E.; Delalibera, I. Fungal pathogens as classical biological control agents against arthropods. Ecol. Fungal. Entomopathog. 2009, 55, 147–158. [Google Scholar] [CrossRef]
- Magda, S.M.; Soliman, N. Evaluations of Two Metarhizium varieties against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Egypt. Int. J. Sci. Res. 2014, 3, 2067–2073. [Google Scholar] [CrossRef]
- Alikhani, M.; Safavi, S.A.; Iranipour, S. Effect of the entomopathogenic fungus, Metarhizium anisopliae (Metschnikoff) sorokin, on demographic fitness of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egypt. J. Biol. Pest. Control. 2019, 29, 23. [Google Scholar] [CrossRef]
- Abd El-Ghany, N.M.; Abdel-Razek, A.S.; Ebadah, I.M.A.; Mahmoud, Y.A. Evaluation of some microbial agents, natural and chemical compounds for controlling tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J. Plant Prot. Res. 2016, 56, 372–379. [Google Scholar] [CrossRef]
- Nozad-Bonab, Z.; Hejazi, M.J.; Iranipour, S.; Arzanlou, M.; Biondi, A. Lethal and sublethal effects of synthetic and bio-insecticides on Trichogramma brassicae parasitizing Tuta absoluta. PLoS ONE 2021, 16, e0243334. [Google Scholar] [CrossRef]
- Presa-Parra, E.; Hernández-Rosas, F.; Bernal, J.S.; Valenzuela-González, J.E.; Martínez-Tlapa, J.; Birke, A. Impact of Metarhizium robertsii on adults of the parasitoid Diachasmimorpha longicaudata and parasitized Anastrepha ludens larvae. Insects 2021, 12, 125. [Google Scholar] [CrossRef]
- Ayelo, P.M.; Mohamed, S.A.; Chailleux, A.; Yusuf, A.A.; Pirk, C.W.W.; Deletre, E. The parasitoid Dolichogenidea gelechiidivoris eavesdrops on semiochemicals from its host Tuta absoluta and tomato. J. Pest. Sci. 2022, 95, 633–652. [Google Scholar] [CrossRef]
- Rodríguez, M.; Gerding, M.; France, A. Efectividad de Aislamientos de Hongos Entomopatógenos Sobre Larvas de Polilla del Tomate Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). Agric. Técnica 2006, 66, 159–165. [Google Scholar] [CrossRef]
- Fransen, J.J.; van Lenteren, J.C. Survival of the parasitoid Encarsia formosa after treatment of parasitized greenhouse whitefly larvae with fungal spores of Aschersonia aleyrodis. Entomol. Exp. Appl. 1994, 71, 235–243. [Google Scholar] [CrossRef]
- Ramos Aguila, L.C.; Akutse, K.S.; Ashraf, H.J.; Bamisile, B.S.; Lin, J.; Dai, J.; Wang, H.; Wang, L. The survival and parasitism rate of Tamarixia radiata (Hymenoptera: Eulophidae) on its host exposed to Beauveria bassiana (Ascomycota: Hypocreales). Agronomy 2021, 11, 1496. [Google Scholar] [CrossRef]
- Mesquita, A.L.M.; Lacey, L.A. Interactions among the Entomopathogenic Fungus, Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes), the Parasitoid, Aphelinus asychis (Hymenoptera: Aphelinidae), and Their Aphid Host. Biol. Control. 2001, 22, 51–59. [Google Scholar] [CrossRef]
