Comparison of Biological and Genetic Characteristics between Two Most Common Broad-Leaved Weeds in Paddy Fields: Ammannia arenaria and A. multiflora (Lythraceae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Comparison of Morphology and Seed Germination Conditions
2.2. Determination of Sensitivity to Common Herbicides
2.3. Construction of Chloroplast Genome
2.3.1. DNA Sequencing and Genome Assembly
2.3.2. Genome Component Analysis and Gene Annotation
2.4. Analysis of Genetic Relationship and Identification Characteristics
2.4.1. Contraction and Expansion Analysis of Inverted Repeats Regions
2.4.2. Phylogenetic Analysis
2.4.3. Single Nucleotide Polymorphism (SNP) Analysis
3. Results
3.1. Differences in Morphology and Seed Germination Characteristics
3.2. Similar Sensitivity to Common Herbicides in Paddy Fields
3.3. Differences in Chloroplast Genome Composition
3.3.1. Chloroplast Genome Features
3.3.2. Sequence Repeats
3.3.3. Gene Annotation and Classification
3.4. Genetic Affinity and Differences
3.4.1. IR Expansion and Contraction
3.4.2. Phylogenetic Tree
3.4.3. Single Nucleotide Polymorphism
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iwatsuki, K.; Boufford, D.E.; Ohba, H. Angiospermae, Dicotyledoneae, Archichlamydeae; Kodansha Publishers: Tokyo, Japan, 2006. [Google Scholar]
- Turki, Z.A. The genus Ammannia L. (Lythraceae) in Egypt. Flora Mediterr. 2007, 17, 97–114. [Google Scholar]
- Chakravarty, A. Weed flora of paddy fields of West Bengal. Indian Agric. 1957, 1, 19–25. [Google Scholar]
- Fujii, S.; Omura, M.; Sugahara, S.; Kamiya, H.; Yamamuro, M. Effect of Herbicides in Paddy Runoff on Seed Germination of Vallisneria asiatica and Ammannia multiflora. Aquat. Sci. Technol. 2017, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Liu, Q.; Zhang, Y.; Li, J.; Dong, L. Comparison of weed seedbanks in different rice planting systems. Agron. J. 2017, 109, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Yuan, G.; Wang, Y.; Gao, P.; Shen, G. Species composition and characterization of weed community in the paddy fields in Shanghai. Plant Prot. 2018, 44, 152–157. (In Chinese) [Google Scholar]
- Zhou, Z.; Zhou, L.; Zhang, D. Occurrence and control technology of weeds in the paddy fields in Taicang City of Jiangsu Province. Weed Sci. 2010, 44–46. (In Chinese) [Google Scholar]
- China Pesticide Information Network. Available online: http://www.chinapesticide.org.cn/ (accessed on 25 November 2022).
- Sada, Y.; Ikeda, H.; Kizawa, S. Resistance levels of sulfonylurea-resistant Schoenoplectus juncoides (Roxb.) Palla with various Pro197 mutations in acetolactate synthase to imazosulfuron, bensulfuron-methyl, metsulfuron-methyl and imazaquin-ammonium. Weed Biol. Manag. 2013, 13, 53–61. [Google Scholar] [CrossRef]
- Liu, L.; Wan, P.; Li, Y.; Duan, Z.; Peng, C.; Yuan, S.; Deng, W. Occurrence of Bensulfuron-Methyl Resistance and Target-Site Resistance Mechanisms in Ammannia auriculata Biotypes from Paddy Fields. Plants 2022, 11, 1926. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, B.; Cai, X.; Zhou, W.; Wang, H.; Lu, Q.; Zhou, G.; Liu, Y.; Liang, W.; Wang, S.; et al. Resistance and its resistant molecular mechanism of Ammannia arenaria to ALS inhibiting herbicides. Chin. J. Pestic. Sci. 2020, 22, 60–67. (In Chinese) [Google Scholar]
- Gu, H.; Jiang, Y.; Wang, H.; Zhou, J.; Li, H.; Zhang, J.; Sun, X.; Gao, B. Efficacy and safety evaluation of 26% Metolachlor mercapturate + bensulfuron-methyl WP controlling annual weeds in mechanized-transplanting rice fields. Mod. Agric. Sci. Technol. 2015, 128–129. (In Chinese) [Google Scholar]
