Telomere Dynamics in Livestock
Abstract
:Simple Summary
Abstract
1. Introduction
2. Telomere Biology
3. Methods to Determine TL
4. Cloned Animals
5. Telomere Research in Livestock
5.1. Dairy Cattle
5.2. Beef Cattle
5.3. Pigs
5.4. Sheep
5.5. Horses
6. Future Considerations
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Louzon, M.; Coeurdassier, M.; Gimbert, F.; Pauget, B.; de Vaufleury, A. Telomere dynamic in humans and animals: Review and perspectives in environmental toxicology. Environ. Int. 2019, 131, 105025. [Google Scholar] [CrossRef]
- Shay, J.W.; Wright, W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019, 20, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, N.; Rachakonda, S.; Kumar, R. Telomeres and telomere length: A general overview. Cancers 2020, 12, 558. [Google Scholar] [CrossRef]
- Vaiserman, A.; Krasnienkov, D. Telomere length as a marker of biological age: State-of-the-art, open issues, and future perspectives. Front. Genet. 2020, 11, 630186. [Google Scholar] [CrossRef] [PubMed]
- Moyzis, R.K.; Buckingham, J.M.; Cram, L.S.; Dani, M.; Deaven, L.L.; Jones, M.D.; Meyne, J.; Ratliff, R.L.; Wu, J.R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA 1988, 85, 6622–6626. [Google Scholar] [CrossRef] [PubMed]
- Meyne, J.; Ratliff, R.L.; Moyzis, R.K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl. Acad. Sci. USA 1989, 86, 7049–7053. [Google Scholar] [CrossRef] [PubMed]
- de la Sena, C.; Chowdhary, B.P.; Gustavsson, I. Localization of the telomeric (TTAGGG)n sequences in chromosomes of some domestic animals by fluorescence in situ hybridization. Hereditas 1995, 123, 269–274. [Google Scholar] [CrossRef]
- Blackburn, E.H.; Gall, J.G. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 1978, 120, 33–53. [Google Scholar] [CrossRef]
- Blackburn, E.H.; Budarf, M.L.; Challoner, P.B.; Cherry, J.M.; Howard, E.A.; Katzen, A.L.; Pan, W.C.; Ryan, T. DNA termini in ciliate macronuclei. Cold Spring Harb. Symp. Quant. Biol. 1983, 47 Pt 2, 1195–1207. [Google Scholar] [CrossRef]
- Gomes, N.M.; Ryder, O.A.; Houck, M.L.; Charter, S.J.; Walker, W.; Forsyth, N.R.; Austad, S.N.; Venditti, C.; Pagel, M.; Shay, J.W.; et al. Comparative biology of mammalian telomeres: Hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 2011, 10, 761–768. [Google Scholar] [CrossRef]
- Tilesi, F.; Domenico, E.G.D.; Pariset, L.; Bosco, L.; Willems, D.; Valentini, A.; Ascenzioni, F. Telomere length diversity in cattle breeds. Diversity 2010, 2, 1118–1129. [Google Scholar] [CrossRef]
- Argyle, D.; Ellsmore, V.; Gault, E.A.; Munro, A.F.; Nasir, L. Equine telomeres and telomerase in cellular immortalisation and ageing. Mech. Ageing Dev. 2003, 124, 759–764. [Google Scholar] [CrossRef]
- Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]
- Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 1965, 37, 614–636. [Google Scholar] [CrossRef] [PubMed]
- Olovnikov, A.M. Principle of marginotomy in template synthesis of polynucleotides. Dokl. Akad. Nauk SSSR 1971, 201, 1496–1499. [Google Scholar] [PubMed]
- Olovnikov, A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 1973, 41, 181–190. [Google Scholar] [CrossRef]
- Hayflick, L. The future of ageing. Nature 2000, 408, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Greider, C.W.; Blackburn, E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985, 43, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, E.H. Telomeres. Trends Biochem. Sci. 1991, 16, 378–381. [Google Scholar] [CrossRef]
- Blackburn, E.H. Telomere states and cell fates. Nature 2000, 408, 53–56. [Google Scholar] [CrossRef]
- Cesare, A.J.; Reddel, R.R. Alternative lengthening of telomeres: Models, mechanisms and implications. Nat. Rev. Genet. 2010, 11, 319–330. [Google Scholar] [CrossRef]
- Olovnikov, A.M. Telomeres, telomerase, and aging: Origin of the theory. Exp. Gerontol. 1996, 31, 443–448. [Google Scholar] [CrossRef]
- Blackburn, E.H.; Greider, C.W.; Szostak, J.W. Telomeres and telomerase: The path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 2006, 12, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Razgonova, M.P.; Zakharenko, A.M.; Golokhvast, K.S.; Thanasoula, M.; Sarandi, E.; Nikolouzakis, K.; Fragkiadaki, P.; Tsoukalas, D.; Spandidos, D.A.; Tsatsakis, A. Telomerase and telomeres in aging theory and chronographic aging theory (Review). Mol. Med. Rep. 2020, 22, 1679–1694. [Google Scholar] [CrossRef]
