Selective Noradrenaline Depletion in the Neocortex and Hippocampus Induces Working Memory Deficits and Regional Occurrence of Pathological Proteins
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Lesion
2.3. Behavioral Tests
2.4. Post-Mortem Analyses
2.5. Statistical Analysis
3. Results
3.1. Central Noradrenaline Depletion Has No Effects on Sensory-Motor Activity
3.2. Central Noradrenergic Depletion Does Not Affect Reference Memory
3.3. Lesion-Induced Noradrenergic Depletion Causes Working Memory Deficits in a Dose-Dependent Manner
3.4. Increasing Doses of Anti-DBH-Saporin Injected in the Lateral Ventricles of P4 Rats Produce a Dose-Dependent Loss of Noradrenergic Neurons and Fibers
3.5. High Dose of Anti-DBH-Saporin Leads to an Increase in TDP-43 Phosphorylated at Ser 409/410 in the Cortex
3.6. Low Dose of Anti-DBH-Saporin Leads to an Increase in Tau Phosphorylated at Thr 217 in the Cortex
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meneses, A.; Koga, S.; O’Leary, J.; Dickson, D.W.; Bu, G.; Zhao, N. TDP-43 Pathology in Alzheimer’s Disease. Mol. Neurodegener. 2021, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; et al. The β-Secretase BACE1 in Alzheimer’s Disease. Biol. Psychiatry 2021, 89, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Pike, C.J.; Burdick, D.; Walencewicz, A.J.; Glabe, C.G.; Cotman, C.W. Neurodegeneration Induced by Beta-Amyloid Peptides in Vitro: The Role of Peptide Assembly State. J. Neurosci. 1993, 13, 1676–1687. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Noble, W.; Hanger, D.P. Roles of Tau Protein in Health and Disease. Acta Neuropathol. 2017, 133, 665–704. [Google Scholar] [CrossRef] [PubMed]
- Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Front. Aging Neurosci. 2019, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-L.; Wang, N.; Sun, F.-R.; Cao, X.-P.; Zhang, W.; Yu, J.-T. Tau in Neurodegenerative Disease. Ann. Transl. Med. 2018, 6, 175. [Google Scholar] [CrossRef]
- Barthélemy, N.R.; Bateman, R.J.; Hirtz, C.; Marin, P.; Becher, F.; Sato, C.; Gabelle, A.; Lehmann, S. Cerebrospinal Fluid Phospho-Tau T217 Outperforms T181 as a Biomarker for the Differential Diagnosis of Alzheimer’s Disease and PET Amyloid-Positive Patient Identification. Alzheimer’s Res. Ther. 2020, 12, 26. [Google Scholar] [CrossRef]
- Palmqvist, S.; Janelidze, S.; Quiroz, Y.T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y.; Serrano, G.E.; Leuzy, A.; et al. Discriminative Accuracy of Plasma Phospho-Tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020, 324, 772–781. [Google Scholar] [CrossRef]
- Suárez-Calvet, M.; Karikari, T.K.; Ashton, N.J.; Lantero Rodríguez, J.; Milà-Alomà, M.; Gispert, J.D.; Salvadó, G.; Minguillon, C.; Fauria, K.; Shekari, M.; et al. Novel Tau Biomarkers Phosphorylated at T181, T217 or T231 Rise in the Initial Stages of the Preclinical Alzheimer’s Continuum When Only Subtle Changes in Aβ Pathology Are Detected. EMBO Mol. Med. 2020, 12, e12921. [Google Scholar] [CrossRef]
- Chang, X.-L.; Tan, M.-S.; Tan, L.; Yu, J.-T. The Role of TDP-43 in Alzheimer’s Disease. Mol. Neurobiol. 2016, 53, 3349–3359. [Google Scholar] [CrossRef]
- Amador-Ortiz, C.; Lin, W.-L.; Ahmed, Z.; Personett, D.; Davies, P.; Duara, R.; Graff-Radford, N.R.; Hutton, M.L.; Dickson, D.W. TDP-43 Immunoreactivity in Hippocampal Sclerosis and Alzheimer’s Disease. Ann. Neurol. 2007, 61, 435–445. [Google Scholar] [CrossRef] [PubMed]
