Seasonal and Daily Xylem Radius Variations in Scots Pine Are Closely Linked to Environmental Factors Affecting Transpiration
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Microclimate Records
2.3. Records of Inner Bark and Xylem Radial Variations
2.4. Data Analysis
3. Results
3.1. Environmental Conditions during the Growing Seasons
3.2. Radial Variations in Inner Bark and Xylem throughout the Study Period
3.3. Influence of Environmental Variables on Xylem Radial Variations
4. Discussion
4.1. Hydraulic Coupling between Phloem and Xylem
4.2. Environmental Factors as Determinants of Xylem Radial Variation
4.3. Daily and Seasonal Xylem Variations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parlange, J.Y.; Turner, N.C.; Waggoner, P.E. Water uptake, diameter change, and nonlinear diffusion in tree stems. Plant Physiol. 1975, 55, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.H. Xylem Structure and the Ascent of Sap; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Zweifel, R.; Item, H.; Häsler, R. Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees 2000, 15, 50–57. [Google Scholar] [CrossRef]
- Pfautsch, S.; Hölttä, T.; Mencuccini, M. Hydraulic functioning of tree stems—Fusing ray anatomy, radial transfer and capacitance. Tree Physiol. 2015, 35, 706–722. [Google Scholar] [CrossRef]
- Irvine, J.; Grace, J. Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta 1997, 202, 455–461. [Google Scholar] [CrossRef]
- Scholz, F.C.; Bucci, S.J.; Goldstein, G.; Meinzer, F.C.; Franco, A.C.; Miralles-Wilhelm, F. Temporal dynamics of stem expansion and contraction in savanna trees: Withdrawal and recharge of stored water. Tree Physiol. 2008, 28, 469–480. [Google Scholar] [CrossRef]
- Hellkvist, J.; Hillerdal-Hagströmer, K.; Mattson-Djos, E. Field studies of water relations and photo-synthesis in Scots pine using manual techniques. In Structure and Function of Northern Coniferous Forests—An Ecosystem Study; Persson, T., Ed.; NFR: Stockholm, Sweden, 1980; pp. 183–204. [Google Scholar]
- Sevanto, S.; Vesala, T.; Perämäki, M.; Nikinmaa, E. Time lags for xylem and stem diameter variations in a Scots pine tree. Plant Cell Environ. 2002, 25, 1071–1077. [Google Scholar] [CrossRef]
- Zweifel, R.; Drew, D.M.; Schweingruber, F.; Downes, G.M. Xylem as the main origin of stem radius changes. Funct. Plant Biol. 2014, 41, 520–534. [Google Scholar] [CrossRef] [PubMed]
- Steppe, K.; de Pauw, D.J.W.; Lemeur, R.; Vanrolleghem, P.A. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol. 2006, 26, 257–273. [Google Scholar] [CrossRef]
- Sevanto, S.; Nikinmaa, E.; Riikonen, A.; Daley, M.; Pettijohn, J.C.; Mikkelsen, T.N.; Phillips, N.; Holbrook, N.M. Linking xylem diameter variations with sap flow measurements. Plant Soil 2008, 305, 77–90. [Google Scholar] [CrossRef]
- Herzog, K.M.; Häsler, R.; Thum, R. Diurnal changes in the radius of a subalpine Norway spruce stem: Their relation to the sap flow and their use to estimate transpiration. Trees 1995, 10, 94–101. [Google Scholar] [CrossRef]
- Perämäki, M.; Nikinman, E.; Sevanto, S.; Ilvesniemi, H.; Siivola, E.; Hari, P.; Vesala, T. Tree stem diameter variations and transpiration in Scots pine: An analysis using a dynamic sap flow model. Tree Physiol. 2001, 21, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Pfautsch, S.; Renard, J.; Tjoelker, M.G.; Salih, A. Phloem as capacitor: Radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma. Plant Physiol. 2015, 167, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, D.; Jarvis, P.G. Coniferous forests and plantations. In Water Deficits and Plant Growth; Kozlowski, T.T., Ed.; Academic Press: New York, NY, USA, 1981; pp. 50–153. [Google Scholar]
- Zweifel, R.; Item, H.; Häsler, R. Link between diurnal stem radius changes and tree water relations. Tree Physiol. 2001, 21, 869–877. [Google Scholar] [CrossRef]