- Wang, Q.; Zhan, Y.; Pedersen, N.L.; Fang, F.; Hagg, S. Telomere length and all-cause mortality: A meta-analysis. Ageing Res. Rev. 2018, 48, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Rossiello, F.; Jurk, D.; Passos, J.F.; d’Adda di Fagagna, F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 2022, 24, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Steenstrup, T.; Kark, J.D.; Verhulst, S.; Thinggaard, M.; Hjelmborg, J.V.B.; Dalgard, C.; Kyvik, K.O.; Christiansen, L.; Mangino, M.; Spector, T.D.; et al. Telomeres and the natural lifespan limit in humans. Aging 2017, 9, 1130–1142. [Google Scholar] [CrossRef]
- Bateson, M. Cumulative stress in research animals: Telomere attrition as a biomarker in a welfare context? Bioessays 2016, 38, 201–212. [Google Scholar] [CrossRef]
- Turner, K.J.; Vasu, V.; Griffin, D.K. Telomere biology and human Phenotype. Cells 2019, 8, 73. [Google Scholar] [CrossRef]
- Spiessberger, M.; Hoelzl, F.; Smith, S.; Vetter, S.; Ruf, T.; Nowack, J. The tarnished silver spoon? Trade-off between prenatal growth and telomere length in wild boar. J. Evol. Biol. 2022, 35, 81–90. [Google Scholar] [CrossRef]
- Eisenberg, D.T. Inconsistent inheritance of telomere length (TL): Is offspring TL more strongly correlated with maternal or paternal TL? Eur. J. Hum. Genet. 2014, 22, 8–9. [Google Scholar] [CrossRef]
- Entringer, S.; de Punder, K.; Buss, C.; Wadhwa, P.D. The fetal programming of telomere biology hypothesis: An update. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20170151. [Google Scholar] [CrossRef] [PubMed]
- Shekhidem, H.A.; Sharvit, L.; Leman, E.; Manov, I.; Roichman, A.; Holtze, S.; Huffman, D.M.; Cohen, H.Y.; Hildebrandt, T.B.; Shams, I.; et al. Telomeres and longevity: A cause or an effect? Int. J. Mol. Sci. 2019, 20, 3233. [Google Scholar] [CrossRef]
- Eisenberg, D.T.; Hayes, M.G.; Kuzawa, C.W. Delayed paternal age of reproduction in humans is associated with longer telomeres across two generations of descendants. Proc. Natl. Acad. Sci. USA 2012, 109, 10251–10256. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.T.A.; Kuzawa, C.W. The paternal age at conception effect on offspring telomere length: Mechanistic, comparative and adaptive perspectives. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160442. [Google Scholar] [CrossRef] [PubMed]
- Stindl, R. The paradox of longer sperm telomeres in older men’s testes: A birth-cohort effect caused by transgenerational telomere erosion in the female germline. Mol. Cytogenet. 2016, 9, 12. [Google Scholar] [CrossRef]
- Delgado, D.A.; Zhang, C.; Gleason, K.; Demanelis, K.; Chen, L.S.; Gao, J.; Roy, S.; Shinkle, J.; Sabarinathan, M.; Argos, M.; et al. The contribution of parent-to-offspring transmission of telomeres to the heritability of telomere length in humans. Hum. Genet. 2019, 138, 49–60. [Google Scholar] [CrossRef]
- Dolcini, J.; Wu, H.; Nwanaji-Enwerem, J.C.; Kiomourtozlogu, M.A.; Cayir, A.; Sanchez-Guerra, M.; Vokonas, P.; Schwarz, J.; Baccarelli, A.A. Mitochondria and aging in older individuals: An analysis of DNA methylation age metrics, leukocyte telomere length, and mitochondrial DNA copy number in the VA normative aging study. Aging 2020, 12, 2070–2083. [Google Scholar] [CrossRef]
- Angelier, F.; Costantini, D.; Blevin, P.; Chastel, O. Do glucocorticoids mediate the link between environmental conditions and telomere dynamics in wild vertebrates? A review. Gen. Comp. Endocrinol. 2018, 256, 99–111. [Google Scholar] [CrossRef]
- Casagrande, S.; Stier, A.; Monaghan, P.; Loveland, J.L.; Boner, W.; Lupi, S.; Trevisi, R.; Hau, M. Increased glucocorticoid concentrations in early life cause mitochondrial inefficiency and short telomeres. J. Exp. Biol. 2020, 223, jeb222513. [Google Scholar] [CrossRef]
- Haussmann, M.F.; Vleck, C.M. Telomere length provides a new technique for aging animals. Oecologia 2002, 130, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Nawrot, T.S.; Van Der Stukken, C.; Tylus, D.; Sleurs, H.; Peusens, M.; Alfano, R.; Langie, S.A.S.; Plusquin, M.; Martens, D.S. Different epigenetic signatures of newborn telomere length and telomere attrition rate in early life. Aging 2021, 13, 14630–14650. [Google Scholar] [CrossRef] [PubMed]
- Meesters, M.; Van Eetvelde, M.; Martens, D.S.; Nawrot, T.S.; Dewulf, M.; Govaere, J.; Opsomer, G. Prenatal environment impacts telomere length in newborn dairy heifers. Sci. Rep. 2023, 13, 4672. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Apsley, A.T.; Etzel, L.; Hastings, W.J.; Kozlosky, J.T.; Walker, C.; Wolf, S.E.; Shalev, I. Telomere length and chronological age across the human lifespan: A systematic review and meta-analysis of 414 study samples including 743,019 individuals. Ageing Res. Rev. 2023, 90, 102031. [Google Scholar] [CrossRef]
- Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al. Determinants of telomere length across human tissues. Science 2020, 369, eaaz6876. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, V.E.; Goswami, A.; Salihu, H.M. Telomere length and fetal programming: A review of recent scientific advances. Am. J. Reprod. Immunol. 2017, 77, e12661. [Google Scholar] [CrossRef]
- Verner, G.; Epel, E.; Lahti-Pulkkinen, M.; Kajantie, E.; Buss, C.; Lin, J.; Blackburn, E.; Räikkönen, K.; Wadhwa, P.D.; Entringer, S. Maternal psychological resilience during pregnancy and newborn telomere length: A prospective study. Am. J. Psychiatry 2021, 178, 183–192. [Google Scholar] [CrossRef]
- Welsh, T.H.; Kochran, K.; Earnhardt, A.L.; Cardoso, R.C.; Hairgrove, T.B.; Long, C.R.; Riley, D.; Randel, R.D. PSVIII-B-3 comparison of telomere length in leukocytes of control and prenatally stressed brahman bull and heifer calves. J. Anim. Sci. 2022, 100, 314. [Google Scholar] [CrossRef]
- Vinayagamurthy, S.; Bagri, S.; Mergny, J.L.; Chowdhury, S. Telomeres expand sphere of influence: Emerging molecular impact of telomeres in non-telomeric functions. Trends Genet. 2023, 39, 59–73. [Google Scholar] [CrossRef]
- Zhai, J.; Xu, Y.; Wan, H.; Yan, R.; Guo, J.; Skory, R.; Yan, L.; Wu, X.; Sun, F.; Chen, G.; et al. Neurulation of the cynomolgus monkey embryo achieved from 3D blastocyst culture. Cell 2023, 186, 2078–2091.e18. [Google Scholar] [CrossRef]
- Telomere Research Network. Available online: https://trn.tulane.edu/ (accessed on 29 September 2023).
- Lin, J.; Smith, D.L.; Esteves, K.; Drury, S. Telomere length measurement by qPCR—Summary of critical factors and recommendations for assay design. Psychoneuroendocrinology 2019, 99, 271–278. [Google Scholar] [CrossRef]
- Lindrose, A.R.; McLester-Davis, L.W.Y.; Tristano, R.I.; Kataria, L.; Gadalla, S.M.; Eisenberg, D.T.A.; Verhulst, S.; Drury, S. Method comparison studies of telomere length measurement using qPCR approaches: A critical appraisal of the literature. PLoS ONE 2021, 16, e0245582. [Google Scholar] [CrossRef] [PubMed]
- Study Design & Analysis. Available online: https://trn.tulane.edu/resources/study-design-analysis/ (accessed on 29 September 2023).
- Wang, Y.; Savage, S.A.; Alsaggaf, R.; Aubert, G.; Dagnall, C.L.; Spellman, S.R.; Lee, S.J.; Hicks, B.; Jones, K.; Katki, H.A.; et al. Telomere length calibration from qPCR measurement: Limitations of current method. Cells 2018, 7, 183. [Google Scholar] [CrossRef]
- Codd, V.; Nelson, C.P.; Albrecht, E.; Mangino, M.; Deelen, J.; Buxton, J.L.; Hottenga, J.J.; Fischer, K.; Esko, T.; Surakka, I.; et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 2013, 45, 422–427e2. [Google Scholar] [CrossRef]
- Kimura, M.; Stone, R.C.; Hunt, S.C.; Skurnick, J.; Lu, X.; Cao, X.; Harley, C.B.; Aviv, A. Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nat. Protoc. 2010, 5, 1596–1607. [Google Scholar] [CrossRef]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [PubMed]
- Elbers, C.C.; Garcia, M.E.; Kimura, M.; Cummings, S.R.; Nalls, M.A.; Newman, A.B.; Park, V.; Sanders, J.L.; Tranah, G.J.; Tishkoff, S.A.; et al. Comparison between southern blots and qPCR analysis of leukocyte telomere length in the health ABC study. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Seeker, L.A.; Holland, R.; Underwood, S.; Fairlie, J.; Psifidi, A.; Ilska, J.J.; Bagnall, A.; Whitelaw, B.; Coffey, M.; Banos, G.; et al. Method specific calibration corrects for DNA extraction method effects on relative telomere length measurements by quantitative PCR. PLoS ONE 2016, 11, e0164046. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.C.; Xu, J.; Yang, X. Normal telomere lengths found in cloned cattle. Nat. Genet. 2000, 26, 272–273. [Google Scholar] [CrossRef]
- Lanza, R.P.; Cibelli, J.B.; Blackwell, C.; Cristofalo, V.J.; Francis, M.K.; Baerlocher, G.M.; Mak, J.; Schertzer, M.; Chavez, E.A.; Sawyer, N.; et al. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 2000, 288, 665–669. [Google Scholar] [CrossRef]
- Miyashita, N.; Shiga, K.; Yonai, M.; Kaneyama, K.; Kobayashi, S.; Kojima, T.; Goto, Y.; Kishi, M.; Aso, H.; Suzuki, T.; et al. Remarkable differences in telomere lengths among cloned cattle derived from different cell types. Biol. Reprod. 2002, 66, 1649–1655. [Google Scholar] [CrossRef]
- Jiang, L.; Carter, D.B.; Xu, J.; Yang, X.; Prather, R.S.; Tian, X.C. Telomere lengths in cloned transgenic pigs. Biol. Reprod. 2004, 70, 1589–1593. [Google Scholar] [CrossRef]
