Comparative Methods for Quantification of Sulfate-Reducing Bacteria in Environmental and Engineered Sludge Samples
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Basal Mineral Medium (BMM)
2.2. Samples
2.2.1. Environmental Sample
2.2.2. Engineered Samples
- Sludge sample from a sulfate-reducing (SR) bioreactor. A sludge sample was obtained from an SR lab-scale bioreactor, initially inoculated with anaerobic sludge from a lagoon. This bioreactor was used for the bioprecipitation of copper and zinc (Figure 1a, II), whose sulfate-reducing activity had been monitored for two years [30,46]. The Shannon index (alpha-diversity) was 2.72 [30]. The sample was collected in sterile plastic recipients, stored at 4 °C, and used for later comparison of enumeration methods.
- Enriched sulfate-reducing (SR) sludge. This sample was obtained from anaerobic sludge (Figure 1a, III), the same as described in the previous section, which was enriched in a selective liquid culture medium composed of BMM supplemented with sodium acetate equivalent to 2.5 g of chemical oxygen demand (COD) L−1 as organic substrate and 2.0 g SO42− L−1 as sodium sulfate (1.25:1, w/w ratio). Both reagents were provided by JT Baker Chemical Company (Phillipsburg, NJ, USA). Enrichment was conducted under anaerobic conditions in triplicate using a sterile liquid culture medium containing 10% w/v of anaerobic sludge, and the culture medium was not replaced during incubation time (40 days). The cultures were cultivated in 160 mL sterile glass serum bottles that were hermetically sealed with butyl rubber stoppers and aluminum crimp seals. The bottle headspace was flushed with nitrogen gas, and all bottles were incubated for 45 days in darkness in a climate-controlled chamber at 30 ± 2 °C. The enriched SR sludge was analyzed immediately by conventional methods. Likewise, genomic DNA extracts from serial dilutions of enriched SR sludge were obtained and stored at −80 °C. The Shannon index was 3.64 [30]. Following the previous procedure, two independent SR sludge samples (standard and control) were prepared to compare enumeration methods later.
2.3. Preparation of SRB Suspension
2.4. Cell Enumeration Using Neubauer Chamber
2.5. Plating Culture and Colony Counting (CFU Method)
2.6. DNA Extraction
2.7. qPCR Analysis
2.8. qPCR Analysis Using Viable Cells as Normalized Units
2.9. qPCR Analysis Using a Synthetic Standard to Enumerate dsrA Gene Copies
2.10. Statistical Analysis
3. Results
3.1. SRB Enumeration Using Cell and Plate Counting Methods
3.2. Correlation of Viable SRB Count versus qPCR Data (Ct) Using an In-House Standard
3.3. Primers Selection Based on Accuracy from qPCR Analysis and Culture Plating
3.4. Cells Enumeration by qPCR in Engineered and Environmental Samples
3.5. Determination of dsrA Gene Copies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Set a | Primer Pair b | Sequence (5′ to 3′) c | Target Genes | qPCR Product Size | Melting Point d (°C) |
---|---|---|---|---|---|
1 | DSR1F | ACSCACTGGAAGCACG | dsrA | 222 | 87 |
RH3-dsr-R | gGTGGAGCCGTGCATGTT | ||||
2 | RH1-dsr-F | GCCGTTACTGTGACCAGCC | dsrA | 164 | 87 |
RH3-dsr-R | gGTGGAGCCGTGCATGTT | ||||