- James, B.D.; Wilson, R.S.; Boyle, P.A.; Trojanowski, J.Q.; Bennett, D.A.; Schneider, J.A. TDP-43 Stage, Mixed Pathologies, and Clinical Alzheimer’s-Type Dementia. Brain 2016, 139, 2983–2993. [Google Scholar] [CrossRef] [PubMed]
- Caccamo, A.; Magrí, A.; Oddo, S. Age-Dependent Changes in TDP-43 Levels in a Mouse Model of Alzheimer Disease Are Linked to Aβ Oligomers Accumulation. Mol. Neurodegener. 2010, 5, 51. [Google Scholar] [CrossRef]
- Davis, S.A.; Gan, K.A.; Dowell, J.A.; Cairns, N.J.; Gitcho, M.A. TDP-43 Expression Influences Amyloidβ Plaque Deposition and Tau Aggregation. Neurobiol. Dis. 2017, 103, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Eck, R.J.; Kraemer, B.C.; Liachko, N.F. Regulation of TDP-43 Phosphorylation in Aging and Disease. GeroScience 2021, 43, 1605–1614. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Mackenzie, I.R.A.; Hasegawa, M.; Nonoka, T.; Niizato, K.; Tsuchiya, K.; Iritani, S.; Onaya, M.; Akiyama, H. Phosphorylated TDP-43 in Alzheimer’s Disease and Dementia with Lewy Bodies. Acta Neuropathol. 2009, 117, 125–136. [Google Scholar] [CrossRef]
- Sara, S.J. The Locus Coeruleus and Noradrenergic Modulation of Cognition. Nat. Rev. Neurosci. 2009, 10, 211–223. [Google Scholar] [CrossRef]
- Caetano, M.S.; Jin, L.E.; Harenberg, L.; Stachenfeld, K.L.; Arnsten, A.F.T.; Laubach, M. Noradrenergic Control of Error Perseveration in Medial Prefrontal Cortex. Front. Integr. Neurosci. 2013, 6, 125. [Google Scholar] [CrossRef]
- James, T.; Kula, B.; Choi, S.; Khan, S.S.; Bekar, L.K.; Smith, N.A. Locus Coeruleus in Memory Formation and Alzheimer’s Disease. Eur. J. Neurosci. 2021, 54, 6948–6959. [Google Scholar] [CrossRef]
- Kelly, S.C.; He, B.; Perez, S.E.; Ginsberg, S.D.; Mufson, E.J.; Counts, S.E. Locus Coeruleus Cellular and Molecular Pathology during the Progression of Alzheimer’s Disease. Acta Neuropathol. Commun. 2017, 5, 8. [Google Scholar] [CrossRef]
- Grudzien, A.; Shaw, P.; Weintraub, S.; Bigio, E.; Mash, D.C.; Mesulam, M.M. Locus Coeruleus Neurofibrillary Degeneration in Aging, Mild Cognitive Impairment and Early Alzheimer’s Disease. Neurobiol. Aging 2007, 28, 327–335. [Google Scholar] [CrossRef]
- Heneka, M.T.; Nadrigny, F.; Regen, T.; Martinez-Hernandez, A.; Dumitrescu-Ozimek, L.; Terwel, D.; Jardanhazi-Kurutz, D.; Walter, J.; Kirchhoff, F.; Hanisch, U.-K.; et al. Locus Ceruleus Controls Alzheimer’s Disease Pathology by Modulating Microglial Functions through Norepinephrine. Proc. Natl. Acad. Sci. USA 2010, 107, 6058–6063. [Google Scholar] [CrossRef]
- Holland, N.; Robbins, T.W.; Rowe, J.B. The Role of Noradrenaline in Cognition and Cognitive Disorders. Brain 2021, 144, 2243–2256. [Google Scholar] [CrossRef]
- Mather, M. Noradrenaline in the Aging Brain: Promoting Cognitive Reserve or Accelerating Alzheimer’s Disease? Semin. Cell Dev. Biol. 2021, 116, 108–124. [Google Scholar] [CrossRef]
- Wisely, E.V.; Xiang, Y.K.; Oddo, S. Genetic Suppression of Β2-Adrenergic Receptors Ameliorates Tau Pathology in a Mouse Model of Tauopathies. Hum. Mol. Genet. 2014, 23, 4024–4034. [Google Scholar] [CrossRef] [PubMed]
