Effect of Environmental Variables on African Penguin Vocal Activity: Implications for Acoustic Censusing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acoustic Recordings and Weather Data
2.2. Visual Counting of Penguins
2.3. Data Analysis
2.4. Statistics–Modelling
3. Results
3.1. Automating EDS Counting
3.2. Influence of Environmental Variables on Calling Rate
3.3. Relationship between EDS Counts and Penguin Abundance
4. Discussion
4.1. Effectiveness of PAM
4.2. Impacts on Detection Effectiveness
4.3. Improving Detections for Successful PAM
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Visconti, P.; Bakkenes, M.; Baisero, D.; Brooks, T.; Butchart, S.H.M.; Joppa, L.; Alkemade, R.; Di Marco, M.; Santini, L.; Hoffmann, M.; et al. Projecting Global Biodiversity Indicators under Future Development Scenarios. Conserv. Lett. 2016, 9, 5–13. [Google Scholar] [CrossRef]
- Waldron, A.; Miller, D.C.; Redding, D.; Mooers, A.; Kuhn, T.S.; Nibbelink, N.; Roberts, J.T.; Tobias, J.A.; Gittleman, J.L. Reductions in Global Biodiversity Loss Predicted from Conservation Spending. Nature 2017, 551, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Brühl, C.A.; Zaller, J.G. Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Front. Environ. Sci. 2019, 7, 177. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging Threats and Persistent Conservation Challenges for Freshwater Biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Humphries, G.R.W.; Huettmann, F. Putting Models to a Good Use: A Rapid Assessment of Arctic Seabird Biodiversity Indicates Potential Conflicts with Shipping Lanes and Human Activity. Divers. Distrib. 2014, 20, 478–490. [Google Scholar] [CrossRef]
- Chown, S.L.; Clarke, A.; Fraser, C.I.; Cary, S.C.; Moon, K.L.; McGeoch, M.A. The Changing form of Antarctic Biodiversity. Nature 2015, 522, 431–438. [Google Scholar] [CrossRef]
- Lee, J.R.; Waterman, M.J.; Shaw, J.D.; Bergstrom, D.M.; Lynch, H.J.; Wall, D.H.; Robinson, S.A. Islands in the Ice: Potential Impacts of Habitat Transformation on Antarctic Biodiversity. Glob. Chang. Biol. 2022, 28, 5865–5880. [Google Scholar] [CrossRef]
- Roman, L.; Hardesty, B.D.; Hindell, M.A.; Wilcox, C. A Quantitative Analysis Linking Seabird Mortality and Marine Debris Ingestion. Sci. Rep. 2019, 9, 3202. [Google Scholar] [CrossRef]
- Woodworth, B.K.; Fuller, R.A.; Hemson, G.; McDougall, A.; Congdon, B.C.; Low, M. Trends in Seabird Breeding Populations across the Great Barrier Reef. Conserv. Biol. 2021, 35, 846–858. [Google Scholar] [CrossRef]
- Croxall, J.P.; Butchart, S.H.M.; Lascelles, B.; Stattersfield, A.J.; Sullivan, B.; Symes, A.; Taylor, P. Seabird Conservation Status, Threats and Priority Actions: A Global Assessment. Bird Conserv. Int. 2012, 22, 1–34. [Google Scholar] [CrossRef]
- Parsons, M.; Mitchell, I.; Butler, A.; Ratcliffe, N.; Frederiksen, M.; Foster, S.; Reid, J.B. Seabirds as Indicators of the Marine Environment. ICES J. Mar. Sci. 2008, 65, 1520–1526. [Google Scholar] [CrossRef]
- Mallory, M.L.; Gilchrist, H.G.; Braune, B.M.; Gaston, A.J. Marine Birds as Indicators of Arctic Marine Ecosystem Health: Linking the Northern Ecosystem Initiative to Long-Term Studies. Environ. Monit. Assess. 2006, 113, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Link, J.S.; Watson, R.A.; Pranovi, F.; Libralato, S. Comparative Production of Fisheries Yields and Ecosystem Overfishing in African Large Marine Ecosystems. Environ. Dev. 2020, 36, 100529. [Google Scholar] [CrossRef]
- Häder, D.-P.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A.; Helbling, E.W. Anthropogenic Pollution of Aquatic Ecosystems: Emerging Problems with Global Implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W.F. Habitat Destruction: Death by a Thousand Cuts. In Conservation Biology for All; OUP Oxford: Oxford, UK, 2010; ISBN 978-0-19-157425-2. [Google Scholar]
- Karpouzi, V.S.; Watson, R.; Pauly, D. Modelling and Mapping Resource Overlap between Seabirds and Fisheries on a Global Scale: A Preliminary Assessment. Mar. Ecol. Prog. Ser. 2007, 343, 87–99. [Google Scholar] [CrossRef]