3 | APS7-F | GGGYCTKTCCGCYATCAAYACATGA | apsA | 279 | 89 |
RH2-aps-R | ATCATGATCTGCCAgCGgCCGGA | ||||
4 | RH1-aps-F | CGCGAAGACCTKATCTTCGAC | apsA | 191 | 90 |
RH2-aps-R | ATCATGATCTGCCAgCGgCCGGA |
Appendix B
Set | Primer Pair | Test for Homogeneity of Variances | t-Test for Equality of Slopes | ||||
---|---|---|---|---|---|---|---|
F Calculated | F Tabulated | Calculated t-Value | Degrees of Freedom, df | Tabulated t-Value and Significance 5% (2-Tailed) | Comparison | ||
1 | DSR1F RH3-dsr-R | 5.461 | 9.00 | 0.927 | 4 | 2.776 | N.S. a |
2 | RH1-dsr-F RH3-dsr-R | 2.367 | 9.00 | 1.239 | 4 | 2.776 | N.S. |
3 | APS7-F RH2-aps-R | 1.184 | 9.00 | 0.695 | 4 | 2.776 | N.S. |
4 | RH1-aps-F RH2-aps-R | 1.066 | 9.00 | 2.539 | 4 | 2.776 | N.S. |
Appendix C
References
- Agrawal, A.; Lal, B. Rapid Detection and Quantification of Bisulfite Reductase Genes in Oil Field Samples Using Real-Time PCR. FEMS Microbiol. Ecol. 2009, 69, 301–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muyzer, G.; Ramsing, N.B. Molecular Methods to Study the Organization of Microbial Communities. Water Sci. Technol. 1995, 32, 1–9. [Google Scholar] [CrossRef]
- Kushkevych, I.; Hýžová, B.; Vítězová, M.; Rittmann, S.K.-M.R. Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats. Int. J. Mol. Sci. 2021, 22, 4007. [Google Scholar] [CrossRef] [PubMed]
- Kushkevych, I.; Kovářová, A.; Dordevic, D.; Gaine, J.; Kollar, P.; Vítězová, M.; Rittmann, S.K.-M.R. Distribution of Sulfate-Reducing Bacteria in the Environment: Cryopreservation Techniques and Their Potential Storage Application. Processes 2021, 9, 1843. [Google Scholar] [CrossRef]
- St-Pierre, B.; Wright, A.-D.G. Implications from Distinct Sulfate-Reducing Bacteria Populations between Cattle Manure and Digestate in the Elucidation of H2S Production during Anaerobic Digestion of Animal Slurry. Appl. Microbiol. Biotechnol. 2017, 101, 5543–5556. [Google Scholar] [CrossRef]
- Hiibel, S.R.; Pereyra, L.P.; Inman, L.Y.; Tischer, A.; Reisman, D.J.; Reardon, K.F.; Pruden, A. Microbial Community Analysis of Two Field-Scale Sulfate-Reducing Bioreactors Treating Mine Drainage. Environ. Microbiol. 2008, 10, 2087–2097. [Google Scholar] [CrossRef]
- Nieto, J.M.; Sarmiento, A.M.; Olías, M.; Canovas, C.R.; Riba, I.; Kalman, J.; Delvalls, T.A. Acid Mine Drainage Pollution in the Tinto and Odiel Rivers (Iberian Pyrite Belt, SW Spain) and Bioavailability of the Transported Metals to the Huelva Estuary. Environ. Int. 2007, 33, 445–455. [Google Scholar] [CrossRef]
- Simate, G.S.; Ndlovu, S. Acid Mine Drainage: Challenges and Opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Puhakka, J.A. Sulfate Reduction Based Bioprocesses for the Treatment of Acid Mine Drainage and the Recovery of Metals. Eng. Life Sci. 2007, 7, 541–564. [Google Scholar] [CrossRef]
- Hulshoff, L.W.; Lens, P.N.L.; Weijma, J.; Stams, A.J.M. New Developments in Reactor and Process Technology for Sulfate Reduction. Water Sci. Technol. 2001, 44, 67–76. [Google Scholar] [CrossRef]
- Li, H.; Fei, Y.; Xue, S.; Zhang, G.; Bian, Z.; Guo, F.; Wang, L.; Chai, R.; Zhang, S.; Cui, Z.; et al. Removal of Antimony in Wastewater by Antimony Tolerant Sulfate-Reducing Bacteria Isolated from Municipal Sludge. Int. J. Mol. Sci. 2022, 23, 1594. [Google Scholar] [CrossRef] [PubMed]
