Inbreeding-Driven Innate Behavioral Changes in Drosophila melanogaster
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Base Population
2.2. Lineage Setup
2.3. Experimental Crosses
2.4. Egg-to-Adult Viability
2.5. Behavioral Assays
2.5.1. Larval Crawling Assay
2.5.2. Larval Phototaxis Assay
2.5.3. Rapid Iterative Negative Geotaxis (RING) Assay
2.5.4. Phototaxis Assay
2.5.5. Aversive Phototaxis Suppression Assay
2.5.6. Forced-Swim Assay
2.5.7. Aggression Assay
2.5.8. Courtship Assay
2.6. Statistical Analysis
3. Results
3.1. Inbreeding Drops Egg-to-Adult Viability
3.2. Inbreeding Adversely Affects Larval Crawling Ability
3.3. Inbreeding Alters Larval Innate Phototaxis Response
3.4. Inbreeding Adversely Affects Fly Climbing Ability
3.5. Inbreeding Negatively Influences Positive Phototactic Behavior of Flies
3.6. Inbreeding Improves Learning in Positively Phototactic Flies
3.7. Inbreeding Influences Stress Escape Response
3.8. Inbreeding and Aggression in Flies
3.9. Inbreeding Adversely Affects Courtship Behavior in Flies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brito, L.F.; Bédère, N.; Douhard, F.; Oliveira, H.R.; Arnal, M.; Peñagaricano, F.; Schinckel, A.P.; Baes, C.F.; Miglior, F. Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal 2021, 15, 100292. [Google Scholar] [CrossRef] [PubMed]
- Haskell, M.J.; Simm, G.; Turner, S.P. Genetic selection for temperament traits in dairy and beef cattle. Front. Genet. 2014, 5, 368. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, D.; Willis, J.H. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Schrieber, K.; Paul, S.C.; Höche, L.V.; Salas, A.C.; Didszun, R.; Mößnang, J.; Müller, C.; Erfmeier, A.; Eilers, E.J. Inbreeding in a dioecious plant has sex-and population origin-specific effects on its interactions with pollinators. eLife 2021, 10, e65610. [Google Scholar] [CrossRef] [PubMed]
- Austerlitz, F.; Gleiser, G.; Teixeira, S.; Bernasconi, G. The effects of inbreeding, genetic dissimilarity and phenotype on male reproductive success in a dioecious plant. Proc. R. Soc. B Biol. Sci. 2012, 279, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Leroy, G. Inbreeding depression in livestock species: Review and meta-analysis. Anim. Genet. 2014, 45, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Leroy, G.; Phocas, F.; Hedan, B.; Verrier, E.; Rognon, X. Inbreeding impact on litter size and survival in selected canine breeds. Vet. J. 2015, 203, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Bhinder, M.A.; Sadia, H.; Mahmood, N.; Qasim, M.; Hussain, Z.; Rashid, M.M.; Zahoor, M.Y.; Bhatti, R.; Shehzad, W.; Waryah, A.M.; et al. Consanguinity: A blessing or menace at population level? Ann. Hum. Genet. 2019, 83, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Temaj, G.; Nuhii, N.; Sayer, J.A. The impact of consanguinity on human health and disease with an emphasis on rare diseases. J. Rare Dis. 2022, 1, 2. [Google Scholar] [CrossRef]
- Anholt, R.R. Evolution of epistatic networks and the genetic basis of innate behaviors. Trends Genet. 2020, 36, 24–29. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, L.A.; Hofmann, H.A. Genes, hormones, and circuits: An integrative approach to study the evolution of social behavior. Front. Neuroendocrinol. 2011, 32, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.A. The Biology of Relationships: What Behavioral Genetics Tells Us About Interactions Among Family Members. De Paul Law Rev. 2007, 56, 837–846. [Google Scholar] [PubMed]
- Wallace, B.; Madden, C. Studies on inbred strains of Drosophila melanogaster. Am. Nat. 1965, 99, 495–510. [Google Scholar] [CrossRef]
- Biémont, C.; Bouletreau-Merle, J. Inbreeding effect: Embryonic development and fecundity of Drosophila melanogaster offspring. Experientia 1978, 34, 1273–1274. [Google Scholar] [CrossRef]