- Mnyone, L.L.; Koenraadt, C.J.M.; Lyimo, I.N.; Mpingwa, M.W.; Takken, W.; Russell, T.L. Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Parasit. Vectors 2010, 3, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Mburu, D.M.; Ochola, L.; Maniania, N.K.; Njagi, P.G.N.; Gitonga, L.M.; Ndung’u, M.W.; Wanjoya, A.K.; Hassanali, A. Relationship between virulence and repellency of entomopathogenic isolates of Metarhizium anisopliae and Beauveria bassiana to the termite Macrotermes michaelseni. J. Insect Physiol. 2009, 55, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Araujo, E.S.; Poltronieri, A.S.; Poitevin, C.G.; Mirás-Avalos, J.M.; Zawadneak, M.A.C.; Pimentel, I.C. Compatibility between Entomopathogenic Fungi and Egg Parasitoids (Trichogrammatidae): A Laboratory Study for Their Combined Use to Control Duponchelia fovealis. Insects 2020, 11, 630. [Google Scholar] [CrossRef]
Age Before Exposure | Treatments | No. Days ± SE (♂) | No. Days ± SE (♀) |
---|---|---|---|
One day | Control | 18.8 ± 0.99 a | 19.58 ± 1.02 a |
Treatment | 16 ± 1.5 a | 18.33 ± 0.88 a | |
Five days | Control | 21.33 ± 0.85 a | 25.19 ± 4.21 a |
Treatment | 17.40 ± 0.75 b | 19.0 ± 1.14 a |
Behavioral Activities | Choice Test | No-Choice Test | ||||
---|---|---|---|---|---|---|
Means ± SE | Statistics | Means ± SE | Statistics | |||
Non-Sprayed | Sprayed | Non-Sprayed | Sprayed | |||
Landing | 1.10 ± 0.25 | 0.63 ± 0.15 | F1,58 = 2.57, p = 0.11 | 0.50 ± 0.14 | 0.63 ± 0.16 | F1,58 = 1.59, p = 0.21 |
walking | 1.50 ± 0.30 | 1.00 ± 0.31 | F1,58 = 1.30, p = 0.26 | 1.43 ± 0.49 | 0.77 ± 0.42 | F1,58 = 0.32, p = 0.57 |
Resting | 0.9 ± 0.2 | 0.67 ± 0.16 | F1,58 = 0.49, p = 0.49 | 0.57 ± 0.23 | 0.83 ± 0.25 | F1,58 = 1.07, p = 0.30 |
Probing | 5.33 ± 1.10 | 3.27 ± 1.10 | F1,58 = 2.08, p = 0.15 | 4.77 ± 0.88 | 2.80 ± 1.20 | F1,58 = 1.72, p = 0.19 |
Oviposition | 0.36 ± 0.13 | 0.33 ± 0.17 | F1,58 = 0.02, p = 0.88 | 0.67 ± 0.31 | 1.03 ± 0.30 | F1,58 = 0.72, p = 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mama Sambo, S.; Akutse, K.S.; du Plessis, H.; Aigbedion-Atalor, P.O.; Mohamed, S.A.; Ndlela, S. Interactions between the Entomopathogenic Fungus Metarhizium anisopliae ICIPE 20 and the Endoparasitoid Dolichogenidea gelechiidivoris, and Implications for Combined Biocontrol of Tuta absoluta. Biology 2022, 11, 1323. https://doi.org/10.3390/biology11091323
Mama Sambo S, Akutse KS, du Plessis H, Aigbedion-Atalor PO, Mohamed SA, Ndlela S. Interactions between the Entomopathogenic Fungus Metarhizium anisopliae ICIPE 20 and the Endoparasitoid Dolichogenidea gelechiidivoris, and Implications for Combined Biocontrol of Tuta absoluta. Biology. 2022; 11(9):1323. https://doi.org/10.3390/biology11091323
Chicago/Turabian StyleMama Sambo, Sahadatou, Komivi Senyo Akutse, Hannalene du Plessis, Pascal Osa Aigbedion-Atalor, Samira Abuelgasim Mohamed, and Shepard Ndlela. 2022. "Interactions between the Entomopathogenic Fungus Metarhizium anisopliae ICIPE 20 and the Endoparasitoid Dolichogenidea gelechiidivoris, and Implications for Combined Biocontrol of Tuta absoluta" Biology 11, no. 9: 1323. https://doi.org/10.3390/biology11091323
APA StyleMama Sambo, S., Akutse, K. S., du Plessis, H., Aigbedion-Atalor, P. O., Mohamed, S. A., & Ndlela, S. (2022). Interactions between the Entomopathogenic Fungus Metarhizium anisopliae ICIPE 20 and the Endoparasitoid Dolichogenidea gelechiidivoris, and Implications for Combined Biocontrol of Tuta absoluta. Biology, 11(9), 1323. https://doi.org/10.3390/biology11091323