Significance of Histidine Hydrogen–Deuterium Exchange Mass Spectrometry in Protein Structural Biology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Value and Kinetic Parameters of the Acid-Base Equilibrium of His Residues in Proteins
2.1. Measurement of with NMR Spectroscopy
2.2. Measurement of and Kinetic Parameters Using Tritium Labeling
2.3. Measurement of and Kinetic Parameters Using MS
2.3.1. The Mechanism of HDX Reaction at the C-2 Position of the Imidazole Group
2.3.2. Calculation of the Pseudo-First-Order Rate Constant from a Mass Spectrum
2.3.3. Relationship between and
3. Experimental Workflow of His-HDX-MS Experiment
4. Strengths and Limitations of His-HDX-MS
5. Applications of His-HDX-MS and the Interpretation of His-HDX-MS Data
5.1. Applications of His-HDX-MS
5.2. Implication of and Kinetic Parameters in the Context of the Function of His Residues in Proteins
5.2.1. Values and Enzyme Catalysis
5.2.2. Double Sigmoidal Titration Curve: Values in His HDX and NMR
5.3. His HDX Rate and Solvent Accessibility as Factors Reflecting Protein Structure
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nomenclature and Symbolism for Amino Acids and Peptides (Recommendations 1983). Pure Appl. Chem. 1984, 56, 595–624. [CrossRef]
- Antosiewicz, J.; Mccammon, J.A.; Gilson, M.K. The Determinants of pKas in Proteins. Biochemistry 1996, 35, 7819–7833. [Google Scholar] [CrossRef] [PubMed]
- Edgcomb, S.P.; Murphy, K.P. Variability in the pKa of Histidine Side-Chains Correlates with Burial within Proteins. Proteins Struct. Funct. Genet. 2002, 49, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Couch, V.; Stuchebrukhov, A. Histidine in Continuum Electrostatics Protonation State Calculations. Proteins Struct. Funct. Bioinforma. 2011, 79, 3410–3419. [Google Scholar] [CrossRef] [PubMed]
- Markley, J.L. Observation of Histidine Residues in Proteins by Nuclear Magnetic Resonance Spectroscopy. Acc. Chem. Res. 1975, 8, 70–80. [Google Scholar] [CrossRef]
- Markley, J.L.; Ibañez, I.B. Zymogen Activation in Serine Proteinases. Proton Magnetic Resonance pH Titration Studies of the Two Histidines of Bovine Chymotrypsinogen A and Chymotrypsin Aalpha. Biochemistry 1978, 17, 4627–4640. [Google Scholar] [CrossRef] [PubMed]
- Ash, E.L.; Sudmeier, J.L.; De Fabo, E.C.; Bachovchin, W.W. A Low-Barrier Hydrogen Bond in the Catalytic Triad of Serine Proteases? Theory versus Experiment. Science 1997, 278, 1128–1132. [Google Scholar] [CrossRef]
- Hansen, A.L.; Kay, L.E. Measurement of Histidine pKa Values and Tautomer Populations in Invisible Protein States. Proc. Natl. Acad. Sci. USA 2014, 111, E1705–E1712. [Google Scholar] [CrossRef]
- Meadows, D.H.; Markley, J.L.; Cohen, J.S.; Jardetzky, O. Nuclear Magnetic Resonance Studies of the Structure and Binding Sites of Enzymes. I. Histidine Residues. Proc. Natl. Acad. Sci. USA 1967, 58, 1307–1313. [Google Scholar] [CrossRef]
- Miyagi, M.; Nakazawa, T. Determination of pKa Values of Individual Histidine Residues in Proteins Using Mass Spectrometry. Anal. Chem. 2008, 80, 6481–6487. [Google Scholar] [CrossRef]
- Wüthrich, K. NMR of Proteins and Nucleic Acids; The George Fisher Baker non-resident lectureship in chemistry at Cornell University; Wiley: New York, NY, USA, 1986; ISBN 978-0-471-82893-8. [Google Scholar]