- Pape, P.L.; Battaglia-Brunet, F.; Parmentier, M.; Joulian, C.; Gassaud, C.; Fernandez-Rojo, L.; Guigner, J.-M.; Ikogou, M.; Stetten, L.; Olivi, L.; et al. Complete Removal of Arsenic and Zinc from a Heavily Contaminated Acid Mine Drainage via an Indigenous SRB Consortium. J. Hazard. Mater. 2017, 321, 764–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sierra-Alvarez, R.; Hollingsworth, J.; Zhou, M.S. Removal of Copper in an Integrated Sulfate Reducing Bioreactor−Crystallization Reactor System. Environ. Sci. Technol. 2007, 41, 1426–1431. [Google Scholar] [CrossRef]
- Al-Abed, S.R.; Pinto, P.X.; McKernan, J.; Feld-Cook, E.; Lomnicki, S.M. Mechanisms and Effectivity of Sulfate Reducing Bioreactors Using a Chitinous Substrate in Treating Mining Influenced Water. Chem. Eng. J. 2017, 323, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Routh, J.; Dario, M.; Sarkar, S.; Wei, L.; Luo, D.; Liu, Y. Distribution and Mobilization of Heavy Metals at an Acid Mine Drainage Affected Region in South China, a Post-Remediation Study. Sci. Total Environ. 2020, 724, 138122. [Google Scholar] [CrossRef]
- Brown, D.C.; Turner, R.J. Assessing Microbial Monitoring Methods for Challenging Environmental Strains and Cultures. Microbiol. Res. 2022, 13, 235–257. [Google Scholar] [CrossRef]
- Johnson, D.B.; Sánchez-Andrea, I. Dissimilatory Reduction of Sulfate and Zero-Valent Sulfur at Low PH and Its Significance for Bioremediation and Metal Recovery. In Advances in Microbial Physiology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 75, pp. 205–231. ISBN 978-0-12-817714-3. [Google Scholar]
- Johnsen, A.R.; Boe, U.S.; Henriksen, P.; Malmquist, L.M.V.; Christensen, J.H. Full-Scale Bioremediation of Diesel-Polluted Soil in an Arctic Landfarm. Environ. Pollut. 2021, 280, 116946. [Google Scholar] [CrossRef]
- Bodor, A.; Bounedjoum, N.; Vincze, G.E.; Erdeiné Kis, Á.; Laczi, K.; Bende, G.; Szilágyi, Á.; Kovács, T.; Perei, K.; Rákhely, G. Challenges of Unculturable Bacteria: Environmental Perspectives. Rev. Environ. Sci. Biotechnol. 2020, 19, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Setia, H.; Toor, A.P. Assessing the Bioremediation Potential of Indigenously Isolated Klebsiella Sp. WAH1 for Diclofenac Sodium: Optimization, Toxicity and Metabolic Pathway Studies. World J. Microbiol. Biotechnol 2021, 37, 33. [Google Scholar] [CrossRef]
- Elizabeth George, S.; Wan, Y. Microbial Functionalities and Immobilization of Environmental Lead: Biogeochemical and Molecular Mechanisms and Implications for Bioremediation. J. Hazard. Mater. 2023, 457, 131738. [Google Scholar] [CrossRef]
- Elferink, S.J.W.H.O.; van Lis, R.; Heilig, H.G.H.J.; Akkermans, A.D.L.; Stams, A.J.M. Detection and Quantification of Microorganisms in Anaerobic Bioreactors. Biodegradation 1998, 9, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Spence, C.; Whitehead, T.R.; Cotta, M.A. Development and Comparison of SYBR Green Quantitative Real-Time PCR Assays for Detection and Enumeration of Sulfate-Reducing Bacteria in Stored Swine Manure. J. Appl. Microbiol. 2008, 105, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Senthilmurugan, B.; Radhakrishnan, J.S.; Poulsen, M.; Tang, L.; AlSaber, S. Assessment of Microbiologically Influenced Corrosion in Oilfield Water Handling Systems Using Molecular Microbiology Methods. Upstream Oil Gas Technol. 2021, 7, 100041. [Google Scholar] [CrossRef]