- Han, H.; Yu, Q.; Purba, E.; Li, M.; Walsh, M.; Friesen, S.; Powles, S.B. A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides. Pest Manag. Sci. 2012, 68, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Tranel, P.J.; Wright, T.R. Resistance of weeds to ALS-inhibiting herbicides: What have we learned? Weed Sci. 2002, 50, 700–712. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.; Yu, J.; Li, J.; Dong, L. The phytotoxicity mechanism of florpyrauxifen-benzyl to Echinochloa crus-galli (L.) P. Beauv and weed control effect. Pestic. Biochem. Phys. 2021, 179, 104978. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, Q.; Zhu, J.; Liu, R.; Wang, S.; Liu, Y.; Lu, Q.; Wang, G. Resistance comparison of Ammannia arenaria to bensulfuron-methyl in different paddy rice growing regions of Zhejiang Province. Chin. J. Pestic. Sci. 2013, 15, 52–58. (In Chinese) [Google Scholar]
- Deng, W.; Duan, Z.; Li, Y.; Cui, H.; Peng, C.; Yuan, S. Characterization of target-site resistance to ALS-inhibiting herbicides in Ammannia multiflora populations. Weed Sci. 2022, 70, 292–297. [Google Scholar] [CrossRef]
- Yang, Q.; Wei, T.; Zhu, J.; Liu, H.; Lv, M. Resistance level and target-site resistance mechanism to bensulfuron-methyl in Ammannia multiflora. Chin. J. Pestic. Sci. 2022, 24, 798–804. (In Chinese) [Google Scholar]
- Flora Reipublicae Popularis Sinicae. Available online: http://www.iplant.cn/ (accessed on 25 November 2022).
- Upadhyay, H.C. Medicinal chemistry of alternative therapeutics: Novelty and hopes with genus Ammannia. Curr. Top. Med. Chem. 2019, 19, 784–794. [Google Scholar] [CrossRef]
- He, S. External Patch for Treating Otitis Media. Chinese Patent 105963623A, 28 September 2016. [Google Scholar]
- Wang, C. Treating Thyroid Nodules of Pharmaceutical Composition and Preparation Method Thereof. Chinese Patent 105816553A, 3 August 2016. [Google Scholar]
- Howe, C.J.; Barbrook, A.C.; Koumandou, V.L.; Nisbet, R.E.R.; Symington, H.A.; Wightman, T.F. Evolution of the chloroplast genome. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2003, 358, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Plunkett, G.M.; Downie, S.R. Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae. Syst. Bot. 2000, 25, 648–667. [Google Scholar] [CrossRef]
- Wicke, S.; Schneeweiss, G.M.; Depamphilis, C.W.; Müller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef] [Green Version]
- Cosner, M.E.; Raubeson, L.A.; Jansen, R.K. Chloroplast DNA rearrangements in Campanulaceae: Phylogenetic utility of highly rearranged genomes. BMC Evol. Biol. 2004, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hong, Z.; Wu, Z.; Zhao, K.; Yang, Z.; Zhang, N.; Guo, J.; Tembrock, L.R.; Xu, D. Comparative analyses of five complete chloroplast genomes from the genus Pterocarpus (Fabacaeae). Int. J. Mol. Sci. 2020, 21, 3758. [Google Scholar] [CrossRef]
- Wu, F.-H.; Chan, M.-T.; Liao, D.-C.; Hsu, C.-T.; Lee, Y.-W.; Daniell, H.; Duvall, M.R.; Lin, C.-S. Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol. 2010, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Lu, R.-S.; Xu, W.-Q.; Ohi-Toma, T.; Cai, M.-Q.; Qiu, Y.-X.; Cameron, K.M.; Fu, C.-X. Comparative genomics and phylogenomics of East Asian tulips (Amana, Liliaceae). Front. Plant Sci. 2017, 8, 451. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Zhang, M.-F.; Xue, J.; Dong, R.; Du, Y.-P.; Zhang, X.-H. Chloroplast genomic resources for phylogeny and DNA barcoding: A case study on Fritillaria. Sci. Rep. 2018, 8, 1184. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Liu, H.; Hu, J.; Liang, Y.; Liang, J.; Wuyun, T.; Tan, X. Five complete chloroplast genome sequences from Diospyros: Genome organization and comparative analysis. PLoS ONE 2016, 11, e0159566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maréchal, A.; Brisson, N. Recombination and the maintenance of plant organelle genome stability. New Phytol. 2010, 186, 299–317. [Google Scholar] [CrossRef]