- Meadows, D.H.; Jardetzky, O.; Epand, R.M.; Ruterjans, H.H.; Scheraga, H.A. Assignment of the Histidine Peaks in the Nuclear Magnetic Resonance Spectrum of Ribonuclease. Proc. Natl. Acad. Sci. USA 1968, 60, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Shimahara, H.; Yoshida, T.; Shibata, Y.; Shimizu, M.; Kyogoku, Y.; Sakiyama, F.; Nakazawa, T.; Tate, S.; Ohki, S.Y.; Kato, T.; et al. Tautomerism of Histidine 64 Associated with Proton Transfer in Catalysis of Carbonic Anhydrase. J. Biol. Chem. 2007, 282, 9646–9656. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, H.; Ohe, M.; Sakiyama, F.; Narita, K. A New Approach to the Determination of pKa’s of Histidine Residues in Proteins. J. Biochem. 1972, 72, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Ohe, M.; Matsuo, H.; Sakiyama, F.; Narita, K. Determination of pKa’s of Individual Histidine Residues in Pancreatic Ribonuclease by Hydrogen-Tritium Exchange. J. Biochem. 1974, 75, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
- Fersht, A. The pH Dependence of Enzyme Catalysis. In Structure and Mechanism in Protein Science. A Guide to Enzyme Catalysis and Protein Folding; Fersht, A., Ed.; World Scientific Publishing Co., Pte. Ltd.: Singapore, 2017; pp. 169–190. [Google Scholar]
- Markley, J.L. Correlation Proton Magnetic Resonance Studies at 250 MHz of Bovine Pancreatic Ribonuclease. I. Reinvestigation of the Histidine Peak Assignments. Biochemistry 1975, 14, 3546–3554. [Google Scholar] [CrossRef] [PubMed]
- Olofson, R.A.; Thompson, W.R.; Michelman, J.S. Heterocyclic Nitrogen Ylides. J. Am. Chem. Soc. 1964, 86, 1865–1866. [Google Scholar] [CrossRef]
- Harris, T.M.; Randall, J.C. Deuterium Exchange Reactions at the C2-Position of Imidazoles. Chem. Ind. 1965, 41, 1728–1729. [Google Scholar]
- Vaughan, J.D.; Mughrabi, Z.E.; Wu, C. The Kinetics of Deuteration of Imidazole. J. Org. Chem. 1970, 35, 1141–1145. [Google Scholar] [CrossRef]
- Bradbury, J.H.; Chapman, B.E.; Pellegrino, F.A. Hydrogen-Deuterium Exchange Kinetics of the C-2 Protons of Imidazole and Histidine Compounds. J. Am. Chem. Soc. 1973, 95, 6139–6140. [Google Scholar] [CrossRef]
- Amyes, T.L.; Diver, S.T.; Richard, J.P.; Rivas, F.M.; Toth, K. Formation and Stability of N-Heterocyclic Carbenes in Water: The Carbon Acid pKa of Imidazolium Cations in Aqueous Solution. J. Am. Chem. Soc. 2004, 126, 4366–4374. [Google Scholar] [CrossRef]
- Covington, A.K.; Robinson, R.A.; Bates, R.G. The Ionization Constant of Deuterium Oxide from 5 to 50 Degree. J. Phys. Chem. 1966, 70, 3820–3824. [Google Scholar] [CrossRef]
- Miyagi, M.; Wan, Q.; Ahmad, M.F.; Gokulrangan, G.; Tomechko, S.E.; Bennett, B.; Dealwis, C. Histidine Hydrogen-Deuterium Exchange Mass Spectrometry for Probing the Microenvironment of Histidine Residues in Dihydrofolate Reductase. PLoS ONE 2011, 6, e17055. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.T.; Banerjee, S.; Alayash, A.I.; Crumbliss, A.L.; Fitzgerald, M.C. Slow Histidine H/D Exchange Protocol for Thermodynamic Analysis of Protein Folding and Stability Using Mass Spectrometry. Anal. Chem. 2012, 84, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Kuyama, H.; Nakajima, C.; Kawahara, K.; Miyagi, M.; Nishimura, O.; Matsuo, H.; Nakazawa, T. Imidazole C-2 Hydrogen/Deuterium Exchange Reaction at Histidine for Probing Protein Structure and Function with Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Biochemistry 2014, 53, 1818–1826. [Google Scholar] [CrossRef] [PubMed]