- Biemont, C. Inbreeding effects: Evidence for a genetic system which regulates viability in Drosophila melanogaster populations. Mech. Ageing Dev. 1978, 8, 21–42. [Google Scholar] [CrossRef]
- García, N.; López-Fanjul, C.; García-Dorado, A. The genetics of viability in Drosophila melanogaster: Effects of inbreeding and artificial selection. Evolution 1994, 48, 1277–1285. [Google Scholar] [CrossRef]
- Rumball, W.; Franklin, I.R.; Frankham, R.; Sheldon, B.L. Decline in heterozygosity under full-sib and double first-cousin inbreeding in Drosophila melanogaster. Genetics 1994, 136, 1039–1049. [Google Scholar] [CrossRef]
- Sultanova, Z.; Andic, M.; Carazo, P. The “unguarded-X” and the genetic architecture of lifespan: Inbreeding results in a potentially maladaptive sex-specific reduction of female lifespan in Drosophila melanogaster. Evolution 2018, 72, 540–552. [Google Scholar] [CrossRef]
- Swindell, W.R.; Bouzat, J.L. Inbreeding depression and male survivorship in Drosophila: Implications for senescence theory. Genetics 2006, 172, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Bijlsma, R.; Bundgaard, J.; Boerema, A.C. Does inbreeding affect the extinction risk of small populations?: Predictions from Drosophila. J. Evol. Biol. 2000, 13, 502–514. [Google Scholar] [CrossRef]
- Reed, D.H.; Briscoe, D.A.; Frankham, R. Inbreeding and extinction: The effect of environmental stress and lineage. Conserv. Genet. 2002, 3, 301–307. [Google Scholar] [CrossRef]
- Kristensen, T.N.; Barker, J.S.; Pedersen, K.S.; Loeschcke, V. Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions. Proc. R. Soc. B Biol. Sci. 2008, 275, 2055–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spielman, D.; Brook, B.W.; Briscoe, D.A.; Frankham, R. Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv. Genet. 2004, 5, 439–448. [Google Scholar] [CrossRef]
- Sharp, P.M. The effect of inbreeding on competitive male-mating ability in Drosophila melanogaster. Genetics 1984, 106, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Dolphin, K.E.; Carter, A.J. Inbreeding decreases promiscuity in Drosophila melanogaster females. Ethol. Ecol. Evol. 2016, 28, 202–210. [Google Scholar] [CrossRef]
- Hoenigsberg, H.F.; Santibanez, S.K. Courtship and sensory preferences in inbred lines of Drosophila melanogaster. Evolution 1960, 14, 1–7. [Google Scholar] [CrossRef]
- Nepoux, V.; Haag, C.R.; Kawecki, T.J. Effects of inbreeding on aversive learning in Drosophila. J. Evol. Biol. 2010, 23, 2333–2345. [Google Scholar] [CrossRef] [Green Version]
- Manenti, T.; Pertoldi, C.; Nasiri, N.; Schou, M.F.; Kjærsgaard, A.; Cavicchi, S.; Loeschcke, V. Inbreeding affects locomotor activity in Drosophila melanogaster at different ages. Behav. Genet. 2015, 45, 127–134. [Google Scholar] [CrossRef]
- Jørgensen, D.B.; Ørsted, M.; Kristensen, T.N. Sustained positive consequences of genetic rescue of fitness and behavioural traits in inbred populations of Drosophila melanogaster. J. Evol. Biol. 2022, 35, 868–878. [Google Scholar] [CrossRef]
- Sansom, A.; Lind, J.; Cresswell, W. Individual behavior and survival: The roles of predator avoidance, foraging success, and vigilance. Behav. Ecol. 2009, 20, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Donahoe, J.W. Reflections on behavior analysis and evolutionary biology: A selective review of evolution since Darwin—The first 150 years. Edited by MA Bell, DJ Futuyama, WF Eanes, & JS Levinton. J. Exp. Anal. Behav. 2012, 97, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, A.V.; Klimczuk, A.C.; Traficonte, D.M.; Maestripieri, D. When violence pays: A cost-benefit analysis of aggressive behavior in animals and humans. Evol. Psychol. 2013, 11, 678–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, C.D.; Becnel, J.; Pandey, U.B. Methods to assay Drosophila behavior. J. Vis. Exp. 2012, 61, e3795. [Google Scholar] [CrossRef] [Green Version]
- Lilly, M.; Carlson, J. smellblind: A gene required for Drosophila olfaction. Genetics 1990, 124, 293–302. [Google Scholar] [CrossRef]