- Duan, H.; Guo, J.; Xuan, L.; Wang, Z.; Li, M.; Yin, Y.; Yang, Y. Comparative chloroplast genomics of the genus Taxodium. BMC Genom. 2020, 21, 114. [Google Scholar] [CrossRef] [Green Version]
- Kugita, M.; Kaneko, A.; Yamamoto, Y.; Takeya, Y.; Matsumoto, T.; Yoshinaga, K. The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: Insight into the earliest land plants. Nucleic Acids Res. 2003, 31, 716–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinnon, G. Reticulate evolution in higher plants. In Plant Diversity and Evolution. Genotypic and Phenotypic Variation in Higher Plants; Henry, R.J., Ed.; CABI Publishing: Wallingford, UK, 2005; pp. 81–96. [Google Scholar]
- Yamane, K.; Yasui, Y.; Ohnishi, O. Intraspecific cpDNA variations of diploid and tetraploid perennial buckwheat, Fagopyrum cymosum (Polygonaceae). Am. J. Bot. 2003, 90, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hu, Y.; He, M.; Zhang, B.; Wu, W.; Cai, P.; Huo, D.; Hong, Y. Comparative chloroplast genomes: Insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. BMC Genom. 2021, 22, 138. [Google Scholar] [CrossRef]
- Chen, S.C.; Wang, M.; Wang, J.; Gao, Y.; Liu, Z.Q.; Wang, X. Response of seed germination and seedling physiological characteristics of Medicago sativa to the simulated osmotic potential of PEG6000. Chin. J. Appl. Ecol. 2017, 28, 2923–2931. (In Chinese) [Google Scholar]
- Ritz, C.; Streibig, J.C. Bioassay analysis using R. J. Stat. Softw. 2005, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2014. Available online: http://www.r-project.org (accessed on 26 March 2023).
- Sakamoto, Y.; Kitagawa, G. Akaike Information Criterion Statistics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-H.; Kim, H.; Noh, T.-K.; Lim, J.-S.; Yook, M.-J.; Kim, J.-W.; Yi, J.-H.; Kim, D.-S. Baseline sensitivity of Echinochloa crus-gall and E. oryzicola to florpyrauxifen-benzyl, a new synthetic auxin herbicide, in Korea. Front. Plant Sci. 2021, 12, 656642. [Google Scholar] [CrossRef]
- Fargašová, A. Comparative study of plant growth hormone (herbicide) toxicity in various biological subjects. Ecotoxicol. Environ. Saf. 1994, 29, 359–364. [Google Scholar] [CrossRef]
- Sondhia, S.; Waseem, U.; Varma, R. Fungal degradation of an acetolactate synthase (ALS) inhibitor pyrazosulfuron-ethyl in soil. Chemosphere 2013, 93, 2140–2147. [Google Scholar] [CrossRef]
- Jiao, B.; Wang, K.; Chang, Y.; Dong, F.; Pan, X.; Wu, X.; Xu, J.; Liu, X.; Zheng, Y. Photodegradation of the Novel Herbicide Pyraquinate in Aqueous Solution: Kinetics, Photoproducts, Mechanisms, and Toxicity Assessment. J. Agric. Food Chem. 2023, 71, 4249–4257. [Google Scholar] [CrossRef]
- Shinozaki, K.; Ohme, M.; Tanaka, M.; Wakasugi, T.; Hayashida, N.; Matsubayashi, T.; Zaita, N.; Chunwongse, J.; Obokata, J.; Yamaguchi-Shinozaki, K. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J. 1986, 5, 2043–2049. [Google Scholar] [CrossRef]
- NCBI. 2022. Available online: https://www.ncbi.nlm.nih.gov/nuccore/?term=Echinochloa+chloroplast+complete+genome (accessed on 26 November 2022).
