Enhancement of Repeat-Mediated Deletion Rearrangement Induced by Particle Irradiation in a RecA-Dependent Manner in Escherichia coli
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Establishment of lacI Direct Repeat Reporter Strain and Mutant Strain of E. coli
2.3. Particle Irradiation of E. coli Strains
2.4. Measurement of E. coli Survival Rate in Response to Particle Irradiation
2.5. Detection of Ampicillin (Amp)-Resistant Clones
2.6. Amplification and Sequence Analysis of lacI Gene
2.7. Statistical Analysis
3. Results
3.1. Enhancement of RMD Rearrangement of LacI Repeats by Particle Irradiation
3.2. Suppressive Effect of Intermolecular Homology on RMD Frequency
3.3. Stimulative Effect of Exogenous Recombinase on RMD Initiated by Particle Irradiation
3.4. Role of the RecA-Dependent Pathway on Particle Irradiation-Induced RMD Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savocco, J.; Piazza, A. Recombination-mediated genome rearrangements. Curr. Opin. Genet. Dev. 2021, 71, 63–71. [Google Scholar] [CrossRef] [PubMed]
- De Bustos, A.; Cuadrado, A.; Jouve, N. Sequencing of long stretches of repetitive DNA. Sci. Rep. 2016, 6, 36665. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Adhya, S. DNA repeat sequences: Diversity and versatility of functions. Curr. Genet. 2017, 63, 411–416. [Google Scholar] [CrossRef] [PubMed]
- López-Flores, I.; Garrido-Ramos, M. The repetitive DNA content of eukaryotic genomes. Repetitive DNA 2012, 7, 1–28. [Google Scholar]
- Cabañas, N.; Becerra, A.; Romero, D.; Govezensky, T.; Espinosa-Aguirre, J.J.; Camacho-Carranza, R. Repetitive DNA profile of the amphibian mitogenome. BMC Bioinform. 2020, 21, 197. [Google Scholar] [CrossRef]
- Lovett, S.T. Encoded errors: Mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol. Microbiol. 2004, 52, 1243–1253. [Google Scholar] [CrossRef]
- Malhotra, N.; Seshasayee, A.S.N. Replication-dependent organization constrains positioning of long DNA repeats in bacterial genomes. Genome Biol. Evol. 2022, 14, evac102. [Google Scholar] [CrossRef]
- Trost, H.; Merkell, A.; Lopezcolorado, F.W.; Stark, J.M. Resolution of sequence divergence for repeat-mediated deletions shows a polarity that is mediated by MLH1. Nucleic Acids Res. 2023, 51, 650–667. [Google Scholar] [CrossRef]
- Dianov, G.L.; Kuzminov, A.V.; Mazin, A.V.; Salganik, R.I. Molecular mechanisms of deletion formation in Escherichia coli plasmids: I. Deletion formation mediated by long direct repeats. Mol. Genet. Genom. 1991, 228, 153–159. [Google Scholar] [CrossRef]
- Bi, X.; Liu, L.F. recA-independent and recA-dependent intramolecular plasmid recombination: Differential homology requirement and distance effect. J. Mol. Biol. 1994, 235, 414–423. [Google Scholar] [CrossRef]
- Del Val, E.; Nasser, W.; Abaibou, H.; Reverchon, S. RecA and DNA recombination: A review of molecular mechanisms. Biochem. Soc. T. 2019, 47, 1511–1531. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.C.; Kowalczykowski, S.C. RecA: Regulation and mechanism of a molecular search engine. Biochem. Soc. T. 2016, 41, 491–507. [Google Scholar] [CrossRef]
- Bzymek, M.; Lovett, S.T. Instability of repetitive DNA sequences: The role of replication in multiple mechanisms. Proc. Natl. Acad. Sci. USA 2001, 98, 8319–8325. [Google Scholar] [CrossRef] [PubMed]
- Ithurbide, S.; Bentchikou, E.; Coste, G.; Bost, B.; Servant, P.; Sommer, S. Single strand annealing plays a major role in RecA-independent recombination between repeated sequences in the radioresistant Deinococcus radiodurans bacterium. PLoS Genet. 2015, 11, e1005636. [Google Scholar] [CrossRef]