- Elferich, J.; Williamson, D.M.; David, L.L.; Shinde, U. Determination of Histidine pKa Values in the Propeptides of Furin and Proprotein Convertase 1/3 Using Histidine Hydrogen-Deuterium Exchange Mass Spectrometry. Anal. Chem. 2015, 87, 7909–7917. [Google Scholar] [CrossRef] [PubMed]
- Mullangi, V.; Zhou, X.; Ball, D.W.; Anderson, D.J.; Miyagi, M. Quantitative Measurement of the Solvent Accessibility of Histidine Imidazole Groups in Proteins. Biochemistry 2012, 51, 7202–7208. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Matsuo, H.; Narita, K. Hydrogen-Tritium Exchange Titration of the Histidine Residues in Ribonuclease Tl and Analysis of Their Microenvironments. J. Biochem. 1979, 86, 301–310. [Google Scholar] [CrossRef]
- Minamino, N.; Matsuo, H.; Narita, K. Tritium Exchange Titration of Imidazole Derivatives—Factors Affecting on pKa and Reactivity of Imidazole Ring. In Peptide Chemistry-1977; Shiba, T., Ed.; Protein Research Foundation: Osaka, Japan, 1978; pp. 85–90. [Google Scholar]
- Miyamoto, K.; Arata, Y.; Matsuo, H.; Narita, K. Hydrogen-Tritium Exchange and Nuclear Magnetic Resonance Titrations of the Histidine Residues in Ribonuclease St and Analysis of Their Microenvironment. J. Biochem. 1981, 89, 49–59. [Google Scholar] [CrossRef]
- Bai, Y.; Milne, J.S.; Mayne, L.; Englander, S.W. Primary Structure Effects on Peptide Group Hydrogen Exchange. Proteins 1993, 17, 75–86. [Google Scholar] [CrossRef]
- Dempsey, C.E. Hydrogen Exchange in Peptides and Proteins Using NMR-Spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2001, 39, 135–170. [Google Scholar] [CrossRef]
- Miyagi, M.; Tanaka, K.; Watanabe, S.; Kondo, J.; Kishimoto, T. Identifying Protein-Drug Interactions in Cell Lysates Using Histidine Hydrogen Deuterium Exchange. Anal. Chem. 2021, 93, 14985–14995. [Google Scholar] [CrossRef] [PubMed]
- Wimalasena, D.S.; Janowiak, B.E.; Lovell, S.; Miyagi, M.; Sun, J.; Zhou, H.; Hajduch, J.; Pooput, C.; Kirk, K.L.; Battaile, K.P.; et al. Evidence That Histidine Protonation of Receptor-Bound Anthrax Protective Antigen Is a Trigger for Pore Formation. Biochemistry 2010, 49, 6973–6983. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, T.J.D.; Gårdsvoll, H.; Ploug, M.; Roepstorff, P. Intramolecular Migration of Amide Hydrogens in Protonated Peptides upon Collisional Activation. J. Am. Chem. Soc. 2005, 127, 2785–2793. [Google Scholar] [CrossRef] [PubMed]
- Hamuro, Y.; Tomasso, J.C.; Coales, S.J. A Simple Test To Detect Hydrogen/Deuterium Scrambling during Gas-Phase Peptide Fragmentation. Anal. Chem. 2008, 80, 6785–6790. [Google Scholar] [CrossRef] [PubMed]
- Abzalimov, R.R.; Kaplan, D.A.; Easterling, M.L.; Kaltashov, I.A. Protein Conformations Can Be Probed in Top-down HDX MS Experiments Utilizing Electron Transfer Dissociation of Protein Ions without Hydrogen Scrambling. J. Am. Soc. Mass Spectrom. 2009, 20, 1514–1517. [Google Scholar] [CrossRef]
- Peters-Clarke, T.M.; Riley, N.M.; Westphall, M.S.; Coon, J.J. Practical Effects of Intramolecular Hydrogen Rearrangement in Electron Transfer Dissociation-Based Proteomics. J. Am. Soc. Mass Spectrom. 2022, 33, 100–110. [Google Scholar] [CrossRef]
- Rand, K.D.; Adams, C.M.; Zubarev, R.A.; Jørgensen, T.J.D. Electron Capture Dissociation Proceeds with a Low Degree of Intramolecular Migration of Peptide Amide Hydrogens. J. Am. Chem. Soc. 2008, 130, 1341–1349. [Google Scholar] [CrossRef]