- Zambrano-Romero, A.; Herrera-Moreno, N.; Trueba, G.; Sierra-Alvarez, R.; León-Reyes, A.; Ochoa-Herrera, V. Construcción y Operación de Una Cámara Anaeróbica de Bajo Costo Para La Siembra y El Cultivo de Bacterias Sulfato Reductoras. ACI Av. En Cienc. E Ing. 2019, 11, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Freeman, S.A.; Sierra-Alvarez, R.; Altinbas, M.; Hollingsworth, J.; Stams, A.J.M.; Smidt, H. Molecular Characterization of Mesophilic and Thermophilic Sulfate Reducing Microbial Communities in Expanded Granular Sludge Bed (EGSB) Reactors. Biodegradation 2007, 19, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Loy, A. Bacterial Community Composition and Function in Sewage Treatment Systems. Curr. Opin. Biotechnol. 2002, 13, 218–227. [Google Scholar] [CrossRef]
- Vachon, M.A.; Engel, K.; Beaver, R.C.; Slater, G.F.; Binns, W.J.; Neufeld, J.D. Fifteen Shades of Clay: Distinct Microbial Community Profiles Obtained from Bentonite Samples by Cultivation and Direct Nucleic Acid Extraction. Sci. Rep. 2021, 11, 22349. [Google Scholar] [CrossRef]
- Tüccar, T.; Ilhan-Sungur, E.; Abbas, B.; Muyzer, G. Coexistence of Sulfate Reducers with the Other Oil Bacterial Groups in Diyarbakır Oil Fields. Anaerobe 2019, 59, 19–31. [Google Scholar] [CrossRef]
- Zambrano-Romero, A.; Ramirez-Villacis, D.X.; Trueba, G.; Sierra-Alvarez, R.; Leon-Reyes, A.; Cardenas, P.; Ochoa-Herrera, V. Dynamics of Microbial Communities during the Removal of Copper and Zinc in a Sulfate-Reducing Bioreactor with a Limestone Pre-Column System. Int. J. Environ. Res. Public Health 2022, 19, 1484. [Google Scholar] [CrossRef]
- Kralik, P.; Ricchi, M. A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, Z.; Wang, Z.; Li, W.; Zhang, G.; Yan, H. Comparative Genomics of Pseudomonas Stutzeri Complex: Taxonomic Assignments and Genetic Diversity. Front. Microbiol. 2022, 12, 755874. [Google Scholar] [CrossRef] [PubMed]
- Foti, M.; Sorokin, D.Y.; Lomans, B.; Mussman, M.; Zacharova, E.E.; Pimenov, N.V.; Kuenen, J.G.; Muyzer, G. Diversity, Activity, and Abundance of Sulfate-Reducing Bacteria in Saline and Hypersaline Soda Lakes. Appl. Environ. Microbiol. 2007, 73, 2093–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, R.; Nedwell, D.B.; Purdy, K.J.; Silva, S.Q. Detection and Enumeration of Sulphate-Reducing Bacteria in Estuarine Sediments by Competitive PCR. Geomicrobiol. J. 2004, 21, 145–157. [Google Scholar] [CrossRef]
- Plugge, C.M.; Zhang, W.; Scholten, J.C.M.; Stams, A.J.M. Metabolic Flexibility of Sulfate-Reducing Bacteria. Front. Microbiol. 2011, 2, 81. [Google Scholar] [CrossRef] [Green Version]
- Ben-Dov, E.; Brenner, A.; Kushmaro, A. Quantification of Sulfate-Reducing Bacteria in Industrial Wastewater, by Real-Time Polymerase Chain Reaction (PCR) Using DsrA and ApsA Genes. Microb. Ecol. 2007, 54, 439–451. [Google Scholar] [CrossRef]