- Schratzberger, M.; Somerfield, P.J. Effects of Widespread Human Disturbances in the Marine Environment Suggest a New Agenda for Meiofauna Research Is Needed. Sci. Total Environ. 2020, 728, 138435. [Google Scholar] [CrossRef]
- Courrat, A.; Lobry, J.; Nicolas, D.; Laffargue, P.; Amara, R.; Lepage, M.; Girardin, M.; Le Pape, O. Anthropogenic Disturbance on Nursery Function of Estuarine Areas for Marine Species. Estuar. Coast. Shelf Sci. 2009, 81, 179–190. [Google Scholar] [CrossRef]
- Thornton, D.; Zeller, K.; Rondinini, C.; Boitani, L.; Crooks, K.; Burdett, C.; Rabinowitz, A.; Quigley, H. Assessing the Umbrella Value of a Range-Wide Conservation Network for Jaguars (Panthera Onca). Ecol. Appl. 2016, 26, 1112–1124. [Google Scholar] [CrossRef]
- Mekonnen, A.; Fashing, P.J.; Chapman, C.A.; Venkataraman, V.V.; Stenseth, N.C. The Value of Flagship and Umbrella Species for Restoration and Sustainable Development: Bale Monkeys and Bamboo Forest in Ethiopia. J. Nat. Conserv. 2022, 65, 126117. [Google Scholar] [CrossRef]
- Kalinkat, G.; Cabral, J.S.; Darwall, W.; Ficetola, G.F.; Fisher, J.L.; Giling, D.P.; Gosselin, M.-P.; Grossart, H.-P.; Jähnig, S.C.; Jeschke, J.M.; et al. Flagship Umbrella Species Needed for the Conservation of Overlooked Aquatic Biodiversity: Freshwater Flagship Umbrella Species. Conserv. Biol. 2017, 31, 481–485. [Google Scholar] [CrossRef]
- Harrison, P.; Perrow, M.; Larsson, H. Seabirds. The New Identification Guide; Lynx Edicions: Barcelona, Spain, 2021. [Google Scholar]
- BirdLife International IUCN Red List of Threatened Species: Spheniscus demersus. In IUCN Red List of Threatened Species; 2019; Available online: https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T22697810A157423361.en (accessed on 3 August 2023).
- Boersma, P.D.; Borboroglu, P.G.; Gownaris, N.J.; Bost, C.A.; Chiaradia, A.; Ellis, S.; Schneider, T.; Seddon, P.J.; Simeone, A.; Trathan, P.N.; et al. Applying Science to Pressing Conservation Needs for Penguins. Conserv. Biol. 2020, 34, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R.J.M.; Dyer, B.M.; Brown, P.C. Absence of Breeding by African Penguins at Four Former Colonies. S. Afr. J. Mar. Sci. 1995, 15, 269–272. [Google Scholar] [CrossRef]
- Crawford, R.; Altwegg, R.; Barham, B.; Barham, P.; Durant, J.; Dyer, B.; Geldenhuys, D.; Makhado, A.; Pichegru, L.; Ryan, P.; et al. Collapse of South Africa’s Penguins in the Early 21st Century. Afr. J. Mar. Sci. 2011, 33, 139–156. [Google Scholar] [CrossRef]
- Favaro, L.; Pichegru, L. Penguins: Behavioural Ecology and Vocal Communication. In Encyclopedia of Animal Cognition and Behavior; Vonk, J., Shackelford, T., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–9. ISBN 978-3-319-47829-6. [Google Scholar]
- Sydeman, W.J.; Hunt, G.L.; Pikitch, E.K.; Parrish, J.K.; Piatt, J.F.; Boersma, P.D.; Kaufman, L.; Anderson, D.W.; Thompson, S.A.; Sherley, R.B. South Africa’s Experimental Fisheries Closures and Recovery of the Endangered African Penguin. ICES J. Mar. Sci. 2021, 78, 3538–3543. [Google Scholar] [CrossRef]
- Pichegru, L.; Vibert, L.; Thiebault, A.; Charrier, I.; Stander, N.; Ludynia, K.; Lewis, M.; Carpenter-Kling, T.; McInnes, A. Maritime Traffic Trends around the Southern Tip of Africa—Did Marine Noise Pollution Contribute to the Local Penguins’ Collapse? Sci. Total Environ. 2022, 849, 157878. [Google Scholar] [CrossRef] [PubMed]
- Borboroglu, P.G.; Boersma, P.D. Penguins: Natural History and Conservation; University of Washington Press: Seattle, WC, USA, 2015; ISBN 978-0-295-99906-7. [Google Scholar]
- Sherley, R.B.; Crawford, R.J.M.; Blocq, A.D.; Dyer, B.M.; Geldenhuys, D.; Hagen, C.; Kemper, J.; Makhado, A.B.; Pichegru, L.; Tom, D.; et al. The Conservation Status and Population Decline of the African Penguin Deconstructed in Space and Time. Ecol. Evol. 2020, 10, 8506–8516. [Google Scholar] [CrossRef]
- Lambert, K.T.A.; McDonald, P.G. A Low-Cost, yet Simple and Highly Repeatable System for Acoustically Surveying Cryptic Species. Austral Ecol. 2014, 39, 779–785. [Google Scholar] [CrossRef]
- DEA. Biodiversity Management Plan for the African Penguin Spheniscus demersus. Gov. Gaz. 2013, 72. Available online: https://www.dffe.gov.za/sites/default/files/docs/biodiversitymanagementplan_africanpenguin.pdf (accessed on 3 August 2023).