- Ali, Y.O.; Escala, W.; Ruan, K.; Zhai, R.G. Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. J. Vis. Exp. 2011, 49, e2504. [Google Scholar] [CrossRef] [Green Version]
- Neckameyer, W.S.; Nieto-Romero, A.R. Response to stress in Drosophila is mediated by gender, age and stress paradigm. Stress 2015, 18, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Dierick, H.A. A method for quantifying aggression in male Drosophila melanogaster. Nat. Protoc. 2007, 2, 2712–2718. [Google Scholar] [CrossRef]
- Saleem, S.; Ruggles, P.H.; Abbott, W.K.; Carney, G.E. Sexual experience enhances Drosophila melanogaster male mating behavior and success. PLoS ONE 2014, 9, e96639. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Keebaugh, E.S.; Tariq, M.; Ja, W.W. Evolutionary responses of Drosophila melanogaster under chronic malnutrition. Front. Ecol. Evol. 2018, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, U.; Tinsley, B.; Sen, Y.; Stein, J.; Palacios, Y.; Ceballos, A.; Welch, C.; Nzenkue, K.; Penn, A.; Murphy, L.; et al. Exposure to bisphenol A differentially impacts neurodevelopment and behavior in Drosophila melanogaster from distinct genetic backgrounds. Neurotoxicology 2021, 82, 146–157. [Google Scholar] [CrossRef]
- Poças, G.M.; Crosbie, A.E.; Mirth, C.K. When does diet matter? The roles of larval and adult nutrition in regulating adult size traits in Drosophila melanogaster. J. Insect Physiol. 2022, 139, 104051. [Google Scholar] [CrossRef]
- Asahina, K.; Pavlenkovich, V.; Vosshall, L.B. The survival advantage of olfaction in a competitive environment. Curr. Biol. 2008, 18, 1153–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Essen, A.M.H.J.; Pauls, D.; Thum, A.S.; Sprecher, S.G. Capacity of visual classical conditioning in Drosophila larvae. Behav. Neurosci. 2011, 125, 921–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wosniack, M.E.; Festa, D.; Hu, N.; Gjorgjieva, J.; Berni, J. Adaptation of Drosophila larva foraging in response to changes in food resources. eLife 2022, 11, e75826. [Google Scholar] [CrossRef] [PubMed]
- Rhodenizer, D.; Martin, I.; Bhandari, P.; Pletcher, S.D.; Grotewiel, M. Genetic and environmental factors impact age-related impairment of negative geotaxis in Drosophila by altering age-dependent climbing speed. Exp. Gerontol. 2008, 43, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S.; Stokes, C.; de Bivort, B.L. Phototactic personality in fruit flies and its suppression by serotonin and white. Proc. Natl. Acad. Sci. USA 2012, 109, 19834–19839. [Google Scholar] [CrossRef] [Green Version]
- Higham, T.E. The integration of locomotion and prey capture in vertebrates: Morphology, behavior, and performance. Integr. Comp. Biol. 2007, 47, 82–95. [Google Scholar] [CrossRef]
- Bretman, A.; Westmancoat, J.D.; Gage, M.J.; Chapman, T. Males use multiple, redundant cues to detect mating rivals. Curr. Biol. 2011, 21, 617–622. [Google Scholar] [CrossRef]
- Branco, T.; Redgrave, P. The neural basis of escape behavior in vertebrates. Annu. Rev. Neurosci. 2020, 43, 417–439. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Isono, K.; Tomaru, M.; Oguma, Y. Light-affected male following behavior is involved in light-dependent mating in Drosophila melanogaster. Genes Genet. Syst. 1997, 72, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Nitta, Y.; Sugie, A. Studies of neurodegenerative diseases using Drosophila and the development of novel approaches for their analysis. Fly 2022, 16, 275–298. [Google Scholar] [CrossRef]
- Chan, H.Y.; Bonini, N.M. Drosophila models of human neurodegenerative disease. Cell Death Differ. 2000, 7, 1075–1080. [Google Scholar] [CrossRef]