- Jeon, H.Y.; Hyun, S.H.; Lee, G.S.; Kim, H.S.; Kim, S.; Jeong, Y.W.; Kang, S.K.; Lee, B.C.; Han, J.Y.; Ahn, C.; et al. The analysis of telomere length and telomerase activity in cloned pigs and cows. Mol. Reprod. Dev. 2005, 71, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Ji, G.; Xie, B.; Li, J.; Mao, J.; Wang, J.; Liu, S.; Liu, L.; Liu, Z. Telomere elongation facilitated by trichostatin a in cloned embryos and pigs by somatic cell nuclear transfer. Stem Cell Rev. Rep. 2014, 10, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Shiels, P.G.; Kind, A.J.; Campbell, K.H.; Waddington, D.; Wilmut, I.; Colman, A.; Schnieke, A.E. Analysis of telomere lengths in cloned sheep. Nature 1999, 399, 316–317. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.J.; Ferrier, P.; Aslam, S.; Burl, S.; Denning, C.; Wylie, D.; Ross, A.; de Sousa, P.; Wilmut, I.; Cui, W. Proliferative lifespan is conserved after nuclear transfer. Nat. Cell Biol. 2003, 5, 535–538. [Google Scholar] [CrossRef]
- Betts, D.H.; Perrault, S.D.; Petrik, J.; Lin, L.; Favetta, L.A.; Keefer, C.L.; King, W.A. Telomere length analysis in goat clones and their offspring. Mol. Reprod. Dev. 2005, 72, 461–470. [Google Scholar] [CrossRef]
- Liu, H.J.; Peng, H.; Hu, C.C.; Li, X.Y.; Zhang, J.L.; Zheng, Z.; Zhang, W.C. Effects of donor cells’ sex on nuclear transfer efficiency and telomere lengths of cloned goats. Reprod. Domest. Anim. 2016, 51, 789–794. [Google Scholar] [CrossRef]
- Ji, G.; Liu, K.; Okuka, M.; Liu, N.; Liu, L. Association of telomere instability with senescence of porcine cells. BMC Cell Biol. 2012, 13, 36. [Google Scholar] [CrossRef]
- Ji, G.; Liu, K.; Chen, C.; Ruan, W.; Glytsou, C.; Yang, Y.; Okuka, M.; Song, W.; Gagos, S.; Li, N.; et al. Conservation and characterization of unique porcine interstitial telomeric sequences. Sci. China Life Sci. 2012, 55, 1029–1037. [Google Scholar] [CrossRef]
- Russo, V.; Berardinelli, P.; Martelli, A.; Di Giacinto, O.; Nardinocchi, D.; Fantasia, D.; Barboni, B. Expression of telomerase reverse transcriptase subunit (TERT) and telomere sizing in pig ovarian follicles. J. Histochem. Cytochem. 2006, 54, 443–455. [Google Scholar] [CrossRef]
- Bodnar, A.G.; Ouellette, M.; Frolkis, M.; Holt, S.E.; Chiu, C.P.; Morin, G.B.; Harley, C.B.; Shay, J.W.; Lichtsteiner, S.; Wright, W.E. Extension of life-span by introduction of telomerase into normal human cells. Science 1998, 279, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Seeker, L.A.; Ilska, J.J.; Psifidi, A.; Wilbourn, R.V.; Underwood, S.L.; Fairlie, J.; Holland, R.; Froy, H.; Bagnall, A.; Whitelaw, B.; et al. Longitudinal changes in telomere length and associated genetic parameters in dairy cattle analysed using random regression models. PLoS ONE 2018, 13, e0192864. [Google Scholar] [CrossRef] [PubMed]
- Bolzan, A.D.; Bianchi, M.S. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat. Res. 2006, 612, 189–214. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.P.; Wright, W.E.; Shay, J.W. Comparison of telomere length measurement methods. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160451. [Google Scholar] [CrossRef] [PubMed]
- Haussmann, M.F.; Mauck, R.A. New strategies for telomere-based age estimation. Mol. Ecol. Resour. 2008, 8, 264–274. [Google Scholar] [CrossRef]
- Hemann, M.T.; Strong, M.A.; Hao, L.Y.; Greider, C.W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 2001, 107, 67–77. [Google Scholar] [CrossRef]
- Herbig, U.; Jobling, W.A.; Chen, B.P.; Chen, D.J.; Sedivy, J.M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell 2004, 14, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Beh, C.W.; Zhang, Y.; Zheng, Y.L.; Sun, B.; Wang, T.H. Fluorescence spectroscopic detection and measurement of single telomere molecules. Nucleic Acids Res. 2018, 46, e117. [Google Scholar] [CrossRef]
- Tham, C.Y.; Poon, L.; Yan, T.; Koh, J.Y.P.; Ramlee, M.K.; Teoh, V.S.I.; Zhang, S.; Cai, Y.; Hong, Z.; Lee, G.S.; et al. High-throughput telomere length measurement at nucleotide resolution using the PacBio high fidelity sequencing platform. Nat. Commun. 2023, 14, 281. [Google Scholar] [CrossRef]
- Sholes, S.L.; Karimian, K.; Gershman, A.; Kelly, T.J.; Timp, W.; Greider, C.W. Chromosome-specific telomere lengths and the minimal functional telomere revealed by nanopore sequencing. Genome Res. 2022, 32, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wan, Y.; Wang, K.; Wei, Q.; Yu, Z.; Chen, L.; Zhou, J.; Wang, J. Digital CRISPR/Cas12a-based platform for precise quantification of telomerase activity. Sens. Actuators B Chem. 2023, 394, 134374. [Google Scholar] [CrossRef]