- Hu, Q.; Lu, H.; Wang, H.; Li, S.; Truong, L.; Li, J.; Liu, S.; Xiang, R.; Wu, X. Break-induced replication plays a prominent role in long-range repeat-mediated deletion. Embo J. 2019, 38, e101751. [Google Scholar] [CrossRef]
- Mendez-Dorantes, C.; Bhargava, R.; Stark, J.M. Repeat-mediated deletions can be induced by a chromosomal break far from a repeat, but multiple pathways suppress such rearrangements. Gene Dev. 2018, 32, 524–536. [Google Scholar] [CrossRef]
- Mendez-Dorantes, C.; Tsai, L.J.; Jahanshir, E.; Lopezcolorado, F.W.; Stark, J.M. BLM has contrary effects on repeat-mediated deletions, based on the distance of DNA DSBs to a repeat and repeat divergence. Cell Rep. 2020, 30, 1342–1357.e4. [Google Scholar] [CrossRef]
- Lorat, Y.; Brunner, C.U.; Schanz, S.; Jakob, B.; Taucher-Scholz, G.; Rübe, C.E. Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy–the heavy burden to repair. DNA Repair 2015, 28, 93–106. [Google Scholar] [CrossRef]
- Tuttle, A.R.; Trahan, N.D.; Son, M.S. Growth and maintenance of Escherichia coli laboratory strains. Curr. Protoc. 2021, 1, e20. [Google Scholar] [CrossRef]
- Hillson, N.J.; Rosengarten, R.D.; Keasling, J.D. j5 DNA assembly design automation software. Acs Synth. Biol. 2012, 1, 14–21. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, D.; Ye, L.; Zhan, T.; Xiong, B.; Hu, M.; Bi, C.; Zhang, X. A programmable CRISPR/Cas9-based phage defense system for Escherichia coli BL21 (DE3). Microb. Cell Fact. 2020, 19, 136. [Google Scholar] [CrossRef]
- Sivaramakrishnan, P.; Sepúlveda, L.A.; Halliday, J.A.; Liu, J.; Núñez, M.A.B.; Golding, I.; Rosenberg, S.M.; Herman, C. The transcription fidelity factor GreA impedes DNA break repair. Nature 2017, 550, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Scully, R.; Panday, A.; Elango, R.; Willis, N.A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 2019, 20, 698–714. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Pannunzio, N.R.; Adachi, N.; Lieber, M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017, 18, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.E.; Kaul, T.; Deininger, P. Long-distance relationships: Suppression of repeat-mediated deletions. Trends Genet. 2018, 34, 572–574. [Google Scholar] [CrossRef]
- Hagiwara, Y.; Oike, T.; Niimi, A.; Yamauchi, M.; Sato, H.; Limsirichaikul, S.; Held, K.D.; Nakano, T.; Shibata, A. Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation. J. Radiat. Res. 2019, 60, 69–79. [Google Scholar] [CrossRef]
- Nickoloff, J.A.; Sharma, N.; Taylor, L. Clustered DNA Double-Strand Breaks: Biological effects and relevance to cancer radiotherapy. Genes 2020, 11, 99. [Google Scholar] [CrossRef]
- Sanders, J.T.; Freeman, T.F.; Xu, Y.; Golloshi, R.; Stallard, M.A.; Hill, A.M.; Martin, R.S.; Balajee, A.S.; McCord, R.P. Radiation-induced DNA damage and repair effects on 3D genome organization. Nat. Commun. 2020, 11, 6178. [Google Scholar] [CrossRef]
- Schipler, A.; Iliakis, G. DNA double-strand–break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res. 2013, 41, 7589–7605. [Google Scholar] [CrossRef]
- Mavragani, I.V.; Nikitaki, Z.; Kalospyros, S.A.; Georgakilas, A.G. Ionizing radiation and complex DNA damage: From prediction to detection challenges and biological significance. Cancers 2019, 11, 1789. [Google Scholar] [CrossRef]