- Kristensen, T.N.; Loeschcke, V.; Tan, Q.; Pertoldi, C.; Mengel-From, J. Sex and age specific reduction in stress resistance and mitochondrial DNA copy number in Drosophila melanogaster. Sci. Rep. 2019, 9, 12305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belmonte, R.L.; Corbally, M.K.; Duneau, D.F.; Regan, J.C. Sexual dimorphisms in innate immunity and responses to infection in Drosophila melanogaster. Front. Immunol. 2020, 10, 3075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putten, V. Environmental dependence of inbreeding depression and purging in Drosophila melanogaster. J. Evol. Biol. 1999, 12, 1125–1137. [Google Scholar] [CrossRef]
- Enders, L.S.; Nunney, L. Sex-specific effects of inbreeding in wild-caught Drosophila melanogaster under benign and stressful conditions. J. Evol. Biol. 2010, 23, 2309–2323. [Google Scholar] [CrossRef]
- Enders, L.S.; Nunney, L. Reduction in the cumulative effect of stress-induced inbreeding depression due to intragenerational purging in Drosophila melanogaster. Heredity 2016, 116, 304–313. [Google Scholar] [CrossRef] [Green Version]
- Uddin, N.; Hussain, M.; Rauf, I.; Zaidi, S.F. Identification of key pathways and genes responsible for aggressive behavior. Comput. Biol. Chem. 2020, 88, 107349. [Google Scholar] [CrossRef]
- Edwards, A.C.; Rollmann, S.M.; Morgan, T.J.; Mackay, T.F. Quantitative genomics of aggressive behavior in Drosophila melanogaster. PLoS Genet. 2006, 2, e154. [Google Scholar] [CrossRef] [Green Version]
- Eklund, A.M. The effects of inbreeding on aggression in wild male house mice (Mus domesticus). Behaviour 1996, 133, 883–901. [Google Scholar] [CrossRef]
- Valtonen, T.M.; Roff, D.A.; Rantala, M.J. The deleterious effects of high inbreeding on male Drosophila melanogaster attractiveness are observed under competitive but not under non-competitive conditions. Behav. Genet. 2014, 44, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Averhoff, W.W.; Richardson, R.H. Pheromonal control of mating patterns in Drosophila melanogaster. Behav. Genet. 1974, 4, 207–225. [Google Scholar] [CrossRef]
- Brittnacher, J.G. Genetic variation and genetic load due to the male reproductive component of fitness in Drosophila. Genetics 1981, 97, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.A. The inbreeding decline and average dominance of genes affecting male life-history characters in Drosophila melanogaster. Genet. Res. 1995, 65, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Partridge, L.; Mackay, T.F.; Aitken, S. Male mating success and fertility in Drosophila melanogaster. Genet. Res. 1985, 46, 279–285. [Google Scholar] [CrossRef]
- Miller, P.S.; Glasner, J.; Hedrick, P.W. Inbreeding depression and male-mating behavior in Drosophila melanogaster. Genetica 1993, 88, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, W.D. The genetical evolution of social behaviour. II. J. Theor. Biol. 1964, 7, 17–52. [Google Scholar] [CrossRef]
- Sherman, P.W. Nepotism and the Evolution of Alarm Calls: Alarm calls of Belding’s ground squirrels warn relatives, and thus are expressions of nepotism. Science 1977, 197, 1246–1253. [Google Scholar] [CrossRef] [Green Version]
- Niepoth, N.; Bendesky, A. How natural genetic variation shapes behavior. Annu. Rev. Genom. Hum. Genet. 2020, 21, 437–463. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, L.P.; Riddle, N.C. Exercise-induced changes in climbing performance. R. Soc. Open Sci. 2021, 8, 211275. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, L.; Ben-Shahar, Y.; Jacobs, J.S.; Eberl, D.F.; Welsh, M.J. TRPA channels distinguish gravity sensing from hearing in Johnston’s organ. Proc. Natl. Acad. Sci. USA 2009, 106, 13606–13611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawin-McCormack, E.P.; Sokolowski, M.B.; Campos, A.R. Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development. J. Neurogenet. 1995, 10, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, D.G.; Benzer, S. Photophobe (Ppb), a Drosophila mutant with a reversed sign of phototaxis; the mutation shows an allele-specific interaction with sevenless. Proc. Natl. Acad. Sci. USA 1988, 85, 3960–3964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luu, P.; Zaki, S.A.; Tran, D.H.; French, R.L. A novel gene controlling the timing of courtship initiation in Drosophila melanogaster. Genetics 2016, 202, 1043–1053. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, D.; Fujitani, K.; Usui, K.; Ito, H.; Nakano, Y. From behavior to development: Genes for sexual behavior define the neuronal sexual switch in Drosophila. Mech. Dev. 1998, 73, 135–146. [Google Scholar] [CrossRef]