- Polejaeva, I.A. Generation of genetically engineered livestock using somatic cell nuclear transfer. Reproduction 2021, 162, F11–F22. [Google Scholar] [CrossRef]
- Wilmut, I.; Schnieke, A.E.; McWhir, J.; Kind, A.J.; Campbell, K.H. Viable offspring derived from fetal and adult mammalian cells. Nature 1997, 385, 810–813. [Google Scholar] [CrossRef] [PubMed]
- Burgstaller, J.P.; Brem, G. Aging of Cloned Animals: A Mini-Review. Gerontology 2017, 63, 417–425. [Google Scholar] [CrossRef]
- Betts, D.; Bordignon, V.; Hill, J.; Winger, Q.; Westhusin, M.; Smith, L.; King, W. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl. Acad. Sci. USA 2001, 98, 1077–1082. [Google Scholar] [CrossRef]
- Kurome, M.; Hisatomi, H.; Matsumoto, S.; Tomii, R.; Ueno, S.; Hiruma, K.; Saito, H.; Nakamura, K.; Okumura, K.; Matsumoto, M.; et al. Production efficiency and telomere length of the cloned pigs following serial somatic cell nuclear transfer. J. Reprod. Dev. 2008, 54, 254–258. [Google Scholar] [CrossRef]
- Gambini, A.; Salamone, D. The Relevance of the Donor Cell in Horse Cloning. In Equine Assisted Reproduction; FAVE Editorial: Bogotá, Colombia, 2019; pp. 77–89. [Google Scholar]
- Prowse, K.R.; Greider, C.W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl. Acad. Sci. USA 1995, 92, 4818–4822. [Google Scholar] [CrossRef]
- Brown, D.E.; Dechow, C.D.; Liu, W.S.; Harvatine, K.J.; Ott, T.L. Hot topic: Association of telomere length with age, herd, and culling in lactating Holsteins. J. Dairy Sci. 2012, 95, 6384–6387. [Google Scholar] [CrossRef]
- Haagen, I.; Muratori, T.; Dechow, C. Breed differences between Montbeliardes, Holsteins, and their crosses for production, body condition score, stature, and telomere length. J. Dairy Sci. 2022, 105, 239. [Google Scholar]
- Muratori, T.; Haagen, I.W.; Shabtay, A.; Cohen-Zinder, M.; Dechow, C.D. Association of telomere length with genetic merit for fitness in Holsteins of different ages. J. Dairy Sci. 2022, 105, 238–239. [Google Scholar]
- Seeker, L.A.; Ilska, J.J.; Psifidi, A.; Wilbourn, R.V.; Underwood, S.L.; Fairlie, J.; Holland, R.; Froy, H.; Salvo-Chirnside, E.; Bagnall, A.; et al. Bovine telomere dynamics and the association between telomere length and productive lifespan. Sci. Rep. 2018, 8, 12748. [Google Scholar] [CrossRef]
- Seeker, L.A. Telomere shortening correlates with harsh weather conditions in the bat species Myotis myotis. Mol. Ecol. 2020, 29, 2951–2953. [Google Scholar] [CrossRef] [PubMed]
- Seeker, L.A.; Underwood, S.L.; Wilbourn, R.V.; Dorrens, J.; Froy, H.; Holland, R.; Ilska, J.J.; Psifidi, A.; Bagnall, A.; Whitelaw, B.; et al. Telomere attrition rates are associated with weather conditions and predict productive lifespan in dairy cattle. Sci. Rep. 2021, 11, 5589. [Google Scholar] [CrossRef] [PubMed]
- Ilska-Warner, J.J.; Psifidi, A.; Seeker, L.A.; Wilbourn, R.V.; Underwood, S.L.; Fairlie, J.; Whitelaw, B.; Nussey, D.H.; Coffey, M.P.; Banos, G. The genetic architecture of bovine telomere length in early life and association with animal fitness. Front. Genet. 2019, 10, 1048. [Google Scholar] [CrossRef]
- Iannuzzi, A.; Albarella, S.; Parma, P.; Galdiero, G.; D’Anza, E.; Pistucci, R.; Peretti, V.; Ciotola, F. Characterization of telomere length in Agerolese cattle breed, correlating blood and milk samples. Anim. Genet. 2022, 53, 676–679. [Google Scholar] [CrossRef]
- Laubenthal, L.; Hoelker, M.; Frahm, J.; Danicke, S.; Gerlach, K.; Sudekum, K.H.; Sauerwein, H.; Haussler, S. Short communication: Telomere lengths in different tissues of dairy cows during early and late lactation. J. Dairy Sci. 2016, 99, 4881–4885. [Google Scholar] [CrossRef]
- Haussler, S.; Ghaffari, M.H.; Seibt, K.; Sadri, H.; Alaedin, M.; Huber, K.; Frahm, J.; Danicke, S.; Sauerwein, H. Blood and liver telomere length, mitochondrial DNA copy number, and hepatic gene expression of mitochondrial dynamics in mid-lactation cows supplemented with L-carnitine under systemic inflammation. J. Dairy Sci. 2023; in press. [Google Scholar] [CrossRef]
- Iannuzzi, A.; Della Valle, G.; Russo, M.; Longobardi, V.; Albero, G.; De Canditiis, C.; Kosior, M.A.; Pistucci, R.; Gasparrini, B. Evaluation of bovine sperm telomere length and association with semen quality. Theriogenology 2020, 158, 227–232. [Google Scholar] [CrossRef]
- Iannuzzi, A.; Iannuzzi, L.; Parma, P. Molecular cytogenetics in domestic bovids: A Review. Animals 2023, 13, 944. [Google Scholar] [CrossRef]
- O’Daniel, S.E.; Kochan, K.J.; Long, C.R.; Riley, D.G.; Randel, R.D.; Welsh, T.H., Jr. Comparison of telomere length in age-matched primiparous and multiparous Brahman cows. Animals 2023, 13, 2325. [Google Scholar] [CrossRef]
