The Lipid Phosphate Phosphatase Wunen Promotes Eggshell Formation and Is Essential for Fertility in Drosophila
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Drosophila Stocks and Handling
2.2. Immunohistochemistry
2.3. Electron Microscopy
3. Results
3.1. Wunen Is Required during Oogenesis in Egg Chamber Follicle Cells
3.2. Lipin, an Intracellular PA Phosphatase, Cannot Substitute for Wun in Follicle Cells
3.3. Eggs Laid by Wun Mutant Females Are Susceptible to Desiccation
3.4. Eggs Laid by Wun Mutant Females Exhibit Eggshell and VM Defects
3.5. Egg Chamber Organisation and Follicle Cell Functionality Are Not Compromised by the Loss of Wun
3.6. Eggshell Organisation Is Disrupted by the Loss of Wun
3.7. Wun Localszes to Follicle Cell Plasma Membranes
3.8. Septate Junction Knockdown in Follicle Cells Leads to Reduced Egg Laying and Collapsed Eggs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hinton, H.E. Biology of Insect Eggs. Volume I, Volume II, Volume III.; Pergammon Press: Oxford, UK, 1981; ISBN 9780080215396. [Google Scholar]
- Margaritis, L.H.; Kafatos, F.C.; Petri, W.H. The Eggshell of Drosophila Melanogaster. I. Fine Structure of the Layers and Regions of the Wild-Type Eggshell. J. Cell Sci. 1980, 43, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Fakhouri, M.; Elalayli, M.; Sherling, D.; Hall, J.D.; Miller, E.; Sun, X.; Wells, L.; LeMosy, E.K. Minor Proteins and Enzymes of the Drosophila Eggshell Matrix. Dev. Biol. 2006, 293, 127–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavaliere, V.; Bernardi, F.; Romani, P.; Duchi, S.; Gargiulo, G. Building up the Drosophila Eggshell: First of All the Eggshell Genes Must Be Transcribed. Dev. Dyn. 2008, 237, 2061–2072. [Google Scholar] [CrossRef] [PubMed]
- Waring, G.L. Morphogenesis of the Eggshell in Drosophila. Int. Rev. Cytol. 2000, 198, 67–108. [Google Scholar] [CrossRef]
- Calvi, B.R.; Lilly, M.A.; Spradling, A.C. Cell Cycle Control of Chorion Gene Amplification. Genes Dev. 1998, 12, 734–744. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Benesch, M.G.K.; Brindley, D.N. Lipid Phosphate Phosphatases and Their Roles in Mammalian Physiology and Pathology. J. Lipid Res. 2015, 56, 2048–2060. [Google Scholar] [CrossRef] [Green Version]
- Ile, K.E.; Tripathy, R.; Goldfinger, V.; Renault, A.D. Wunen, a Drosophila Lipid Phosphate Phosphatase, Is Required for Septate Junction-Mediated Barrier Function. Development 2012, 139, 2535–2546. [Google Scholar] [CrossRef] [Green Version]
- Devine, W.P.; Lubarsky, B.; Shaw, K.; Luschnig, S.; Messina, L.; Krasnow, M.A. Requirement for Chitin Biosynthesis in Epithelial Tube Morphogenesis. Proc. Natl. Acad. Sci. USA 2005, 102, 17014–17019. [Google Scholar] [CrossRef]
- Tonning, A.; Hemphälä, J.; Tång, E.; Nannmark, U.; Samakovlis, C.; Uv, A. A Transient Luminal Chitinous Matrix Is Required to Model Epithelial Tube Diameter in the Drosophila Trachea. Dev. Cell 2005, 9, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Martínez, E.; Fernández-Ulibarri, I.; Lázaro-Diéguez, F.; Johannes, L.; Pyne, S.; Sarri, E.; Egea, G. Lipid Phosphate Phosphatase 3 Participates in Transport Carrier Formation and Protein Trafficking in the Early Secretory Pathway. J. Cell Sci. 2013, 126, 2641–2655. [Google Scholar] [CrossRef] [Green Version]
- Valente, V.; Maia, R.M.; Vianna, M.C.B.; Paçó-Larson, M.L. Drosophila Melanogaster Lipins Are Tissue-Regulated and Developmentally Regulated and Present Specific Subcellular Distributions. FEBS J. 2010, 277, 4775–4788. [Google Scholar] [CrossRef] [PubMed]