- Mencuccini, M.; Hölttä, T.; Sevanto, S.; Nikinmaa, E. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal. New Phytol. 2013, 198, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Sevanto, S.; Vesala, T.; Perämäki, M.; Nikinmaa, E. Sugar transport together with environmental conditions controls time lags between xylem and stem diameter changes. Plant Cell Environ. 2003, 26, 1257–1265. [Google Scholar] [CrossRef]
- De Schepper, V.; Steppe, K. Development and verification of a water and sugar transport model using measured stem diameter variations. J. Exp. Bot. 2010, 61, 2083–2099. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.; Hölttä, T.; Berninger, F.; Mäkinen, H.; Nöjd, P.; Mencuccini, M.; Nikinmaa, E. Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant Cell Environ. 2016, 39, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Mencuccini, M.; Salmon, Y.; Mitchell, P.; Hölttä, T.; Choat, B.; Meir, P.; O’Grady, A.; Tissue, D.; Zweifel, R.; Sevanto, S.; et al. An empirical method that separates irreversible stem radial growth from bark water content changes in trees: Theory and case studies. Plant Cell Environ. 2017, 40, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Lazzarin, M.; Zweifel, R.; Anten, N.; Steck, F.J. Does phloem osmolality affect diurnal diameter changes of twigs but not of stem in Scots pine? Tree Physiol. 2018, 39, 275–283. [Google Scholar] [CrossRef]
- Dawes, M.A.; Zweifel, R.; Dawes, N.; Rixen, C.; Hagedorn, F. CO2 enrichment alters diurnal stem radius fluctuations of 36-yr-old Larix decidua growing at the alpine tree line. New Phytol. 2014, 202, 1237–1248. [Google Scholar] [CrossRef]
- Donnellan Barraclough, A.; Zweifel, R.; Cusens, J.; Leuzinger, S. Daytime stem swelling and seasonal reversal in the peristaltic depletion of stored water along the stem of Avicennia marina (Forssk.) Vierh. Tree Physiol. 2018, 38, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Turcotte, A.; Rossi, S.; Deslauriers, A.; Krause, C.; Morin, H. Dynamics of depletion and replenishment of water storage in stem and roots of black spruce measured by dendrometers. Front. Plant Sci. 2011, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Ehrenberger, W.; Rüger, S.; Fitzke, R.; Vollenweider, P.; Günthardt-Goerg, M.S.; Kuster, T.; Zimmermann, U.; Arend, M. Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees. Funct. Plant. Biol. 2012, 39, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Oberhuber, W. Soil water availability and evaporative demand affect seasonal growth dynamics and use of stored water in co-occurring saplings and mature conifers under drought. Trees 2017, 31, 467–478. [Google Scholar] [CrossRef]
- Oberhuber, W.; Gruber, A. Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees 2010, 24, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 2013, 3, 292–297. [Google Scholar] [CrossRef]
- De Cárcer, S.; Vitasse, Y.; Peñuelas, J.; Jassey, V.E.J.; Buttler, A.; Signarbieux, C. Vapor–pressure deficit and extreme climatic variables limit tree growth. Glob. Change Biol. 2018, 24, 1108–1122. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef]
- Schönbeck, L.C.; Schuler, P.; Lehmann, M.M.; Mas, E.; Mekarni, L.; Pivovaroff, A.L.; Turberg, P.; Grossiord, C. Increasing temperature and vapour pressure deficit lead to hydraulic damages in the absence of soil drought. Plant Cell Environ. 2022, 45, 3275–3289. [Google Scholar] [CrossRef]
- Offenthaler, I.; Hietz, P.; Richter, H. Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. Trees 2001, 15, 215–221. [Google Scholar] [CrossRef]
- Sevanto, S.; Hölttä, T.; Markkanen, T.; Perämäki, M.; Nikinmaa, E.; Vesala, T. Relationships between diurnal xylem diameter variation and environmental factors in Scots pine. Boreal Environ. Res. 2005, 10, 447–458. [Google Scholar]
- Sevanto, S.; Hölttä, T.; Holbrook, N.M. Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. Plant Cell Environ. 2011, 34, 690–703. [Google Scholar] [CrossRef]
- Ellenberg, H.; Leuschner, C. Vegetation Mitteleuropas mit den Alpen in ökologischer, Dynamischer und Historischer Sicht; Ulmer: Stuttgart, Germany, 2010. [Google Scholar]