- Dar, S.A.; Yao, L.; van Dongen, U.; Kuenen, J.G.; Muyzer, G. Analysis of Diversity and Activity of Sulfate-Reducing Bacterial Communities in Sulfidogenic Bioreactors Using 16S RRNA and DsrB Genes as Molecular Markers. Appl. Environ. Microbiol. 2007, 73, 594–604. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Cui, F. Identification of Bacterial Communities in Conventional Wastewater Treatment Sludge to Inform Inoculation of the Anammox Process. Chemosphere 2023, 311, 137167. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, X.; Chen, L.; Chao, J.; Teng, J.; Wang, Q. Microplastics in Soils: A Review of Possible Sources, Analytical Methods and Ecological Impacts. J. Chem. Technol. Biotechnol. 2020, 95, 2052–2068. [Google Scholar] [CrossRef]
- Mejías, C.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence of Pharmaceuticals and Their Metabolites in Sewage Sludge and Soil: A Review on Their Distribution and Environmental Risk Assessment. Trends Environ. Anal. Chem. 2021, 30, e00125. [Google Scholar] [CrossRef]
- Sun, X.; Yu, T.; Huang, Y.; Xue, M.; Qu, C.; Yang, P.; Zhang, X.; Yang, B.; Li, J. Effects of Different Heat Treatment Methods on Organic Pollutants and Heavy Metal Content in Oil Sludge Waste and Ecotoxicological Evaluation. Appl. Sci. 2022, 12, 3609. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, H.; Zhang, M.; Shen, X.; Zhang, X.; Wu, F.; Hu, J.; Wang, B.; Wang, X. Removal of PAHs at High Concentrations in a Soil Washing Solution Containing TX-100 via Simultaneous Sorption and Biodegradation Processes by Immobilized Degrading Bacteria in PVA-SA Hydrogel Beads. J. Hazard. Mater. 2021, 410, 124533. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Xu, W.; Sontag, P.; Li, X.; Xue, G.; Liu, T.; Sun, W. Correlating Microbial Community Compositions with Environmental Factors in Activated Sludge from Four Full-Scale Municipal Wastewater Treatment Plants in Shanghai, China. Appl. Microbiol. Biotechnol. 2016, 100, 4663–4673. [Google Scholar] [CrossRef]
- Shi, W.; Becker, J.; Bischoff, M.; Turco, R.F.; Konopka, A.E. Association of Microbial Community Composition and Activity with Lead, Chromium, and Hydrocarbon Contamination. Appl. Env. Microbiol. 2002, 68, 3859–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa-Herrera, V.; Banihani, Q.; León, G.; Khatri, C.; Field, J.A.; Sierra-Alvarez, R. Toxicity of Fluoride to Microorganisms in Biological Wastewater Treatment Systems. Water Res. 2009, 43, 3177–3186. [Google Scholar] [CrossRef] [PubMed]
- Méndez, G.; Trueba, G.; Sierra-Alvarez, R.; Ochoa-Herrera, V. Treatment of Acid Rock Drainage Using a Sulphate-Reducing Bioreactor with a Limestone Precolumn. Environ. Technol. 2021, 44, 185–196. [Google Scholar] [CrossRef]
- Svec, D.; Tichopad, A.; Novosadova, V.; Pfaffl, M.W.; Kubista, M. How Good Is a PCR Efficiency Estimate: Recommendations for Precise and Robust QPCR Efficiency Assessments. Biomol. Detect. Quantif. 2015, 3, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Zemb, O.; Achard, C.S.; Hamelin, J.; Almeida, M.-L.D.; Gabinaud, B.; Cauquil, L.; Verschuren, L.M.G.; Godon, J.-J. Absolute Quantitation of Microbes Using 16S RRNA Gene Metabarcoding: A Rapid Normalization of Relative Abundances by Quantitative PCR Targeting a 16S RRNA Gene Spike-in Standard. Microbiol. Open 2020, 9, e977. [Google Scholar] [CrossRef]