- Hanes, J.; Kovac, A.; Kvartsberg, H.; Kontsekova, E.; Fialova, L.; Katina, S.; Kovacech, B.; Stevens, E.; Hort, J.; Vyhnalek, M.; et al. Evaluation of a Novel Immunoassay to Detect P-Tau Thr217 in the CSF to Distinguish Alzheimer Disease from Other Dementias. Neurology 2020, 95, e3026–e3035. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, T.; Hou, R. Locus Coeruleus in the Pathogenesis of Alzheimer’s Disease: A Systematic Review. Alzheimers Dement. 2022, 8, e12257. [Google Scholar] [CrossRef]
- Satoh, A.; Iijima, K.M. Roles of Tau Pathology in the Locus Coeruleus (LC) in Age-Associated Pathophysiology and Alzheimer’s Disease Pathogenesis: Potential Strategies to Protect the LC against Aging. Brain Res. 2019, 1702, 17–28. [Google Scholar] [CrossRef]
- Kalinin, S.; Gavrilyuk, V.; Polak, P.E.; Vasser, R.; Zhao, J.; Heneka, M.T.; Feinstein, D.L. Noradrenaline Deficiency in Brain Increases Beta-Amyloid Plaque Burden in an Animal Model of Alzheimer’s Disease. Neurobiol. Aging 2007, 28, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Flores-Aguilar, L.; Hall, H.; Orciani, C.; Foret, M.K.; Kovecses, O.; Ducatenzeiler, A.; Cuello, A.C. Early Loss of Locus Coeruleus Innervation Promotes Cognitive and Neuropathological Changes before Amyloid Plaque Deposition in a Transgenic Rat Model of Alzheimer’s Disease. Neuropathol. Appl. Neurobiol. 2022, 48, e12835. [Google Scholar] [CrossRef]
- Aztiria, E.; Cataudella, T.; Spampinato, S.; Leanza, G. Septal Grafts Restore Cognitive Abilities and Amyloid Precursor Protein Metabolism. Neurobiol. Aging 2009, 30, 1614–1625. [Google Scholar] [CrossRef]
- Leanza, G. Chronic Elevation of Amyloid Precursor Protein Expression in the Neocortex and Hippocampus of Rats with Selective Cholinergic Lesions. Neurosci. Lett. 1998, 257, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Georgievska, B.; Mattsson, A.; Isacson, O. Cognitive Changes and Modified Processing of Amyloid Precursor Protein in the Cortical and Hippocampal System after Cholinergic Synapse Loss and Muscarinic Receptor Activation. Proc. Natl. Acad. Sci. USA 1999, 96, 12108–12113. [Google Scholar] [CrossRef] [PubMed]
- Roberson, M.R.; Harrell, L.E. Cholinergic Activity and Amyloid Precursor Protein Metabolism. Brain Res. Rev. 1997, 25, 50–69. [Google Scholar] [CrossRef] [PubMed]
- Rossner, S.; Ueberham, U.; Yu, J.; Kirazov, L.; Schliebs, R.; Perez-Polo, J.R.; Bigl, V. In Vivo Regulation of Amyloid Precursor Protein Secretion in Rat Neocortex by Cholinergic Activity. Eur. J. Neurosci. 1997, 9, 2125–2134. [Google Scholar] [CrossRef]
- Schliebs, R. Basal Forebrain Cholinergic Dysfunction in Alzheimer’s Disease—Interrelationship with β-Amyloid, Inflammation and Neurotrophin Signaling. Neurochem. Res. 2005, 30, 895–908. [Google Scholar] [CrossRef]
- Pintus, R.; Riggi, M.; Cannarozzo, C.; Valeri, A.; de Leo, G.; Romano, M.; Gulino, R.; Leanza, G. Essential Role of Hippocampal Noradrenaline in the Regulation of Spatial Working Memory and TDP-43 Tissue Pathology. J. Comp. Neurol. 2018, 526, 1131–1147. [Google Scholar] [CrossRef]
- Coradazzi, M.; Gulino, R.; Garozzo, S.; Leanza, G. Selective Lesion of the Developing Central Noradrenergic System: Short- and Long-Term Effects and Reinnervation by Noradrenergic-Rich Tissue Grafts. J. Neurochem. 2010, 114, 761–771. [Google Scholar] [CrossRef]