- Jin, L.; Jiang, Z.; Xia, Y.; Lou, P.; Chen, L.; Wang, H.; Bai, L.; Xie, Y.; Liu, Y.; Li, W.; et al. Genome-wide DNA methylation changes in skeletal muscle between young and middle-aged pigs. BMC Genomics 2014, 15, 653. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Maynou, J.; Llavanera, M.; Mateo-Otero, Y.; Ruiz, N.; Muino, R.; Bonet, S.; Yeste, M. Telomere length in bovine sperm is related to the production of reactive oxygen species, but not to reproductive performance. Theriogenology 2022, 189, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.L.; Bird, E.J.; Underwood, S.; Wilbourn, R.V.; Fairlie, J.; Watt, K.; Salvo-Chirnside, E.; Pilkington, J.G.; Pemberton, J.M.; McNeilly, T.N.; et al. Sex differences in leucocyte telomere length in a free-living mammal. Mol. Ecol. 2017, 26, 3230–3240. [Google Scholar] [CrossRef]
- Froy, H.; Underwood, S.L.; Dorrens, J.; Seeker, L.A.; Watt, K.; Wilbourn, R.V.; Pilkington, J.G.; Harrington, L.; Pemberton, J.M.; Nussey, D.H. Heritable variation in telomere length predicts mortality in Soay sheep. Proc. Natl. Acad. Sci. USA 2021, 118, e2020563118. [Google Scholar] [CrossRef]
- Ravindran, S.; Froy, H.; Underwood, S.L.; Dorrens, J.; Seeker, L.A.; Watt, K.; Wilbourn, R.V.; Pilkington, J.G.; Harrington, L.; Pemberton, J.M.; et al. The association between female reproductive performance and leukocyte telomere length in wild Soay sheep. Mol. Ecol. 2022, 31, 6184–6196. [Google Scholar] [CrossRef] [PubMed]
- Denham, J.; Denham, M.M. Leukocyte telomere length in the Thoroughbred racehorse. Anim. Genet. 2018, 49, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Denham, J.; Stevenson, K.; Denham, M.M. Age-associated telomere shortening in Thoroughbred horses. Exp. Gerontol. 2019, 127, 110718. [Google Scholar] [CrossRef]
- Katepalli, M.P.; Adams, A.A.; Lear, T.L.; Horohov, D.W. The effect of age and telomere length on immune function in the horse. Dev. Comp. Immunol. 2008, 32, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Hanis, F.; Chung, E.L.T.; Kamalludin, M.H.; Idrus, Z. Blood profile, hormones, and telomere responses: Potential biomarkers in horses exhibiting abnormal oral behavior. J. Equine Vet. Sci. 2022, 118, 104130. [Google Scholar] [CrossRef]
- Hanis, F.; Chung, E.L.T.; Kamalludin, M.H.; Idrus, Z. Effect of feed modification on the behavior, blood profile, and telomere in horses exhibiting abnormal oral behaviors. J. Vet. Behav. 2023, 60, 28–36. [Google Scholar] [CrossRef]
- Whittemore, K.; Vera, E.; Martínez-Nevado, E.; Sanpera, C.; Blasco, M.A. Telomere shortening rate predicts species life span. Proc. Natl. Acad. Sci. USA 2019, 116, 15122–15127. [Google Scholar] [CrossRef] [PubMed]
- Hemann, M.T.; Greider, C.W. Wild-derived inbred mouse strains have short telomeres. Nucleic Acids Res. 2000, 28, 4474–4478. [Google Scholar] [CrossRef]
- Manning, E.L.; Crossland, J.; Dewey, M.J.; Van Zant, G. Influences of inbreeding and genetics on telomere length in mice. Mamm. Genome 2002, 13, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Pollack, A.Z.; Rivers, K.; Ahrens, K.A. Parity associated with telomere length among US reproductive age women. Hum. Reprod. 2018, 33, 736–744. [Google Scholar] [CrossRef]
- Panelli, D.M.; Diwan, M.; Cruz, G.I.; Leonard, S.A.; Chueh, J.; Gotlib, I.H.; Bianco, K. An exploratory analysis of leukocyte telomere length among pregnant and non-pregnant people. Brain Behav. Immun. Health 2022, 25, 100506. [Google Scholar] [CrossRef]
- Szczotka, M.; Kocki, J.; Iwan, E.; Pluta, A. Determination of telomere length and telomerase activity in cattle infected with bovine leukaemia virus (BLV). Pol. J. Vet. Sci. 2019, 22, 391–403. [Google Scholar] [CrossRef]
- Kyo, S.; Takakura, M.; Kanaya, T.; Zhuo, W.; Fujimoto, K.; Nishio, Y.; Orimo, A.; Inoue, M. Estrogen activates telomerase. Cancer Res. 1999, 59, 5917–5921. [Google Scholar]
- Choi, J.; Fauce, S.R.; Effros, R.B. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 2008, 22, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Igoshin, A.V.; Yudin, N.S.; Romashov, G.A.; Larkin, D.M. A multibreed genome-wide association study for cattle leukocyte telomere length. Genes 2023, 14, 1596. [Google Scholar] [CrossRef]
- Fradiani, P.A.; Ascenzioni, F.; Lavitrano, M.; Donini, P. Telomeres and telomerase activity in pig tissues. Biochimie 2004, 86, 7–12. [Google Scholar] [CrossRef]
- Brown, W.R.; MacKinnon, P.J.; Villasante, A.; Spurr, N.; Buckle, V.J.; Dobson, M.J. Structure and polymorphism of human telomere-associated DNA. Cell 1990, 63, 119–132. [Google Scholar] [CrossRef]