- Brodie, N.I.; Huguet, R.; Zhang, T.; Viner, R.; Zabrouskov, V.; Pan, J.; Petrotchenko, E.V.; Borchers, C.H. Top-Down Hydrogen–Deuterium Exchange Analysis of Protein Structures Using Ultraviolet Photodissociation. Anal. Chem. 2018, 90, 3079–3082. [Google Scholar] [CrossRef]
- Mistarz, U.H.; Bellina, B.; Jensen, P.F.; Brown, J.M.; Barran, P.E.; Rand, K.D. UV Photodissociation Mass Spectrometry Accurately Localize Sites of Backbone Deuteration in Peptides. Anal. Chem. 2018, 90, 1077–1080. [Google Scholar] [CrossRef]
- James, E.I.; Murphree, T.A.; Vorauer, C.; Engen, J.R.; Guttman, M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem. Rev. 2022, 122, 7562–7623. [Google Scholar] [CrossRef]
- Courouble, V.V.; Mann, M.D.; Griffin, P.R. Advances in Mass Spectrometry-Based Structural Proteomics: Development of HDX-MS and XL-MS Techniques from Recombinant Protein to Cellular Systems. Isr. J. Chem. 2023, 63, e202300084. [Google Scholar] [CrossRef]
- Engen, J.R. Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009, 81, 7870–7875. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Song, Y.-L.; Zhou, C.; He, H.; Zhang, N.; Zhou, H. A Hydrogen-Deuterium Exchange Mass Spectrometry-Based Protocol for Protein-Small Molecule Interaction Analysis. Biophys. Rep. 2023, 9, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Masson, G.R.; Burke, J.E.; Ahn, N.G.; Anand, G.S.; Borchers, C.; Brier, S.; Bou-Assaf, G.M.; Engen, J.R.; Englander, S.W.; Faber, J.; et al. Recommendations for Performing, Interpreting and Reporting Hydrogen Deuterium Exchange Mass Spectrometry (HDX-MS) Experiments. Nat. Methods 2019, 16, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Guillarme, D.; Heinisch, S.; Rocca, J.L. Effect of Temperature in Reversed Phase Liquid Chromatography. J. Chromatogr. A 2004, 1052, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Lundanes, E.; Greibrokk, T. Temperature Effects in Liquid Chromatography. Adv. Chromatogr. 2006, 44, 45–77. [Google Scholar]
- Brüne, D.; Andrade-Navarro, M.A.; Mier, P. Proteome-Wide Comparison between the Amino Acid Composition of Domains and Linkers. BMC Res. Notes 2018, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, Y.; Shintani, K.; Hayashihara-Kakuhou, K.; Zukawa, T.; Morita, Y.; Nakazawa, T.; Yoshida, T.; Ohkubo, T.; Uchiyama, S. Effect of UVC Irradiation on the Oxidation of Histidine in Monoclonal Antibodies. Sci. Rep. 2020, 10, 6333. [Google Scholar] [CrossRef]
- Lodowski, D.T.; Palczewski, K.; Miyagi, M. Conformational Changes in the G Protein-Coupled Receptor Rhodopsin Revealed by Histidine Hydrogen-Deuterium Exchange. Biochemistry 2010, 49, 9425–9427. [Google Scholar] [CrossRef]
- de la Fuente, M.; Han, X.; Miyagi, M.; Nieman, M.T. Expression and Purification of Protease-Activated Receptor 4 (PAR4) and Analysis with Histidine Hydrogen–Deuterium Exchange. Biochemistry 2020, 59, 671–681. [Google Scholar] [CrossRef]
- Cobb, N.J.; Apostol, M.I.; Chen, S.; Smirnovas, V.; Surewicz, W.K. Conformational Stability of Mammalian Prion Protein Amyloid Fibrils Is Dictated by a Packing Polymorphism within the Core Region. J. Biol. Chem. 2014, 289, 2643–2650. [Google Scholar] [CrossRef] [PubMed]