- Antonini, V.; Prezzavento, O.; Coradazzi, M.; Marrazzo, A.; Ronsisvalle, S.; Arena, E.; Leanza, G. Anti-Amnesic Properties of (±)-PPCC, a Novel Sigma Receptor Ligand, on Cognitive Dysfunction Induced by Selective Cholinergic Lesion in Rats. J. Neurochem. 2009, 109, 744–754. [Google Scholar] [CrossRef]
- Coradazzi, M.; Gulino, R.; Fieramosca, F.; Falzacappa, L.V.; Riggi, M.; Leanza, G. Selective Noradrenaline Depletion Impairs Working Memory and Hippocampal Neurogenesis. Neurobiol. Aging 2016, 48, 93–102. [Google Scholar] [CrossRef]
- Morris, R. Developments of a Water-Maze Procedure for Studying Spatial Learning in the Rat. J. Neurosci. Methods 1984, 11, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Buresová, O.; Bolhuis, J.J.; Bures, J. Differential Effects of Cholinergic Blockade on Performance of Rats in the Water Tank Navigation Task and in a Radial Water Maze. Behav. Neurosci. 1986, 100, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Diamond, D.M.; Park, C.R.; Heman, K.L.; Rose, G.M. Exposing Rats to a Predator Impairs Spatial Working Memory in the Radial Arm Water Maze. Hippocampus 1999, 9, 542–552. [Google Scholar] [CrossRef]
- Gulino, R.; Nunziata, D.; de Leo, G.; Kostenko, A.; Emmi, S.A.; Leanza, G. Hippocampal Noradrenaline Is a Positive Regulator of Spatial Working Memory and Neurogenesis in the Rat. Int. J. Mol. Sci. 2023, 24, 5613. [Google Scholar] [CrossRef]
- West, M.J.; Slomianka, L.; Gundersen, H.J. Unbiased Stereological Estimation of the Total Number of Neurons in Thesubdivisions of the Rat Hippocampus Using the Optical Fractionator. Anat. Rec. 1991, 231, 482–497. [Google Scholar] [CrossRef]
- Amaral, D.G.; Sinnamon, H.M. The Locus Coeruleus: Neurobiology of a Central Noradrenergic Nucleus. Prog. Neurobiol. 1977, 9, 147–196. [Google Scholar] [CrossRef]
- Grzanna, R.; Molliver, M.E. The Locus Coeruleus in the Rat: An Immunohistochemical Delineation. Neuroscience 1980, 5, 21–40. [Google Scholar] [CrossRef]
- Rasband, W.S.; Bright, D.S. NIH Image: A Public Domain Image Processing Program for the Macintosh. Microbeam Anal. 1995, 4, 137–149. [Google Scholar]
- Caccamo, A.; De Pinto, V.; Messina, A.; Branca, C.; Oddo, S. Genetic Reduction of Mammalian Target of Rapamycin Ameliorates Alzheimer’s Disease-like Cognitive and Pathological Deficits by Restoring Hippocampal Gene Expression Signature. J. Neurosci. 2014, 34, 7988–7998. [Google Scholar] [CrossRef]
- Khan, S.; Barve, K.H.; Kumar, M.S. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr. Neuropharmacol. 2020, 18, 1106–1125. [Google Scholar] [CrossRef]
- Bekdash, R.A. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 1273. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.M.; Yates, P.O.; Hawkes, J. The Noradrenergic System in Alzheimer and Multi-Infarct Dementias. J. Neurol. Neurosurg. Psychiatry 1982, 45, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.M.A. The Locus Coeruleus and Its Possible Role in Ageing and Degenerative Disease of the Human Central Nervous System. Mech. Ageing Dev. 1983, 23, 73–94. [Google Scholar] [CrossRef] [PubMed]
- Matchett, B.J.; Grinberg, L.T.; Theofilas, P.; Murray, M.E. The Mechanistic Link between Selective Vulnerability of the Locus Coeruleus and Neurodegeneration in Alzheimer’s Disease. Acta Neuropathol. 2021, 141, 631–650. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Wang, I.-F.; Bose, J.; Shen, C.-K.J. Structural Diversity and Functional Implications of the Eukaryotic TDP Gene Family. Genomics 2004, 83, 130–139. [Google Scholar] [CrossRef]