- Fan, R.; Ma, W.; Liu, S.; Huang, Q. Integrated analysis of three newly sequenced fern chloroplast genomes: Genome structure and comparative analysis. Ecol. Evol. 2021, 11, 4550–4563. [Google Scholar] [CrossRef]
- Wu, M.; Li, Q.; Hu, Z.; Li, X.; Chen, S. The complete Amomum kravanh chloroplast genome sequence and phylogenetic analysis of the commelinids. Molecules 2017, 22, 1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Cui, Y.; Chen, X.; Li, Y.; Xu, Z.; Duan, B.; Li, Y.; Song, J.; Yao, H. Complete chloroplast genomes of Papaver rhoeas and Papaver orientale: Molecular structures, comparative analysis, and phylogenetic analysis. Molecule 2018, 23, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doorduin, L.; Gravendeel, B.; Lammers, Y.; Ariyurek, Y.; Chin-A-Woeng, T.; Vrieling, K. The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res. 2011, 18, 93–105. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wang, Y.; Volis, S.; Li, D.; Yi, T. Genetic Diversity and Population Structure: Implications for Conservation of Wild Soybean (Glycine soja Sieb. et Zucc) Based on Nuclear and Chloroplast Microsatellite Variation. Int. J. Mol. Sci. 2012, 13, 12608–12628. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.H.; Zhang, J.J.; Yao, X.H.; Huang, H.W. Chloroplast microsatellite markers in Liriodendron tulipifera (Magnoliaceae) and cross-species amplification in L. chinense. Ame. J. Bot. 2011, 98, e123–e126. [Google Scholar] [CrossRef]
- Xue, J.; Wang, S.; Zhou, S.L. Polymorphic chloroplast microsatellite loci in Nelumbo (Nelumbonaceae). Am. J. Bot. 2012, 99, e240–e244. [Google Scholar] [CrossRef]
- Guo, H.; Liu, J.; Luo, L.; Wei, X.; Zhang, J.; Qi, Y.; Zhang, B.; Liu, H.; Xiao, P. Complete chloroplast genome sequences of Schisandra chinensis: Genome structure, comparative analysis, and phylogenetic relationship of basal angiosperms. Sci. China Life Sci. 2017, 60, 1286–1290. [Google Scholar] [CrossRef]
- Han, Y.; Gao, Y.; Zhai, X.; Zhou, H.; Ding, Q.; Ma, L. Assembly and comparative analysis of chloroplast genome of wheat K-CMS line and maintainer line. BMC Genom. 2020. [Google Scholar] [CrossRef] [Green Version]
- Cavalier-Smith, T. Chloroplast Evolution: Secondary Symbiogenesis and Multiple Losses. Curr. Biol. 2002, 12, R62–R64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Song, M.-F.; Sun, H.-F.; Tang, D.-Y.; Xu, A.-S.; Zhang, Z.-L. Complete chloroplast genome analysis of two important medicinal Alpinia species: Alpinia galanga and Alpinia kwangsiensis. Front. Plant Sci. 2021, 12, 2908. [Google Scholar] [CrossRef] [PubMed]
- Hirose, T.; Ideue, T.; Wakasugi, T.; Sugiura, M. The chloroplast infA gene with a functional UUG initiation codon. FEBS Lett. 1999, 445, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Millen, R.S.; Olmstead, R.G.; Adams, K.L.; Palmer, J.D.; Lao, N.T.; Heggie, L.; Kavanagh, T.A.; Hibberd, J.M.; Gray, J.C.; Morden, C.W.; et al. Many Parallel Losses of infA from Chloroplast DNA during Angiosperm Evolution with Multiple Independent Transfers to the Nucleus. Plant Cell 2001, 13, 645–658. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Messing, J. High-throughput sequencing of three Lemnoideae (duckweeds) chloroplast genomes from total DNA. PLoS ONE 2011, 6, e24670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.-B.; Yang, S.-X.; Li, H.-T.; Yang, J.; Li, D.-Z. Comparative chloroplast genomes of Camellia species. PLoS ONE 2013, 8, e73053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, W.; Xu, C.; Liu, Y.; Shi, J.; Suo, Z. Chloroplast phylogenomics and divergence times of Lagerstroemia (Lythraceae). BMC Genom. 2021, 22, 434. [Google Scholar] [CrossRef]