- Giraud, S.; Favreau, F.; Chatauret, N.; Thuillier, R.; Maiga, S.; Hauet, T. Contribution of large pig for renal ischemia-reperfusion and transplantation studies: The preclinical model. J. Biomed. Biotechnol. 2011, 2011, 532127. [Google Scholar] [CrossRef] [PubMed]
- Kararli, T.T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 1995, 16, 351–380. [Google Scholar] [CrossRef]
- Heinritz, S.N.; Mosenthin, R.; Weiss, E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr. Res. Rev. 2013, 26, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Perleberg, C.; Kind, A.; Schnieke, A. Genetically engineered pigs as models for human disease. Dis. Model. Mech. 2018, 11, dmm030783. [Google Scholar] [CrossRef]
- Nunes Dos Santos, R.M.; Carneiro D’Albuquerque, L.A.; Reyes, L.M.; Estrada, J.L.; Wang, Z.Y.; Tector, M.; Tector, A.J. CRISPR/Cas and recombinase-based human-to-pig orthotopic gene exchange for xenotransplantation. J. Surg. Res. 2018, 229, 28–40. [Google Scholar] [CrossRef]
- Nair, K.S. Aging muscle. Am. J. Clin. Nutr. 2005, 81, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Lee, J.; Le, M.T.; Nguyen, D.T.; Park, S.; Soundrarajan, N.; Schachtschneider, K.M.; Kim, J.; Park, J.K.; Kim, J.H.; et al. Genome-wide analysis of DNA methylation in pigs using reduced representation bisulfite sequencing. DNA Res. 2015, 22, 343–355. [Google Scholar] [CrossRef]
- Rocca, M.S.; Foresta, C.; Ferlin, A. Telomere length: Lights and shadows on their role in human reproduction. Biol. Reprod. 2019, 100, 305–317. [Google Scholar] [CrossRef]
- Fattet, A.J.; Chaillot, M.; Koscinski, I. Telomere length, a new biomarker of male (in)fertility? A systematic review of the literature. Genes 2023, 14, 425. [Google Scholar] [CrossRef]
- Kozik, A.; Bradbury, E.M.; Zalensky, A. Increased telomere size in sperm cells of mammals with long terminal (TTAGGG)n arrays. Mol. Reprod. Dev. 1998, 51, 98–104. [Google Scholar] [CrossRef]
- Ozturk, S. Telomerase activity and telomere length in male germ cells. Biol. Reprod. 2015, 92, 53. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Maynou, J.; Mateo-Otero, Y.; Sanchez-Quijada, M.; Recuero, S.; Delgado-Bermudez, A.; Llavanera, M.; Yeste, M. Telomere length in pig sperm is related to in vitro embryo development outcomes. Animals 2022, 12, 204. [Google Scholar] [CrossRef]
- Clutton-Brock, T.H.; Pemberton, J.M.; Coulson, T.; Stevenson, I.R.; MacColl, A.D.C. The sheep of St Kilda. In Soay Sheep; Clutton-Brock, T.H., Pemberton, J.M., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 17–51. [Google Scholar]
- Barrett, E.L.; Richardson, D.S. Sex differences in telomeres and lifespan. Aging Cell 2011, 10, 913–921. [Google Scholar] [CrossRef]
- Gardner, M.; Bann, D.; Wiley, L.; Cooper, R.; Hardy, R.; Nitsch, D.; Martin-Ruiz, C.; Shiels, P.; Sayer, A.A.; Barbieri, M.; et al. Gender and telomere length: Systematic review and meta-analysis. Exp. Gerontol. 2014, 51, 15–27. [Google Scholar] [CrossRef]
- Broer, L.; Codd, V.; Nyholt, D.R.; Deelen, J.; Mangino, M.; Willemsen, G.; Albrecht, E.; Amin, N.; Beekman, M.; de Geus, E.J.; et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum. Genet. 2013, 21, 1163–1168. [Google Scholar] [CrossRef]
- Spurgin, L.G.; Bebbington, K.; Fairfield, E.A.; Hammers, M.; Komdeur, J.; Burke, T.; Dugdale, H.L.; Richardson, D.S. Spatio-temporal variation in lifelong telomere dynamics in a long-term ecological study. J. Anim. Ecol. 2018, 87, 187–198. [Google Scholar] [CrossRef]
- Dugdale, H.L.; Richardson, D.S. Heritability of telomere variation: It is all about the environment! Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160450. [Google Scholar] [CrossRef]
- Sudyka, J. Does reproduction shorten telomeres? Towards integrating individual quality with life-history strategies in telomere biology. Bioessays 2019, 41, e1900095. [Google Scholar] [CrossRef] [PubMed]
- DeNotta, S.; McFarlane, D. Immunosenescence and inflammaging in the aged horse. Immun. Ageing 2023, 20, 2. [Google Scholar] [CrossRef]
- Bhala, S.; Savage, S.A. What is the future of telomere length testing in telomere biology disorders? Expert. Rev. Hematol. 2023, 16, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Westneat, D.F.; Young, R.C.; Cones, A.G.; Kucera, A.C.; Anacleto, A.; Heidinger, B.J. Early-life telomeres are influenced by environments acting at multiple temporal and spatial scales. Mol. Ecol. 2023. [Google Scholar] [CrossRef] [PubMed]
- GTEx Portal. Available online: https://gtexportal.org/home/index.html (accessed on 26 October 2023).