- Renault, A.D.; Sigal, Y.J.; Morris, A.J.; Lehmann, R. Soma-Germ Line Competition for Lipid Phosphate Uptake Regulates Germ Cell Migration and Survival. Science 2004, 305, 1963–1966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, J.; Purcell, K.J.; Cheng, Y.; Howard, K. The Drosophila Protein Wunen Repels Migrating Germ Cells. Nature 1997, 385, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Manseau, L.; Baradaran, A.; Brower, D.; Budhu, A.; Elefant, F.; Phan, H.; Philp, A.V.; Yang, M.; Glover, D.; Kaiser, K.; et al. GAL4 Enhancer Traps Expressed in the Embryo, Larval Brain, Imaginal Discs, and Ovary of Drosophila. Dev. Dyn. 1997, 209, 310–322. [Google Scholar] [CrossRef]
- Ugrankar, R.; Liu, Y.; Provaznik, J.; Schmitt, S.; Lehmann, M. Lipin Is a Central Regulator of Adipose Tissue Development and Function in Drosophila Melanogaster. Mol. Cell. Biol. 2011, 31, 1646–1656. [Google Scholar] [CrossRef] [Green Version]
- Morin, X.; Daneman, R.; Zavortink, M.; Chia, W. A Protein Trap Strategy to Detect GFP-Tagged Proteins Expressed from Their Endogenous Loci in Drosophila. Proc. Natl. Acad. Sci. USA 2001, 98, 15050–15055. [Google Scholar] [CrossRef]
- Strigini, M.; Cohen, S.M. Wingless Gradient Formation in the Drosophila Wing. Curr. Biol. 2000, 10, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Cernilogar, F.M.; Fabbri, F.; Andrenacci, D.; Taddei, C.; Gargiulo, G. Drosophila Vitelline Membrane Cross-Linking Requires the Fs(1)Nasrat, Fs(1)Polehole and Chorion Genes Activities. Dev. Genes Evol. 2001, 211, 573–580. [Google Scholar] [CrossRef]
- Renault, A.D.; Starz-Gaiano, M.; Lehmann, R. Metabolism of Sphingosine 1-Phosphate and Lysophosphatidic Acid: A Genome Wide Analysis of Gene Expression in Drosophila. Mech. Dev. 2002, 119, S293–S301. [Google Scholar] [CrossRef]
- Queenan, A.M.; Ghabrial, A.; Schüpbach, T. Ectopic Activation of Torpedo/Egfr, a Drosophila Receptor Tyrosine Kinase, Dorsalizes Both the Eggshell and the Embryo. Development 1997, 124, 3871–3880. [Google Scholar] [CrossRef]
- Morris, A.J.; Smyth, S.S.; Salous, A.K.; Renault, A.D. Lipid Phosphate Phosphatases: Recent Progress and Assay Methods. Lysophospholipid Recept. Signal. Biochem. 2013, 229–263. [Google Scholar] [CrossRef]
- Burnett, C.; Howard, K. Fly and Mammalian Lipid Phosphate Phosphatase Isoforms Differ in Activity Both in Vitro and in Vivo. EMBO Rep. 2003, 4, 793–799. [Google Scholar] [CrossRef]
- Donkor, J.; Sariahmetoglu, M.; Dewald, J.; Brindley, D.N.; Reue, K. Three Mammalian Lipins Act as Phosphatidate Phosphatases with Distinct Tissue Expression Patterns. J. Biol. Chem. 2007, 282, 3450–3457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landis, G.; Tower, J. The Drosophila Chiffon Gene Is Required for Chorion Gene Amplification, and Is Related to the Yeast Dbf4 Regulator of DNA Replication and Cell Cycle. Development 1999, 126, 4281–4293. [Google Scholar] [CrossRef] [PubMed]
- D’Alterio, C.; Tran, D.D.D.; Au Yeung, M.W.Y.; Hwang, M.S.H.; Li, M.A.; Arana, C.J.; Mulligan, V.K.; Kubesh, M.; Sharma, P.; Chase, M.; et al. Drosophila Melanogaster Cad99C, the Orthologue of Human Usher Cadherin PCDH15, Regulates the Length of Microvilli. J. Cell. Biol. 2005, 171, 549–558. [Google Scholar] [CrossRef]
- Lemosy, E.K.; Hashimoto, C. The Nudel Protease of Drosophila Is Required for Eggshell Biogenesis in Addition to Embryonic Patterning. Dev. Biol. 2000, 217, 352–361. [Google Scholar] [CrossRef] [Green Version]
- LeMosy, E.K.; Kemler, D.; Hashimoto, C. Role of Nudel Protease Activation in Triggering Dorsoventral Polarization of the Drosophila Embryo. Development 1998, 125, 4045–4053. [Google Scholar] [CrossRef]