- Yan, M.; Zhao, X.; Zhou, J.; Huo, Y.; Ding, Y.; Yuan, Z. The Complete Chloroplast Genomes of Punica granatum and a Comparison with Other Species in Lythraceae. Int. J. Mol. Sci. 2019, 20, 2886. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Ma, L.; Wu, Z.; Chen, K.; Wang, Y. Comparative analyses of chloroplast genomes from 22 Lythraceae species: Inferences for phylogenetic relationships and genome evolution within Myrtales. BMC Plant Biol. 2019, 19, 281. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Henry, R.J.; Rossetto, M.; Wang, Y.; Chen, S. Plant DNA barcoding: From gene to genome. Biol. Rev. 2015, 90, 157–166. [Google Scholar] [CrossRef]
- Wortley, A.H.; Rudall, P.J.; Harris, D.J.; Scotland, R.W. How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. Syst. Biol. 2005, 54, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Petersen, G.; Aagesen, L.; Seberg, O.; Larsen, I.H. When is enough, enough in phylogenetics? A case in point from Hordeum (Poaceae). Cladistics 2011, 27, 428–446. [Google Scholar] [CrossRef] [PubMed]
- Landegren, U.; Nilsson, M.; Kwok, P.-Y. Reading bits of genetic information: Methods for single-nucleotide polymorphism analysis. Genome Res. 1998, 8, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Germano, J.; Klein, A.S. Species-specific nuclear and chloroplast single nucleotide polymorphisms to distinguish Picea glauca, P. mariana and P. rubens. Theor. Appl. Genet. 1999, 99, 37–49. [Google Scholar] [CrossRef]
- Erixon, P.; Oxelman, B. Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS ONE 2008, 3, e1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Population | Collection Sites | Latitude and Longitude |
---|---|---|---|
A. arenaria | Aa-1 | Zhongjiu Village, Pudong District, Shanghai | 30.93° N, 121.87° E |
Aa-2 | Wanhong Village, Pudong District, Shanghai | 30.98° N, 121.82° E | |
Aa-3 | Panghuang Village, Chongming District, Shanghai | 31.56° N, 121.68° E | |
A. multiflora | Am-1 | Shenlian Village, Qingpu District, Shanghai | 31.24° N, 121.14° E |
Am-2 | Qiaobei Village, Pudong District, Shanghai | 31.02° N, 121.81° E | |
Am-3 | Huaxi Village, Chongming District, Shanghai | 31.79° N, 121.20° E |
Biological Morphology Features | A. arenaria | A. multiflora |
---|---|---|
Height (cm) | 109.19 ± 1.55 | 81.03 ± 2.70 * |
Maximum lateral distance (cm) | 35.20 ± 0.71 | 15.23 ± 1.26 * |
Weight of a thousand seed (g) | 0.0220 ± 0.0001 | 0.0180 ± 0.0001 * |
Frequency of occurrence (%) | 19.1 ± 3.3 | 19.0 ± 3.8 |
Genome Features | A. arenaria | A. multiflora |
---|---|---|
Genome size (bp) | 158,401 | 157,900 |
LSC length (bp) | 88,911 | 88,410 |
SSC length (bp) | 17,954 | 17,954 |
IR length (bp) | 25,768 | 25,768 |
Protein-coding genes (bp) | 80,028 | 79,908 |
Intergenic region length (bp) | 78,373 | 77,992 |
Overall GC content (%) | 36.73 | 36.73 |
GC content of LSC (%) | 34.64 | 34.63 |