- Safar, J.G.; Xiao, X.; Kabir, M.E.; Chen, S.; Kim, C.; Haldiman, T.; Cohen, Y.; Chen, W.; Cohen, M.L.; Surewicz, W.K. Structural Determinants of Phenotypic Diversity and Replication Rate of Human Prions. PLoS Pathog. 2015, 11, e1004832. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Calvo, P.; Xiao, X.; Bett, C.; Eraña, H.; Soldau, K.; Castilla, J.; Nilsson, K.P.R.; Surewicz, W.K.; Sigurdson, C.J. Post-Translational Modifications in PrP Expand the Conformational Diversity of Prions In Vivo. Sci. Rep. 2017, 7, 43295. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, F.; Xiao, X.; Kim, C.; Bohon, J.; Kiselar, J.; Safar, J.G.; Ma, J.; Surewicz, W.K. Structural Attributes of Mammalian Prion Infectivity: Insights from Studies with Synthetic Prions. J. Biol. Chem. 2018, 293, 18494–18503. [Google Scholar] [CrossRef]
- Fitzgerald, M.C.; Jin, L.; Tran, D.T. Histidine Hydrogen Exchange for Analysis of Protein Folding, Structure, and Function. In Hydrogen Exchange Mass Spectrometry of Proteins: Fundamentals, Methods, and Applications; David, D.W., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 165–184. [Google Scholar]
- Mullangi, V.; Mamillapalli, S.; Anderson, D.J.; Bann, J.G.; Miyagi, M. Long-Range Stabilization of Anthrax Protective Antigen upon Binding to CMG2. Biochemistry 2014, 53, 6084–6091. [Google Scholar] [CrossRef] [PubMed]
- Cebo, M.; Kielmas, M.; Adamczyk, J.; Cebrat, M.; Szewczuk, Z.; Stefanowicz, P. Hydrogen-Deuterium Exchange in Imidazole as a Tool for Studying Histidine Phosphorylation. Anal. Bioanal. Chem. 2014, 406, 8013–8020. [Google Scholar] [CrossRef]
- Dong, J.; Callahan, K.L.; Borotto, N.B.; Vachet, R.W. Identifying Zn-Bound Histidine Residues in Metalloproteins Using Hydrogen-Deuterium Exchange Mass Spectrometry. Anal. Chem. 2014, 86, 766–773. [Google Scholar] [CrossRef]
- Dong, J.; Joseph, C.A.; Borotto, N.B.; Gill, V.L.; Maroney, M.J.; Vachet, R.W. Unique Effect of Cu(II) in the Metal-Induced Amyloid Formation of Beta-2-Microglobulin. Biochemistry 2014, 53, 1263–1274. [Google Scholar] [CrossRef]
- Barlin, G.B.; Perrin, D.D. Dissociation Constants in the Elucidation of Structure. In Elucidation of Organic Structures by Physical and Chemical Methods. Part I; Bentley, K.W., Kirby, G.W., Eds.; Wiley: New York, NY, USA, 1972; pp. 611–677. [Google Scholar]
- Nielsen, J.E.; Vriend, G. Optimizing the Hydrogen-Bond Network in Poisson-Boltzmann Equation-Based pKa Calculations. Proteins Struct. Funct. Genet. 2001, 43, 403–412. [Google Scholar] [CrossRef]
- Findlay, D.; Herries, D.G.; Mathias, A.P.; Rabin, B.R.; Ross, C.A. The Active Site and Mechanism of Action of Bovine Pancreatic Ribonuclease. Nature 1961, 190, 781–784. [Google Scholar] [CrossRef]
- Meadows, D.H.; Jardetzky, O. Nuclear Magnetic Resonance Studies of the Structure and Binding Sites of Enzymes. IV. Cytidine 3′-Monophosphate Binding to Ribonuclease. Proc. Natl. Acad. Sci. USA 1968, 61, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Wales, T.E.; Eggertson, M.J.; Engen, J.R. Considerations in the Analysis of Hydrogen Exchange Mass Spectrometry Data. Methods Mol. Biol. Clifton NJ 2013, 1007, 263–288. [Google Scholar] [CrossRef]
- Narita, K.; Kangawa, K.; Kimura, S.; Miyamoto, N.; Minamino, N.; Matsuo, H. Microenvironment Around Histidine Residues in Ribonucleases Analyzed by Hydrogen-Tritium Exchange Titration. In Frontier in Protein Chemistry; Elsevier North Holland: New York, NY, USA, 1980; pp. 247–259. [Google Scholar]
- Cuchillo, C.M.; Nogués, M.V.; Raines, R.T. Bovine Pancreatic Ribonuclease: Fifty Years of the First Enzymatic Reaction Mechanism. Biochemistry 2011, 50, 7835–7841. [Google Scholar] [CrossRef]