- Rao, S.; Lang, C.; Levitan, E.S.; Deitcher, D.L. Visualization of Neuropeptide Expression, Transport, and Exocytosis in Drosophila Melanogaster. J. Neurobiol. 2001, 49, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Bohrmann, J.; Braun, B. Na, K-ATPase and V-ATPase in Ovarian Follicles of Drosophila Melanogaster. Biol. Cell 1999, 91, 85–98. [Google Scholar] [CrossRef]
- Wei, J.; Hortsch, M.; Goode, S. Neuroglian Stabilizes Epithelial Structure during Drosophila Oogenesis. Dev. Dyn. 2004, 230, 800–808. [Google Scholar] [CrossRef]
- Woods, D.F.; Bryant, P.J. The Discs-Large Tumor Suppressor Gene of Drosophila Encodes a Guanylate Kinase Homolog Localized at Septate Junctions. Cell 1991, 66, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Alhadyian, H.; Shoaib, D.; Ward, R.E. Septate Junction Proteins Are Required for Egg Elongation and Border Cell Migration during Oogenesis in Drosophila. G3 2021, 11, jkab127. [Google Scholar] [CrossRef] [PubMed]
- Mahowald, A.P. Ultrastructural Observations on Oogenesis in Drosophila. J. Morphol. 1972, 137, 29–48. [Google Scholar] [CrossRef]
- Müller, H.-A.J. Genetic Control of Epithelial Cell Polarity: Lessons From Drosophila. Dev. Dyn. 2000, 218, 52–67. [Google Scholar] [CrossRef]
- Duhart, J.C.; Parsons, T.T.; Raftery, L.A. The Repertoire of Epithelial Morphogenesis on Display: Progressive Elaboration of Drosophila Egg Structure. Mech. Dev. 2017, 148, 18–39. [Google Scholar] [CrossRef]
- Fehon, R.G.; Dawson, L.A.; Artavanis-Tsakonas, S. A Drosophila Homologue of Membrane-Skeleton Protein 4.1 Is Associated with Septate Junctions and Is Encoded by the Coracle Gene. Development 1994, 120, 545–557. [Google Scholar] [CrossRef]
- Paul, S.M.; Ternet, M.; Salvaterra, P.M.; Beitel, G.J. The Na+/K+ ATPase Is Required for Septate Junction Function and Epithelial Tube-Size Control in the Drosophila Tracheal System. Development 2003, 130, 4963–4974. [Google Scholar] [CrossRef] [Green Version]
- Renault, A.D.; Kunwar, P.S.; Lehmann, R. Lipid Phosphate Phosphatase Activity Regulates Dispersal and Bilateral Sorting of Embryonic Germ Cells in Drosophila. Development 2010, 137, 1815–1823. [Google Scholar] [CrossRef] [Green Version]
- Tootle, T.L.; Williams, D.; Hubb, A.; Frederick, R.; Spradling, A. Drosophila Eggshell Production: Identification of New Genes and Coordination by Pxt. PLoS ONE 2011, 6, e19943. [Google Scholar] [CrossRef] [Green Version]
Genotype | Viability |
---|---|
lipine00680/Df(2R)exel7095; tub Gal4/+ | lethal |
lipine00680/Df(2R)exel7095; tub Gal4/UAS lipin | viable and fertile |
lipine00680/Df(2R)exel7095; tub Gal4/UAS wun | lethal |
lipine00680/Df(2R)exel7095; tub Gal4/UAS wun2myc | lethal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, A.; Schuppe, M.; Renault, A.D. The Lipid Phosphate Phosphatase Wunen Promotes Eggshell Formation and Is Essential for Fertility in Drosophila. Biology 2023, 12, 1003. https://doi.org/10.3390/biology12071003
Mukherjee A, Schuppe M, Renault AD. The Lipid Phosphate Phosphatase Wunen Promotes Eggshell Formation and Is Essential for Fertility in Drosophila. Biology. 2023; 12(7):1003. https://doi.org/10.3390/biology12071003
Chicago/Turabian StyleMukherjee, Amrita, Michaela Schuppe, and Andrew D. Renault. 2023. "The Lipid Phosphate Phosphatase Wunen Promotes Eggshell Formation and Is Essential for Fertility in Drosophila" Biology 12, no. 7: 1003. https://doi.org/10.3390/biology12071003
APA StyleMukherjee, A., Schuppe, M., & Renault, A. D. (2023). The Lipid Phosphate Phosphatase Wunen Promotes Eggshell Formation and Is Essential for Fertility in Drosophila. Biology, 12(7), 1003. https://doi.org/10.3390/biology12071003