- Cohen, T.J.; Hwang, A.W.; Restrepo, C.R.; Yuan, C.-X.; Trojanowski, J.Q.; Lee, V.M.Y. An Acetylation Switch Controls TDP-43 Function and Aggregation Propensity. Nat. Commun. 2015, 6, 5845. [Google Scholar] [CrossRef]
- Inukai, Y.; Nonaka, T.; Arai, T.; Yoshida, M.; Hashizume, Y.; Beach, T.G.; Buratti, E.; Baralle, F.E.; Akiyama, H.; Hisanaga, S.; et al. Abnormal Phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. FEBS Lett. 2008, 582, 2899–2904. [Google Scholar] [CrossRef]
- Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science 2006, 314, 130–133. [Google Scholar] [CrossRef]
- Limanaqi, F.; Busceti, C.L.; Biagioni, F.; Fornai, F.; Puglisi-Allegra, S. Autophagy-Based Hypothesis on the Role of Brain Catecholamine Response During Stress. Front. Psychiatry 2020, 11, 569248. [Google Scholar] [CrossRef]
- Theofilas, P.; Ehrenberg, A.J.; Nguy, A.; Thackrey, J.M.; Dunlop, S.; Mejia, M.B.; Alho, A.T.; Paraizo Leite, R.E.; Rodriguez, R.D.; Suemoto, C.K.; et al. Probing the Correlation of Neuronal Loss, Neurofibrillary Tangles, and Cell Death Markers across the Alzheimer’s Disease Braak Stages: A Quantitative Study in Humans. Neurobiol. Aging 2018, 61, 1–12. [Google Scholar] [CrossRef]
- Gao, Y.; Tan, L.; Yu, J.-T.; Tan, L. Tau in Alzheimer’s Disease: Mechanisms and Therapeutic Strategies. Curr. Alzheimer Res. 2018, 15, 283–300. [Google Scholar] [CrossRef] [PubMed]
- LaFerla, F.M.; Oddo, S. Alzheimer’s Disease: Abeta, Tau and Synaptic Dysfunction. Trends Mol. Med. 2005, 11, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Bramblett, G.T.; Goedert, M.; Jakes, R.; Merrick, S.E.; Trojanowski, J.Q.; Lee, V.M. Abnormal Tau Phosphorylation at Ser396 in Alzheimer’s Disease Recapitulates Development and Contributes to Reduced Microtubule Binding. Neuron 1993, 10, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Fritschy, J.M.; Grzanna, R. Restoration of Ascending Noradrenergic Projections by Residual Locus Coeruleus Neurons: Compensatory Response to Neurotoxin-Induced Cell Death in the Adult Rat Brain. J. Comp. Neurol. 1992, 321, 421–441. [Google Scholar] [CrossRef] [PubMed]
- Szot, P.; White, S.S.; Greenup, J.L.; Leverenz, J.B.; Peskind, E.R.; Raskind, M.A. Compensatory Changes in the Noradrenergic Nervous System in the Locus Ceruleus and Hippocampus of Postmortem Subjects with Alzheimer’s Disease and Dementia with Lewy Bodies. J. Neurosci. 2006, 26, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Montalbano, M.; McAllen, S.; Cascio, F.L.; Sengupta, U.; Garcia, S.; Bhatt, N.; Ellsworth, A.; Heidelman, E.A.; Johnson, O.D.; Doskocil, S.; et al. TDP-43 and Tau Oligomers in Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Neurobiol. Dis. 2020, 146, 105130. [Google Scholar] [CrossRef] [PubMed]
- Josephs, K.A.; Dickson, D.W.; Tosakulwong, N.; Weigand, S.D.; Murray, M.E.; Petrucelli, L.; Liesinger, A.M.; Senjem, M.L.; Spychalla, A.J.; Knopman, D.S.; et al. Rates of Hippocampal Atrophy and Presence of Post-Mortem TDP-43 in Patients with Alzheimer’s Disease: A Longitudinal Retrospective Study. Lancet Neurol. 2017, 16, 917–924. [Google Scholar] [CrossRef]