- Semeraro, M.D.; Almer, G.; Renner, W.; Gruber, H.-J.; Herrmann, M. Telomere length in leucocytes and solid tissues of young and aged rats. Aging 2022, 14, 1713–1728. [Google Scholar] [CrossRef] [PubMed]
Species | Donor Cell | Method | Clone Relative to Control | Source |
---|---|---|---|---|
Bovine | Cumulus and fibroblast | Southern blot: terminal restriction fragment | Same length | [61] |
Somatic | Southern blot: terminal restriction fragment | Longer | [62] | |
Fibroblast | Southern blot analysis | Same length | [63] | |
Muscle | Same length | |||
Oviductal epithelial | Shorter | |||
Mammary epithelial | Shorter | |||
Porcine | Fetal fibroblast | Terminal restriction fragment | Same length | [64] |
Fetal fibroblast | Terminal restriction fragment | Longer | [65] | |
Ear skin fibroblast | qPCR | Longer | [66] | |
Ovine | Mammary epithelial | Southern blot: terminal restriction fragment | Shorter | [67] |
Embryonic cells | Shorter | |||
Fetal fibroblast | Southern blot: terminal restriction fragment | Same length | [68] | |
Caprine | Fetal fibroblast | Southern blot: terminal restriction fragment | Shorter | [69] |
Ear skin adult fibroblast | Southern blot: terminal restriction fragment | Shorter | [70] |
Species | Assay | Major Findings | Sources |
---|---|---|---|
Bos taurus dairy | Monochrome multiplex quantitative PCR (qPCR) | Shorter TL in older cows and cows with shorter productive life Absence of breed differences. TL associated with improved performance/health. TL not associated with longevity or fitness. Heritability estimates: 0.12 to 0.2. | [92,93,94] |
qPCR calibrated for DNA extraction method | TL and age in general are inversely related, but not always. Stress induces telomere attrition. Early life: more rapid TL attrition. Rate of attrition may be more important than absolute TL for association with life productivity traits. Heritability estimates: 0.36 to 0.46. | [75,95,96,97] | |
qPCR | Breed differences detected. Negative relationship of TL with age. Correspondence of TL measured in blood and milk. | [98] | |
qPCR | Tissue differences in TL detected. Late lactation samples had lower TL than early lactation samples. | [99] | |
qPCR | Tissue differences in TL detected. | [100,101] | |
qPCR | Sperm DNA: TL greater in good quality semen samples than in low quality. | [102,103] | |
Bos taurus beef | Densitometry | Breed differences detected. Heterosis may be influential. Tissue differences detected. | [11] |
Bos indicus beef | qPCR | Negative relationship of TL with parity. No difference in TL before and after parturition. | [104] |
Sus scrofus | qPCR | Age effect (TL shorter in aged pigs) may be related to methylation of DNA. | [105] |
qFISH | No TL differences detected in spermatozoa DNA. Spermatozoa TL positively associated with embryonic development of oocytes. | [106] | |
Ovis aries | qPCR | Shorter TL in older wild (Soay) sheep. Stress of reproductive investment associated with shorter TL. | [107,108,109] |
Equus caballus | Telomere restriction fragment (TRF) | Shorter TL in older horses. | [12] |
qPCR | Shorter TL in older horses. No association of TL with racing performance. No association of TL with sex or coat color. | [110,111] | |
Fluorescence-based in situ hybridization | Limited evidence of association of TL with immune response. | [112] | |
qPCR | No detected TL between horses with abnormal oral behaviors nor diet. | [113,114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Baker, E.C.; Welsh, T.H., Jr.; Riley, D.G. Telomere Dynamics in Livestock. Biology 2023, 12, 1389. https://doi.org/10.3390/biology12111389
Zhang N, Baker EC, Welsh TH Jr., Riley DG. Telomere Dynamics in Livestock. Biology. 2023; 12(11):1389. https://doi.org/10.3390/biology12111389
Chicago/Turabian StyleZhang, Nan, Emilie C. Baker, Thomas H. Welsh, Jr., and David G. Riley. 2023. "Telomere Dynamics in Livestock" Biology 12, no. 11: 1389. https://doi.org/10.3390/biology12111389
APA StyleZhang, N., Baker, E. C., Welsh, T. H., Jr., & Riley, D. G. (2023). Telomere Dynamics in Livestock. Biology, 12(11), 1389. https://doi.org/10.3390/biology12111389