- Hada, M.; Georgakilas, A.G. Formation of clustered DNA damage after high-LET irradiation: A review. J. Radiat. Res. 2008, 49, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Sage, E.; Shikazono, N. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radic. Biol. Med. 2017, 107, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cooper, D.N.; Nadia, C.; Ferec, C.; Patrinos, G.P. Gene conversion: Mechanisms, evolution and human disease. Nat. Rev. Genet. 2007, 8, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Fujitani, Y.; Kobayashi, I. Asymmetric random walk in a reaction intermediate of homologous recombination. J. Theor. Biol. 2003, 220, 359–370. [Google Scholar] [CrossRef]
- Treangen, T.J.; Abraham, A.-L.; Touchon, M.; Rocha, E.P. Genesis, effects and fates of repeats in prokaryotic genomes. Fems Microbiol. Rev. 2009, 33, 539–571. [Google Scholar] [CrossRef]
- Datta, S.; Costantino, N.; Zhou, X.; Court, D.L. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc. Natl. Acad. Sci. USA 2008, 105, 1626–1631. [Google Scholar] [CrossRef]
- Song, J.; Dong, H.; Ma, C.; Zhao, B.; Shang, G. Construction and functional characterization of an integrative form λ Red recombineering Escherichia coli strain. Fems Microbiol. Lett. 2010, 309, 178–183. [Google Scholar] [CrossRef]
- Spies, M.; Dillingham, M.S.; Kowalczykowski, S.C. Translocation by the RecB motor is an absolute requirement for χ-recognition and RecA protein loading by RecBCD enzyme. J. Biol. Chem. 2005, 280, 37078–37087. [Google Scholar] [CrossRef]
- Morimatsu, K.; Kowalczykowski, S.C. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair. Mol. Cell. 2003, 11, 1337–1347. [Google Scholar] [CrossRef]
lacO | lacI | |||
---|---|---|---|---|
No. | Site | Mutation | Site | Mutation |
1 | +4 | C→T | - | - |
2 | +4 | C→T | - | - |
3 | - | - | +568 | T+ |
lacO | lacI | lacO | lacI | ||||||
---|---|---|---|---|---|---|---|---|---|
No. | Site | Mutation | Site | Mutation | No. | Site | Mutation | Site | Mutation |
1 | +4 | C→T | - | - | 30 | +4 | C→T | - | - |
2 | +4 | C→T | - | - | 31 | +4 | C→T | - | - |
3 | +4 | C→T | - | - | 32 | +4 | C→G | - | - |
4 | +4 | C→T | - | - | 33 | +4 | C→G | - | - |
5 | +4 | C→T | - | - | 34 | +4 | C→T | - | - |
6 | +4 | C→T | - | - | 35 | +4 | C→G | - | - |
7 | +4 | C→T | - | - | 36 | +4 | C→T | - | - |
8 | +4 | C→T | - | - | 37 | +4 | C→G | - | - |
9 | +4 | C→T | - | - | 38 | +4 | C→G | - | - |
10 | +4 | C→T | - | - | 39 | +6 | C→T | - | - |
11 | +4 | C→T | - | - | 40 | +8 | C→A | - | - |
12 | +4 | C→T | - | - | 41 | +9 | C→T | - | - |
13 | +4 | C→T | - | - | 42 | +9 | C→T | - | - |
14 | +4 | C→T | - | - | 43 | +9 | C→T | - | - |
15 | +4 | C→T | - | - | 44 | +9 | G→A | - | - |
16 | +4 | C→T | - | - | 45 | +9 | G→A | - | - |
17 | +4 | C→T | - | - | 46 | - | - | +571 | G→A |
18 | +4 | C→T | - | - | 47 | - | - | +580 | C+ |
19 | +4 | C→T | - | - | 48 | - | - | +592 | G+ |
20 | +4 | C→T | - | - | 49 | - | - | +593 | A+ |
21 | +4 | C→T | - | - | 50 | - | - | +595 | G→T |
22 | +4 | C→T | - | - | 51 | - | - | +595 | C+ |
23 | +4 | C→T | - | - | 52 | - | - | +599 | C+ |
24 | +4 | C→T | - | - | 53 | - | - | +607 | T→G |
25 | +4 | C→T | - | - | 54 | - | - | +628 | T+ |
26 | +4 | C→T | - | - | 55 | - | - | +635 | G+ |
27 | +4 | C→T | - | - | 56 | - | - | +672 | G+ |
28 | +4 | C→T | - | - | 57 | - | - | +755 | G→A |
29 | +4 | C→T | - | - | 58 | - | - | +836 | G→T |
lacO | lacI | lacO | lacI | ||||||
---|---|---|---|---|---|---|---|---|---|
No. | Site | Mutation | Site | Mutation | No. | Site | Mutation | Site | Mutation |
1 | +4 | C→T | - | - | 54 | - | - | +572 | G+ |
2 | +4 | C→T | - | - | 55 | - | - | +577 | A+ |
3 | +4 | C→T | - | - | 56 | - | - | +582 | G→T |
4 | +4 | C→T | - | - | 57 | - | - | +599 | G→A |
5 | +4 | C→T | - | - | 58 | - | - | +603 | G+ |