- Castrillon, D.H.; Gönczy, P.; Alexander, S.; Rawson, R.; Eberhart, C.G.; Viswanathan, S.R.; DiNardo, S.; Wasserman, S.A. Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: Characterization of male-sterile mutants generated by single P element mutagenesis. Genetics 1993, 135, 489–505. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, D.; Jallon, J.M.; Komatsu, A. Genetic dissection of sexual behavior in Drosophila melanogaster. Annu. Rev. Entomol. 1997, 42, 551–585. [Google Scholar] [CrossRef] [PubMed]
- Buchner, E. Genes expressed in the adult brain of Drosophila and effects of their mutations on behavior: A survey of transmitter-and second messenger-related genes. J. Neurogenet. 1991, 7, 153–192. [Google Scholar] [CrossRef]
- Suzuki, K.; Juni, N.; Yamamoto, D. Enhanced mate refusal in female Drosophila induced by a mutation in the spinster locus. Appl. Entomol. Zool. 1997, 32, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Finley, K.D.; Taylor, B.J.; Milstein, M.; McKeown, M. dissatisfaction, a gene involved in sex-specific behavior and neural development of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1997, 94, 913–918. [Google Scholar] [CrossRef] [Green Version]
- Kyriacou, C.P.; Hall, J.C. Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male’s courtship song. Proc. Natl. Acad. Sci. USA 1980, 77, 6729–6733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peixoto, A.A.; Hall, J.C. Analysis of temperature-sensitive mutants reveals new genes involved in the courtship song of Drosophila. Genetics 1998, 148, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Baggett, V.; Mishra, A.; Kehrer, A.L.; Robinson, A.O.; Shaw, P.; Zars, T. Place learning overrides innate behaviors in Drosophila. Learn. Mem. 2018, 25, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seugnet, L.; Suzuki, Y.; Stidd, R.; Shaw, P.J. Aversive phototaxic suppression: Evaluation of a short-term memory assay in Drosophila melanogaster. Genes Brain Behav. 2009, 8, 377–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, M.; Jabeen, N.; Shabbir, S.; Udin, N.; Aziz, B.; Amanullah, A.; Raza, F.; Baig, A.A. Dataset for homologous proteins in Drosophila melanogaster for SARS-CoV-2/human interactome. Data Br. 2020, 32, 106082. [Google Scholar] [CrossRef] [PubMed]
- Reiter, L.T.; Potocki, L.; Chien, S.; Gribskov, M.; Bier, E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 2001, 11, 1114–1125. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanullah, A.; Arzoo, S.; Aslam, A.; Qureshi, I.W.; Hussain, M. Inbreeding-Driven Innate Behavioral Changes in Drosophila melanogaster. Biology 2023, 12, 926. https://doi.org/10.3390/biology12070926
Amanullah A, Arzoo S, Aslam A, Qureshi IW, Hussain M. Inbreeding-Driven Innate Behavioral Changes in Drosophila melanogaster. Biology. 2023; 12(7):926. https://doi.org/10.3390/biology12070926
Chicago/Turabian StyleAmanullah, Anusha, Shabana Arzoo, Ayesha Aslam, Iffat Waqar Qureshi, and Mushtaq Hussain. 2023. "Inbreeding-Driven Innate Behavioral Changes in Drosophila melanogaster" Biology 12, no. 7: 926. https://doi.org/10.3390/biology12070926
APA StyleAmanullah, A., Arzoo, S., Aslam, A., Qureshi, I. W., & Hussain, M. (2023). Inbreeding-Driven Innate Behavioral Changes in Drosophila melanogaster. Biology, 12(7), 926. https://doi.org/10.3390/biology12070926