- Josephs, K.A.; Murray, M.E.; Whitwell, J.L.; Parisi, J.E.; Petrucelli, L.; Jack, C.R.; Petersen, R.C.; Dickson, D.W. Staging TDP-43 Pathology in Alzheimer’s Disease. Acta Neuropathol. 2014, 127, 441–450. [Google Scholar] [CrossRef]
- Latimer, C.S.; Stair, J.G.; Hincks, J.C.; Currey, H.N.; Bird, T.D.; Keene, C.D.; Kraemer, B.C.; Liachko, N.F. TDP-43 Promotes Tau Accumulation and Selective Neurotoxicity in Bigenic Caenorhabditis Elegans. Dis. Model. Mech. 2022, 15, dmm049323. [Google Scholar] [CrossRef]
- Gu, J.; Wu, F.; Xu, W.; Shi, J.; Hu, W.; Jin, N.; Qian, W.; Wang, X.; Iqbal, K.; Gong, C.-X.; et al. TDP-43 Suppresses Tau Expression via Promoting Its MRNA Instability. Nucleic Acids Res. 2017, 45, 6177–6193. [Google Scholar] [CrossRef]
- Taylor, L.M.; McMillan, P.J.; Liachko, N.F.; Strovas, T.J.; Ghetti, B.; Bird, T.D.; Keene, C.D.; Kraemer, B.C. Pathological Phosphorylation of Tau and TDP-43 by TTBK1 and TTBK2 Drives Neurodegeneration. Mol. Neurodegener. 2018, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.K.; Rivera, B.I.; Polanco, C.M.; Jara, C.; Tapia-Rojas, C. Phosphorylated Tau as a Toxic Agent in Synaptic Mitochondria: Implications in Aging and Alzheimer’s Disease. Neural Regen. Res. 2022, 17, 1645–1651. [Google Scholar] [CrossRef] [PubMed]
Groups | Equilibrium Time on Ramp (%) | Latency to Cross Ramp (sec) | Latency to Reverse on Grids (sec) | Number of Falls in Grids |
---|---|---|---|---|
CTL (n = 8) | 98.6 ± 7.3 | 6.8 ± 0.4 | 5.6 ± 0.9 | 1.8 ± 0.7 |
LD (n = 8) | 98.1 ± 6.6 | 6.7 ± 0.4 | 6.1 ± 0.9 | 3.0 ± 0.5 |
HD (n = 8) | 96.9 ± 13.5 | 7.2 ± 0.4 | 6.3 ±0.7 | 3.5 ± 0.5 |
Group | DBH-ir Neurons in LC/SubC | DBH-ir Fibers in Cx | DBH-ir Fibers in CA1 | DBH-ir Fibers in CA3 | DBH-ir Fibers in DG |
---|---|---|---|---|---|
CTL (n = 8) | 1830.4 ± 70.4 | 86.8 ± 5.0 | 64.5 ± 3.9 | 62.8 ± 4.0 | 63.4 ± 3.9 |
LD (n = 8) | 529.3 ± 34.6 * | 23.6 ± 1.0 * | 21.6 ± 1.2 * | 22.9 ± 0.9 * | 19.8 ± 1.4 * |
HD (n = 8) | 181.1 ± 24.5 * | 8.8 ± 1.0 * | 6.7 ± 0.8 * | 7.1 ± 1.3 * | 8.6 ± 1.1 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prinzi, C.; Kostenko, A.; de Leo, G.; Gulino, R.; Leanza, G.; Caccamo, A. Selective Noradrenaline Depletion in the Neocortex and Hippocampus Induces Working Memory Deficits and Regional Occurrence of Pathological Proteins. Biology 2023, 12, 1264. https://doi.org/10.3390/biology12091264
Prinzi C, Kostenko A, de Leo G, Gulino R, Leanza G, Caccamo A. Selective Noradrenaline Depletion in the Neocortex and Hippocampus Induces Working Memory Deficits and Regional Occurrence of Pathological Proteins. Biology. 2023; 12(9):1264. https://doi.org/10.3390/biology12091264
Chicago/Turabian StylePrinzi, Chiara, Anna Kostenko, Gioacchino de Leo, Rosario Gulino, Giampiero Leanza, and Antonella Caccamo. 2023. "Selective Noradrenaline Depletion in the Neocortex and Hippocampus Induces Working Memory Deficits and Regional Occurrence of Pathological Proteins" Biology 12, no. 9: 1264. https://doi.org/10.3390/biology12091264
APA StylePrinzi, C., Kostenko, A., de Leo, G., Gulino, R., Leanza, G., & Caccamo, A. (2023). Selective Noradrenaline Depletion in the Neocortex and Hippocampus Induces Working Memory Deficits and Regional Occurrence of Pathological Proteins. Biology, 12(9), 1264. https://doi.org/10.3390/biology12091264