- FAO. World Reference Base for Soil Resources; FAO: Rome, Italy, 2006; Volume 103. [Google Scholar]
- Oberhuber, W.; Stumböck, M.; Kofler, W. Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees 1998, 13, 19–27. [Google Scholar] [CrossRef]
- Schuster, R.; Oberhuber, W. Drought sensitivity of three co-occurring conifers within a dry inner Alpine environment. Trees 2013, 27, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Prenger, J.J.; Ling, P.P. Greenhouse Condensation Control: Understanding and Using Vapour Pressure Deficit (VPD); Fact Sheet (Series) AEX-800; Ohio State University Extension: Columbus, OH, USA, 2000. [Google Scholar]
- Oberhuber, W.; Sehrt, M.; Kitz, F. Hygroscopic properties of thin dead outer bark layers strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris). Agric. For. Meteorol. 2020, 290, 108026. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.; Strobl, S.; Veit, B.; Oberhuber, W. Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris. Tree Physiol. 2010, 30, 490–501. [Google Scholar] [CrossRef]
- Deslauriers, A.; Rossi, S.; Anfodillo, T. Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia 2007, 25, 113–124. [Google Scholar] [CrossRef]
- Daudet, F.A.; Ameglio, T.; Cochard, H.; Archilla, O.; Lacointe, A. Experimental analysis of the role of water and carbon in tree stem diameter variations. J. Exp. Bot. 2005, 56, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Oberhuber, W.; Gruber, A.; Kofler, W.; Swidrak, I. Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. Eur. J. For. Res. 2014, 133, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Zweifel, R.; Häsler, R. Frost-induced reversible shrinkage of bark of mature, subalpine conifers. Agric. For. Meteorol. 2000, 102, 213–222. [Google Scholar] [CrossRef]
- Molz, F.J.; Klepper, B. On the mechanism of water-stress-induced stem deformation. Agron. J. 1973, 65, 304–306. [Google Scholar] [CrossRef]
- Steppe, K.; Sterck, F.; Deslauriers, A. Diel growth dynamics in tree stems: Linking anatomy and ecophysiology. Trends Plant Sci. 2015, 20, 335–343. [Google Scholar] [CrossRef]
- Leo, M.; Oberhuber, W.; Schuster, R.; Grams, E.E.T.; Matyssek, R.; Wieser, G. Evaluating the effect of plant water availability on inner alpine coniferous trees based on sap flow measurements. Eur. J. For. Res. 2014, 133, 691–698. [Google Scholar] [CrossRef]
- Will, R.E.; Wilson, S.M.; Zou, C.B.; Hennessey, T.C. Increased vapour pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. New Phytol. 2013, 200, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Anderegg, W.; Meinzer, F. Wood anatomy and plant hydraulics in a changing climate. In Functional and Ecological Xylem Anatomy; Hacke, U.G., Ed.; Springer International Publishing: Basel, Switzerland, 2015; pp. 235–253. [Google Scholar]
- Granier, A.; Loustau, D.; Breda, N. A generic model for forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann. For. Sci. 2000, 57, 755–765. [Google Scholar] [CrossRef]
- Zweifel, R.; Haeni, M.; Buchmann, N.; Eugster, W. Are trees able to grow in periods of stem shrinkage? New Phytol. 2016, 211, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Oberhuber, W.; Kofler, W.; Schuster, R.; Wieser, G. Environmental effects on stem water deficit in co-occurring conifers exposed to soil dryness. Int. J. Biometeorol. 2015, 59, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Cěrmák, J.; Kučera, J.; Bauerle, W.L.; Phillips, N.; Hinckley, T.M. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiol. 2007, 27, 181–198. [Google Scholar] [CrossRef]
- Betsch, P.; Bonal, D.; Breda, N.; Montpied, P.; Peiffer, M.; Tuzet, A.; Granier, A. Drought effects on water relations in beech: The contribution of exchangeable water reservoirs. Agric. For. Meteorol. 2011, 151, 531–543. [Google Scholar] [CrossRef]