- Francomano, D. Soundscape Dynamics in the Social-Ecological Systems of Tierra del Fuego. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2020; p. 252. [Google Scholar]
- Borker, A.L.; Mckown, M.W.; Ackerman, J.T.; Eagles-Smith, C.A.; Tershy, B.R.; Croll, D.A. Vocal Activity as a Low Cost and Scalable Index of Seabird Colony Size. Conserv. Biol. 2014, 28, 1100–1108. [Google Scholar] [CrossRef]
- Favaro, L.; Ozella, L.; Pessani, D. The Vocal Repertoire of the African Penguin (Spheniscus demersus): Structure and Function of Calls. PLoS ONE 2014, 9, e103460. [Google Scholar] [CrossRef]
- Favaro, L.; Gamba, M.; Cresta, E.; Fumagalli, E.; Bandoli, F.; Pilenga, C.; Isaja, V.; Mathevon, N.; Reby, D. Do Penguins’ Vocal Sequences Conform to Linguistic Laws? Biol. Lett. 2020, 16, 20190589. [Google Scholar] [CrossRef]
- Doser, J.W.; Finley, A.O.; Weed, A.S.; Zipkin, E.F. Integrating Automated Acoustic Vocalization Data and Point Count Surveys for Estimation of Bird Abundance. Methods Ecol. Evol. 2021, 12, 1040–1049. [Google Scholar] [CrossRef]
- Brownlie, K.C.; Monash, R.; Geeson, J.J.; Fort, J.; Bustamante, P.; Arnould, J.P.Y. Developing a Passive Acoustic Monitoring Technique for Australia’s Most Numerous Seabird, the Short-Tailed Shearwater (Ardenna Tenuirostris). Emu Austral Ornithol. 2020, 120, 123–134. [Google Scholar] [CrossRef]
- Pérez-Granados, C.; Traba, J. Estimating Bird Density Using Passive Acoustic Monitoring: A Review of Methods and Suggestions for Further Research. Ibis 2021, 163, 765–783. [Google Scholar] [CrossRef]
- Favaro, L.; Cresta, E.; Friard, O.; Ludynia, K.; Mathevon, N.; Pichegru, L.; Reby, D.; Gamba, M. Passive Acoustic Monitoring of the Endangered African Penguin (Spheniscus demersus) Using Autonomous Recording Units and Ecoacoustic Indices. Ibis 2021, 163, 1472–1480. [Google Scholar] [CrossRef]
- Oppel, S.; Hervías, S.; Oliveira, N.; Pipa, T.; Silva, C.; Geraldes, P.; Goh, M.; Immler, E.; McKown, M. Estimating Population Size of a Nocturnal Burrow-Nesting Seabird Using Acoustic Monitoring and Habitat Mapping. Nat. Conserv. 2014, 7, 1–13. [Google Scholar] [CrossRef]
- Arneill, G.E.; Critchley, E.J.; Wischnewski, S.; Jessopp, M.J.; Quinn, J.L. Acoustic Activity across a Seabird Colony Reflects Patterns of Within-colony Flight Rather than Nest Density. Ibis 2020, 162, 416–428. [Google Scholar] [CrossRef]
- Campbell, K.J.; Farah, D.; Collins, S.; Parsons, N.J. Sex Determination of African Penguins Spheniscus demersus Using Bill Measurements: Method Comparisons and Implications for Use. Ostrich 2016, 87, 47–55. [Google Scholar] [CrossRef]
- Aldinucci, M.; Bagnasco, S.; Lusso, S.; Pasteris, P.; Rabellino, S.; Vallero, S. OCCAM: A Flexible, Multi-Purpose and Extendable HPC Cluster. J. Phys. Conf. Ser. 2017, 898, 82039. [Google Scholar] [CrossRef]
- Katz, J.; Hafner, S.D.; Donovan, T. Tools for Automated Acoustic Monitoring within the R Package MonitoR. Bioacoustics 2016, 25, 197–210. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Favaro, L.; Gamba, M.; Alfieri, C.; Pessani, D.; McElligott, A.G. Vocal Individuality Cues in the African Penguin (Spheniscus demersus): A Source-Filter Theory Approach. Sci. Rep. 2015, 5, 17255. [Google Scholar] [CrossRef]
- Katz, J.; Hafner, S.D. Making Bin Templates. Available online: https://jonkatz2.github.io/monitoR/assets/makingTemplates/makingBinTemplates.html (accessed on 24 December 2022).