GC content of SSC (%) | 30.61 | 30.60 |
GC content of IR (%) | 42.46 | 42.46 |
Gene’s GC content (%) | 37.39 | 37.42 |
Number of protein-coding genes | 86 | 85 |
Number of tRNA | 37 | 37 |
Total length of tRNA (bp) | 2835 | 2836 |
Number of rRNA | 8 | 8 |
Total length of rRNA (bp) | 9048 | 9048 |
Region/Hamming Distance | A. arenaria | A. multiflora | |
---|---|---|---|
SSR | Coding | 15 | 14 |
Genome | 91 | 90 | |
IRa | 5 | 5 | |
IRb | 5 | 5 | |
LSC | 65 | 66 | |
SSC | 16 | 14 | |
LR | 0 | 23 | 6 |
1 | 14 | 10 | |
2 | 25 | 22 | |
3 | 65 | 61 | |
Total | 127 | 99 |
Category | Groups | Genes |
---|---|---|
Photosynthesis | Subunits_of_photosystem_I | psaA, psaB, psaC, psaI, psaJ |
Subunits_of_photosystem_II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ | |
Subunits_of_NADH_dehydrogenase | ndhA, ndhB, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
Subunits_of_cytochrome_b/f_complex | petA, petB, petD, petG, petL, petN | |
Subunits_of_ATP_synthase | atpA, atpB, atpE, atpF, atpH, atpI | |
Large_subunit_of_Rubisco | rbcL | |
Self-replication | Large_subunits_of_ribosome | rpl14, rpl16, rpl2 (×2), rpl20, rpl22, rpl23 (×2), rpl32, rpl33, rpl36 |
Small_subunits_of_ribosome | rps11, rps12 (×2), rps14, rps15, rps16, rps18, rps19, rps2, rps3, rps4, rps7 (×2), rps8 | |
DNA-dependent_RNA_polymerase | rpoA, rpoB, rpoC1, rpoC2 | |
Ribosomal_RNAs | rrn16, rrn23, rrn4.5, rrn5 | |
Transfer_RNAs | 37 tRNAs | |
Other genes | Maturase | matK |
Protease | clpP1 | |
Envelope_membrane_protein | cemA | |
Acetyl-CoA_carboxylase accD | ||
C-type_cytochrome_synthesis_gene | ccsA | |
Translation_initiation_factor | infA (only in A. arenaria) | |
protochlorophillide_reductase_subunit | ||
Genes of unknown function | Proteins_of_unknown_function | ycf1 (×2), ycf2 (×2), ycf3, ycf4 |
Mutate Type | Start | Stop | Synonymous | Nonsynonymous | CDS | Intergenic | Total_SNP |
---|---|---|---|---|---|---|---|
SNP Number | 0 | 0 | 11 | 9 | 20 | 47 | 67 |
SNP Percentage (%) | 0 | 0 | 16.42 | 13.43 | 29.85 | 70.15 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Li, S.; Yuan, G.; Fang, J.; Shen, G.; Tian, Z. Comparison of Biological and Genetic Characteristics between Two Most Common Broad-Leaved Weeds in Paddy Fields: Ammannia arenaria and A. multiflora (Lythraceae). Biology 2023, 12, 936. https://doi.org/10.3390/biology12070936
Gao Y, Li S, Yuan G, Fang J, Shen G, Tian Z. Comparison of Biological and Genetic Characteristics between Two Most Common Broad-Leaved Weeds in Paddy Fields: Ammannia arenaria and A. multiflora (Lythraceae). Biology. 2023; 12(7):936. https://doi.org/10.3390/biology12070936
Chicago/Turabian StyleGao, Yuan, Shenghui Li, Guohui Yuan, Jiapeng Fang, Guohui Shen, and Zhihui Tian. 2023. "Comparison of Biological and Genetic Characteristics between Two Most Common Broad-Leaved Weeds in Paddy Fields: Ammannia arenaria and A. multiflora (Lythraceae)" Biology 12, no. 7: 936. https://doi.org/10.3390/biology12070936
APA StyleGao, Y., Li, S., Yuan, G., Fang, J., Shen, G., & Tian, Z. (2023). Comparison of Biological and Genetic Characteristics between Two Most Common Broad-Leaved Weeds in Paddy Fields: Ammannia arenaria and A. multiflora (Lythraceae). Biology, 12(7), 936. https://doi.org/10.3390/biology12070936