- Broeders, S.; Huber, I.; Grohmann, L.; Berben, G.; Taverniers, I.; Mazzara, M.; Roosens, N.; Morisset, D. Guidelines for Validation of Qualitative Real-Time PCR Methods. Trends Food Sci. Technol. 2014, 37, 115–126. [Google Scholar] [CrossRef]
- Kogure, K.; Simidu, U.; Taga, N. A Tentative Direct Microscopic Method for Counting Living Marine Bacteria. Can. J. Microbiol. 1979, 25, 415–420. [Google Scholar] [CrossRef]
- Pérez, R.M.; Cabrera, G.; Gómez, J.M.; Ábalos, A.; Cantero, D. Combined Strategy for the Precipitation of Heavy Metals and Biodegradation of Petroleum in Industrial Wastewaters. J. Hazard. Mater. 2010, 182, 896–902. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirk, J.L.; Beaudette, L.A.; Hart, M.; Moutoglis, P.; Klironomos, J.N.; Lee, H.; Trevors, J.T. Methods of Studying Soil Microbial Diversity. J. Microbiol. Methods 2004, 58, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Ragusa, S.; Catcheside, D. Growth of Sulfate-Reducing Bacteria under Acidic Conditions in an Upflow Anaerobic Bioreactor as a Treatment System for Acid Mine Drainage. Water Res. 1998, 32, 3724–3730. [Google Scholar] [CrossRef]
- Grotenhuis, J.T.; Smit, M.; Plugge, C.M.; Xu, Y.S.; van Lammeren, A.A.; Stams, A.J.; Zehnder, A.J. Bacteriological Composition and Structure of Granular Sludge Adapted to Different Substrates. Appl. Environ. Microbiol. 1991, 57, 1942–1949. [Google Scholar] [CrossRef] [Green Version]
- Ingvorsen, K.; Nielsen, M.Y.; Joulian, C. Kinetics of Bacterial Sulfate Reduction in an Activated Sludge Plant. FEMS Microbiol. Ecol. 2003, 46, 129–137. [Google Scholar] [CrossRef]
- Li, X.-X.; Liu, J.-F.; Zhou, L.; Mbadinga, S.M.; Yang, S.-Z.; Gu, J.-D.; Mu, B.-Z. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir. Front. Microbiol. 2017, 8, 1011. [Google Scholar] [CrossRef] [Green Version]
- Roux, L.-M.D.; Giblot-Ducray, D.; Bott, N.J.; Wiltshire, K.H.; Deveney, M.R.; Westfall, K.M.; Abbott, C.L. Analytical Validation and Field Testing of a Specific QPCR Assay for Environmental DNA Detection of Invasive European Green Crab (Carcinus maenas). Environ. DNA 2020, 2, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, L.; Kjellerup, B.V.; Xu, Z. Viable but Nonculturable (VBNC) State, an Underestimated and Controversial Microbial Survival Strategy. Trends Microbiol. 2023; Epub ahead of printing. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, C.; Yang, Y.; Zhang, Z.; Tang, Y.; Su, P.; Lin, Z. A Review of Sulfate-Reducing Bacteria: Metabolism, Influencing Factors and Application in Wastewater Treatment. J. Clean. Prod. 2022, 376, 134109. [Google Scholar] [CrossRef]
Primer Set | SRB Density Determined by qPCR Standard Curve a and Percentage of Relative Error (%Ԑt) b | ||||||||
---|---|---|---|---|---|---|---|---|---|
Equation of a Standard Curve | Theoretical Value c (SRB Cells mL−1) | ||||||||
2.31 × 106 | 2.31 × 105 | 2.31 × 104 | 2.31 × 103 | ||||||
Cells mL−1 | %Ԑt | Cells mL−1 | %Ԑt | Cells mL−1 | %Ԑt | Cells mL−1 | %Ԑt | ||
DSR1F/RH3-dsr-R | y = −2.23x + 30.42 | 2.10 × 106 | 8.95 | 2.08 × 105 | 9.89 | 2.46 × 104 | 6.30 | 2.08 × 103 | 9.89 |