- Kriesell, H.J.; Elwen, S.H.; Nastasi, A.; Gridley, T. Identification and Characteristics of Signature Whistles in Wild Bottlenose Dolphins (Tursiops truncatus) from Namibia. PLoS ONE 2014, 9, e106317. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Machler, M.; Bolker, B.M. GlmmTMB Balances Speed and Flexibility among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Lüdecke, D. Data Visualization for Statistics in Social Science. Available online: https://strengejacke.github.io/sjPlot/ (accessed on 24 December 2022).
- Anderson, A.S.; Marques, T.A.; Shoo, L.P.; Williams, S.E. Detectability in Audio-Visual Surveys of Tropical Rainforest Birds: The Influence of Species, Weather and Habitat Characteristics. PLoS ONE 2015, 10, e0128464. [Google Scholar] [CrossRef]
- Santos, M.; Travassos, P.; Repas, M.; Cabral, J.A. Modelling the Performance of Bird Surveys in Non-Standard Weather Conditions: General Applications with Special Reference to Mountain Ecosystems. Ecol. Indic. 2009, 9, 41–51. [Google Scholar] [CrossRef]
- Radford, A.N.; du Plessis, M.A. Territorial Vocal Rallying in the Green Woodhoopoe: Factors Affecting Contest Length and Outcome. Anim. Behav. 2004, 68, 803–810. [Google Scholar] [CrossRef]
- Hondula, D.M.; Balling, R.C.; Vanos, J.K.; Georgescu, M. Rising Temperatures, Human Health, and the Role of Adaptation. Curr. Clim. Change Rep. 2015, 1, 144–154. [Google Scholar] [CrossRef]
- Reporter, W. Penguins Breeding at New Colony: A World-First for African Penguins. Witness, 21 November 2022. [Google Scholar]
- Wood, C.M.; Peery, M.Z. What Does ‘Occupancy’ Mean in Passive Acoustic Surveys? Ibis 2022, 164, 1295–1300. [Google Scholar] [CrossRef]
- Eggleton, P.; Siegfried, W.R. Displays of the Jackass Penguin. Ostrich 1979, 50, 139–167. [Google Scholar] [CrossRef]
- Gray, L.F.; McNeil, D.J.; Larkin, J.T.; Parker, H.A.; Shaffer, D.; Larkin, J.L. Quantifying Detection Probability of American Woodcock (Scolopax minor) on Transects Sampled with Thermal Cameras. Wildl. Soc. Bull. 2022, e1417. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hacker, F.; Terranova, F.; Petersen, G.S.; Tourtigues, E.; Friard, O.; Gamba, M.; Ludynia, K.; Gridley, T.; Pichegru, L.; Mathevon, N.; et al. Effect of Environmental Variables on African Penguin Vocal Activity: Implications for Acoustic Censusing. Biology 2023, 12, 1191. https://doi.org/10.3390/biology12091191
Hacker F, Terranova F, Petersen GS, Tourtigues E, Friard O, Gamba M, Ludynia K, Gridley T, Pichegru L, Mathevon N, et al. Effect of Environmental Variables on African Penguin Vocal Activity: Implications for Acoustic Censusing. Biology. 2023; 12(9):1191. https://doi.org/10.3390/biology12091191
Chicago/Turabian StyleHacker, Franziska, Francesca Terranova, Gavin Sean Petersen, Emma Tourtigues, Olivier Friard, Marco Gamba, Katrin Ludynia, Tess Gridley, Lorien Pichegru, Nicolas Mathevon, and et al. 2023. "Effect of Environmental Variables on African Penguin Vocal Activity: Implications for Acoustic Censusing" Biology 12, no. 9: 1191. https://doi.org/10.3390/biology12091191
APA StyleHacker, F., Terranova, F., Petersen, G. S., Tourtigues, E., Friard, O., Gamba, M., Ludynia, K., Gridley, T., Pichegru, L., Mathevon, N., Reby, D., & Favaro, L. (2023). Effect of Environmental Variables on African Penguin Vocal Activity: Implications for Acoustic Censusing. Biology, 12(9), 1191. https://doi.org/10.3390/biology12091191