- Köcher, P.; Horna, V.; Leuschner, C. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiol. 2012, 32, 1021–1032. [Google Scholar] [CrossRef]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.A.; Blanken, P.D.; Noormets, A.; Sulman, B.N.; et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 2016, 6, 1023–1027. [Google Scholar] [CrossRef]
- Hinckley, T.M.; Lassoie, J.P.; Running, S.W. Temporal and spatial variations in the water status of forest trees. In Forest Science Monographs; Ferrell, W.K., Ed.; Society of American Foresters: Washington, DC, USA, 1978; pp. 1–72. [Google Scholar]
- Oren, R.; Pataki, D.E. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia 2001, 127, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Zweifel, R.; Zimmermann, L.; Zeugin, F.; Newberry, D.M. Intra-annual radial growth and water relations of trees: Implications towards a growth mechanism. J. Exp. Bot. 2006, 57, 1445–1459. [Google Scholar] [CrossRef]
- Breshears, D.D.; Adams, H.D.; Eamus, D.; McDowell, N.G.; Law, D.J.; Will, R.E.; Williams, A.P.; Zou, C.B. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. 2013, 4, 266. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the anthropocene. Ecosphere 2015, 6, art129. [Google Scholar] [CrossRef]
- Restaino, C.M.; Peterson, D.L.; Littell, J. Increased water deficit decreases Douglas fir growth throughout western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 9557–9562. [Google Scholar] [CrossRef] [PubMed]
- Trotsiuk, V.; Babst, F.; Grossiord, C.; Gessler, A.; Forrester, D.I.; Buchmann, N.; Schaub, M.; Eugster, W. Tree growth in Switzerland is increasingly constrained by rising evaporative demand. J. Ecol. 2021, 109, 2981–2990. [Google Scholar] [CrossRef]
Year | Tair (°C) | VPD (kPa) | P (mm) | SWC (Vol. %) |
---|---|---|---|---|
2019 | 15.6 (39.0) | 0.65 (5.95) | 390 (30) | 18.4 (33.5) |
2020 | 15.8 (36.0) | 0.63 (4.78) | 461 (36) | 8.8 (16.1) |
2021 | 14.9 (34.4) | 0.58 (3.90) | 430 (31) | 14.4 (31.3) |
Air Tmax (°C) | Air Tmean (°C) | Air Tmin (°C) | VPDmax (kPa) | VPDmean (kPa) | VPDmin (kPa) | |
---|---|---|---|---|---|---|
Xylmax | −0.558 *** | −0.656 *** | −0.667 *** | −0.325 *** | −0.234 *** | 0.030 |
Xylmean | −0.691 *** | −0.746 *** | −0.661 *** | −0.508 *** | −0.423 *** | −0.108 * |
Xylmin | −0.799 *** | −0.795 *** | −0.637 *** | −0.665 *** | −0.569 *** | −0.193 *** |
RHmax (%) | Rhmean (%) | Rhmin (%) | P (mm) | SWC (%) | ||
Xylmax | −0.112 ** | −0.084 * | −0.047 | 0.054 | 0.263 *** | |
Xylmean | 0.026 | 0.105 * | 0.146 *** | 0.164 *** | 0.272 *** | |
Xylmin | 0.115 ** | 0.245 *** | 0.308 *** | 0.261 *** | 0.330 *** |
Dependent Variable | Constant | Tair | RH | SWC | R2 Adjusted | F-Value (3, 512) |
---|---|---|---|---|---|---|
Xylmax | 18.664 (1.915) | −1.513 ***1 (0.056) | −0.234 ***1 (0.020) | 0.220 *** (0.044) | 0.613 | 273.48 |
Xylmean | 26.220 (4.170) | −1.849 ***1 (0.068) | −0.210 ***2 (0.041) | 0.161 ** (0.053) | 0.608 | 267.47 |
Xylmin | 45.253 (4.226) | −1.656 ***2 (0.051) | −0.323 ***2 (0.040) | 0.316 *** (0.051) | 0.700 | 401.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberhuber, W.; Gruber, A.; Wieser, G. Seasonal and Daily Xylem Radius Variations in Scots Pine Are Closely Linked to Environmental Factors Affecting Transpiration. Biology 2023, 12, 1251. https://doi.org/10.3390/biology12091251
Oberhuber W, Gruber A, Wieser G. Seasonal and Daily Xylem Radius Variations in Scots Pine Are Closely Linked to Environmental Factors Affecting Transpiration. Biology. 2023; 12(9):1251. https://doi.org/10.3390/biology12091251
Chicago/Turabian StyleOberhuber, Walter, Andreas Gruber, and Gerhard Wieser. 2023. "Seasonal and Daily Xylem Radius Variations in Scots Pine Are Closely Linked to Environmental Factors Affecting Transpiration" Biology 12, no. 9: 1251. https://doi.org/10.3390/biology12091251
APA StyleOberhuber, W., Gruber, A., & Wieser, G. (2023). Seasonal and Daily Xylem Radius Variations in Scots Pine Are Closely Linked to Environmental Factors Affecting Transpiration. Biology, 12(9), 1251. https://doi.org/10.3390/biology12091251