RH1-dsr-F/RH3-dsr-R | y = −2.75x + 32.30 | 3.83 × 105 | 98.3 | 1.26 × 104 | 94.5 | 1.30 × 103 | 94.4 | 1.07 × 102 | 95.4 |
APS7-F/RH2-aps-R | y = −3.12x + 32.16 | 1.02 × 104 | 55.8 | 3.09 × 105 | 33.9 | 2.79 × 104 | 20.9 | 1.28 × 103 | 44.6 |
RH1-aps-F/RH2-aps-R | y = −3.03x + 31.11 | 8.88 × 104 | 61.6 | 3.58 × 105 | 54.8 | 2.65 × 104 | 14.5 | 1.48 × 103 | 35.9 |
Primer Set | SRB Density Determined by qPCR Standard Curves a and Percentage of Relative Error (%Ԑt) b | ||||||||
---|---|---|---|---|---|---|---|---|---|
Equation of Standard Curve | Theoretical Value c (SRB Cells mL−1) | ||||||||
5.63 × 105 | 5.63 × 104 | 5.63 × 103 | 5.63 × 102 | ||||||
Cells mL−1 | %Ԑt | Cells mL−1 | %Ԑt | Cells mL−1 | %Ԑt | Cells mL−1 | %Ԑt | ||
DSR1F/RH3-dsr-R | y = −2.57x + 33.26 | 6.27 × 105 | 11.4 | 5.19 × 104 | 7.73 | 4.84 × 103 | 14.1 | 6.05 × 102 | 7.45 |
RH1-dsr-F/RH3-dsr-R | y = −2.57x + 34.51 | 4.55 × 105 | 19.3 | 2.28 × 104 | 59.5 | 1.27 × 103 | 125 | 8.63 × 102 | 53.2 |
APS7-F/RH2-aps-R | y = −2.97x + 32.61 | 3.94 × 104 | 93.0 | 7.73 × 103 | 86.3 | 8.72 × 102 | 84.5 | 1.65 × 102 | 70.7 |
RH1-aps-F/RH2-aps-R | y = −2.69x + 30.72 | 1.05 × 104 | 98.1 | 3.58 × 103 | 93.6 | 1.34 × 102 | 97.6 | 1.40 × 10 | 97.5 |
Samples | Total Cells a | Viable Cells b | dsrA Copies c | dsrA Gene Ratio | |
---|---|---|---|---|---|
Copies:Total Cells | Copies:Viable Cells | ||||
SRB synthetic suspension 1 | 2.21 × 106 | 1.79 × 106 | 4.36 × 105 | 0.20 | 0.24 |
SRB synthetic suspension 2 | 3.92 × 106 | 2.31 × 106 | 1.42 × 105 | 0.04 | 0.06 |
SR sludge 1 | 7.63 × 106 | 8.70 × 105 | 1.68 × 105 | 0.02 | 0.19 |
SR sludge 2 | 4.10 × 106 | 5.63 × 105 | 3.15 × 104 | 0.01 | 0.06 |
Environmental sludge | 2.51 × 105 | 2.20 × 102 | 3.66 × 102 | 0.00 d | 1.66 |
SR reactor sludge | 5.91 × 107 | 7.48 × 104 | 6.18 × 104 | 0.00 d | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambrano-Romero, A.; Ramirez-Villacis, D.X.; Barriga-Medina, N.; Sierra-Alvarez, R.; Trueba, G.; Ochoa-Herrera, V.; Leon-Reyes, A. Comparative Methods for Quantification of Sulfate-Reducing Bacteria in Environmental and Engineered Sludge Samples. Biology 2023, 12, 985. https://doi.org/10.3390/biology12070985
Zambrano-Romero A, Ramirez-Villacis DX, Barriga-Medina N, Sierra-Alvarez R, Trueba G, Ochoa-Herrera V, Leon-Reyes A. Comparative Methods for Quantification of Sulfate-Reducing Bacteria in Environmental and Engineered Sludge Samples. Biology. 2023; 12(7):985. https://doi.org/10.3390/biology12070985
Chicago/Turabian StyleZambrano-Romero, Aracely, Dario X. Ramirez-Villacis, Noelia Barriga-Medina, Reyes Sierra-Alvarez, Gabriel Trueba, Valeria Ochoa-Herrera, and Antonio Leon-Reyes. 2023. "Comparative Methods for Quantification of Sulfate-Reducing Bacteria in Environmental and Engineered Sludge Samples" Biology 12, no. 7: 985. https://doi.org/10.3390/biology12070985
APA StyleZambrano-Romero, A., Ramirez-Villacis, D. X., Barriga-Medina, N., Sierra-Alvarez, R., Trueba, G., Ochoa-Herrera, V., & Leon-Reyes, A. (2023). Comparative Methods for Quantification of Sulfate-Reducing Bacteria in Environmental and Engineered Sludge Samples. Biology, 12(7), 985. https://doi.org/10.3390/biology12070985