- Raines, R.T. Ribonuclease A. Chem. Rev. 1998, 98, 1045–1066. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, J.H.; Chapman, B.E.; Crompton, M.W.; Norton, R.S.; Seng, J. Hydrogen-Deuterium Exchange of the C-2 Protons of Histidine and Histidine Peptides and Proteins. J. Chem. Soc. Perkin Trans. 2 1980, 693–700. [Google Scholar] [CrossRef]
- Rabenstein, D.L.; Sayer, T.L. Determination of Microscopic Acid Dissociation Constants by Nuclear Magnetic Resonance Spectrometry. Anal. Chem. 1976, 48, 1141–1146. [Google Scholar] [CrossRef]
- Bystroff, C.; Kraut, J. Crystal Structure of Unliganded Escherichia Coli Dihydrofolate Reductase. Ligand-Induced Conformational Changes and Cooperativity in Binding. Biochemistry 1991, 30, 2227–2239. [Google Scholar] [CrossRef]
- Sawaya, M.R.; Kraut, J. Loop and Subdomain Movements in the Mechanism of Escherichia Coli Dihydrofolate Reductase: Crystallographic Evidence. Biochemistry 1997, 36, 586–603. [Google Scholar] [CrossRef]
- Yu, L.; Fesik, S.W. pH Titration of the Histidine Residues of Cyclophilin and FK506 Binding Protein in the Absence and Presence of Immunosuppressant Ligands. Biochim. Biophys. Acta 1994, 1209, 24–32. [Google Scholar] [CrossRef]
- Markley, J.L. Correlation Proton Magnetic Resonance Studies at 250 MHz of Bovine Pancreatic Ribonuclease. II. The pH and Inhibitor-Induced Conformational Transitions Affecting Histidine-48 and One Tyrosine Residue of Ribonuclease A. Biochemistry 1975, 14, 3554–3561. [Google Scholar] [CrossRef]
- Liu, T.; Ryan, M.; Dahlquist, F.W.; Griffith, O.H. Determination of pKa Values of the Histidine Side Chains of Phosphatidylinositol-Specific Phospholipase C from Bacillus Cereus by NMR Spectroscopy and Site-Directed Mutagenesis. Protein Sci. 1997, 6, 1937–1944. [Google Scholar] [CrossRef] [PubMed]
Protein | Positions of His Residues | Protein Data Bank ID | Kinetic Data/Method [Reference] |
---|---|---|---|
RNase A | 48 | 1RPH | nt a/NMR [17,76], t1/2 > 58 days/HTX [15], t1/2 = 46 days/HDX [10] |
FK506 binding protein | 25 | 1FKJ | nt (pKa < 3.6)/NMR [75] |
Cyclophilin | 54 | 6FK1 | nt (pKa < 4.2)/NMR [75] |
Phosphatidylinositol-specific phospholipase C | 61, 81 | 3PTD | nt (pKa < 3)/NMR [77] |
G-protein-coupled receptor rhodopsin | 152, 211, 279 | 3CAP | t1/2 > 50 h/HDX [52] b |
Protective antigen—Capillary morphogenesis protein 2 | 253, 336, 616 | 3Q8B 1T6B (complex) | t1/2 > 10 days/HDX [59] c |
Protease-activated receptor 4 | 159, 269 | Not available | t1/2 > 50 days/HDX [53] d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyagi, M.; Nakazawa, T. Significance of Histidine Hydrogen–Deuterium Exchange Mass Spectrometry in Protein Structural Biology. Biology 2024, 13, 37. https://doi.org/10.3390/biology13010037
Miyagi M, Nakazawa T. Significance of Histidine Hydrogen–Deuterium Exchange Mass Spectrometry in Protein Structural Biology. Biology. 2024; 13(1):37. https://doi.org/10.3390/biology13010037
Chicago/Turabian StyleMiyagi, Masaru, and Takashi Nakazawa. 2024. "Significance of Histidine Hydrogen–Deuterium Exchange Mass Spectrometry in Protein Structural Biology" Biology 13, no. 1: 37. https://doi.org/10.3390/biology13010037
APA StyleMiyagi, M., & Nakazawa, T. (2024). Significance of Histidine Hydrogen–Deuterium Exchange Mass Spectrometry in Protein Structural Biology. Biology, 13(1), 37. https://doi.org/10.3390/biology13010037