6 | +4 | C→T | - | - | 59 | - | - | +603 | GCCA− |
7 | +4 | C→T | - | - | 60 | - | - | +604 | GCCA+ |
8 | +4 | C→T | - | - | 61 | - | - | +604 | GCCA+ |
9 | +4 | C→T | - | - | 62 | - | - | +604 | GCCA− |
10 | +4 | C→T | - | - | 63 | - | - | +604 | GCCA+ |
11 | +4 | C→T | - | - | 64 | - | - | +643 | C+ |
12 | +4 | C→T | - | - | 65 | - | - | +653 | G→C |
13 | +4 | C→G | - | - | 66 | - | - | +653 | G→C |
14 | +4 | C→T | - | - | 67 | - | - | +659 | C→T |
15 | +4 | C→T | - | - | 68 | - | - | +663 | C→G |
16 | +4 | C→T | - | - | 69 | - | - | +667 | 7 bp+ |
17 | +4 | C→T | - | - | 70 | - | - | +671 | G→A |
18 | +4 | C→T | - | - | 71 | - | - | +674 | C+ |
19 | +4 | C→T | - | - | 72 | - | - | +696 | G→C |
20 | +4 | C→T | - | - | 73 | - | - | +696 | G→C |
21 | +4 | C→T | - | - | 74 | - | - | +710 | G− |
22 | +4 | C→T | - | - | 75 | - | - | +710 | G→A |
23 | +4 | C→T | - | - | 76 | - | - | +711 | C→A |
24 | +4 | C→T | - | - | 77 | - | - | +718 | G→C |
25 | +4 | C→T | - | - | 78 | - | - | +720 | A+ |
26 | +4 | C→T | - | - | 79 | - | - | +726 | G→A |
27 | +4 | C→T | - | - | 80 | - | - | +735 | G+ |
28 | +4 | C→T | - | - | 81 | - | - | +735 | T→C |
29 | +4 | C→T | - | - | 82 | - | - | +735 | G+ |
30 | +4 | C→T | - | - | 83 | - | - | +735 | G+ |
31 | +4 | C→T | - | - | 84 | - | - | +750 | G→C |
32 | +4 | C→T | - | - | 85 | - | - | +758 | 201 bp− |
33 | +4 | C→T | - | - | 86 | - | - | +771 | G→A |
34 | +4 | C→T | - | - | 87 | - | - | +783 | G→A |
35 | +4 | C→T | - | - | 88 | - | - | +802 | 11 bp− |
36 | +4 | C→G | - | - | 89 | - | - | +803 | G→A |
37 | +4 | C→T | - | - | 90 | - | - | +821 | GTCGT− |
38 | +4 | C→T | - | - | 91 | - | - | +848 | G→A |
39 | +4 | C→T | - | - | 92 | - | - | +849 | G→A |
40 | +4 | C→T | - | - | 93 | - | - | +879 | G→A |
41 | +4 | C→T | - | - | 94 | - | - | +885 | G→C |
42 | +4 | C→T | - | - | 95 | - | - | +899 | G→T |
43 | +5 | A→G | - | - | 96 | - | - | +905 | G→C |
44 | +5 | A→G | - | - | 97 | - | - | +922 | G→A |
45 | +9 | G→A | - | - | 98 | - | - | +922 | G→T |
46 | +9 | G→T | - | - | 99 | - | - | +941 | 49 bp− |
47 | +9 | G→T | - | - | 100 | - | - | +956 | C→A |
48 | +9 | G→T | - | - | 101 | - | - | +957 | 8 bp+ |
49 | +9 | G→T | - | - | 102 | - | - | +962 | G→A |
50 | +9 | C→T | - | - | 103 | - | - | +966 | G→A |
51 | +10 | C→A | - | - | 104 | - | - | +970 | A→G |
52 | +10 | C→T | - | - | 105 | - | - | +1001 | CG→AT |
53 | - | - | +572 | G+ | 106 | - | - | +1018 | G+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Z.; Xu, Z.; Wu, M.; Ma, L.; Sui, L.; Bian, P.; Wang, T. Enhancement of Repeat-Mediated Deletion Rearrangement Induced by Particle Irradiation in a RecA-Dependent Manner in Escherichia coli. Biology 2023, 12, 1406. https://doi.org/10.3390/biology12111406
Hou Z, Xu Z, Wu M, Ma L, Sui L, Bian P, Wang T. Enhancement of Repeat-Mediated Deletion Rearrangement Induced by Particle Irradiation in a RecA-Dependent Manner in Escherichia coli. Biology. 2023; 12(11):1406. https://doi.org/10.3390/biology12111406
Chicago/Turabian StyleHou, Zhiyang, Zelin Xu, Mengying Wu, Liqiu Ma, Li Sui, Po Bian, and Ting Wang. 2023. "Enhancement of Repeat-Mediated Deletion Rearrangement Induced by Particle Irradiation in a RecA-Dependent Manner in Escherichia coli" Biology 12, no. 11: 1406. https://doi.org/10.3390/biology12111406
APA StyleHou, Z., Xu, Z., Wu, M., Ma, L., Sui, L., Bian, P., & Wang, T. (2023). Enhancement of Repeat-Mediated Deletion Rearrangement Induced by Particle Irradiation in a RecA-Dependent Manner in Escherichia coli. Biology, 12(11), 1406. https://doi.org/10.3390/biology12111406