Evaluation of the Dietary Arginine Supplementation on Yellow Catfish: From a Low-Temperature Farming Perspective
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Fish Trial
2.3. Sample Collection and Analysis
2.4. Biochemical Analysis
2.5. Real-Time Quantitative PCR
2.6. Data Analysis
3. Results
3.1. Growth Performance and Somatic Parameters
3.2. Enzyme Activities
3.3. Intestinal Antioxidant Parameters of Yellow Catfish
3.4. Principal Component Analysis (PCA)
4. Discussion
4.1. Effect of Dietary Arg Level on Growth in Sub-Low Temperature Environments
4.2. Effect of Dietary Arg Level on Digestive and Absorptive Enzyme Activities
4.3. Effect of Dietary Arg Level on Intestinal Anti-Oxidative Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, W.C.; Shelbourn, J.E. Growth and development of seawater adaptability by juvenile fall chinook salmon (Oncorhynchus tshawytscha) in relation to temperature. Aquaculture 1985, 45, 21–31. [Google Scholar] [CrossRef]
- Ahmad, T.; Singh, S.P.; Khangembam, B.K.; Sharma, J.G.; Chakrabarti, R. Food consumption and digestive enzyme activity of Clarias batrachus exposed to various temperatures. Aquac. Nutr. 2014, 20, 265–272. [Google Scholar] [CrossRef]
- Zehra, S.; Khan, M.A. Dietary Arginine Requirement of Fingerling Indian Major Carp, Catla catla (Hamilton). J. World Aquac. Soc. 2013, 44, 363–373. [Google Scholar] [CrossRef]
- Souza, D.M.d.; Borges, V.D.; Furtado, P.; Romano, L.A.; Wasielesky, W.; Monserrat, J.M.; Garcia, L.d.O. Antioxidant enzyme activities and immunological system analysis of Litopenaeus vannamei reared in biofloc technology (BFT) at different water temperatures. Aquaculture 2016, 451, 436–443. [Google Scholar] [CrossRef]
- Goolish, E.M.; Adelman, I.R. Effects of ration size and temperature on the growth of juvenile common carp (Cyprinus carpio L.). Aquaculture 1984, 36, 27–35. [Google Scholar] [CrossRef]
- Sharma, J.; Singh, S.P.; Chakrabarti, R. Effect of temperature on digestive physiology, immune-modulatory parameters, and expression level of Hsp and LDH genes in Catla catla (Hamilton, 1822). Aquaculture 2017, 479, 134–141. [Google Scholar] [CrossRef]
- Yuan, Q.; Wang, Q.; Zhang, T.; Li, Z.; Liu, J. Effects of water temperature on growth, feeding and molting of juvenile Chinese mitten crab Eriocheir sinensis. Aquaculture 2017, 468, 169–174. [Google Scholar] [CrossRef]
- Morteza, H.S.; Mukhtar, A.K.; Morteza, Y.; Benjamin, C. Roles of arginine in fish nutrition and health: Insights for future researches. Rev. Aquac. 2020, 12, 2091–2108. [Google Scholar]
- Wilson, R.P. Protein and amino acid requirements of fishes. Annu. Rev. Nutr. 1986, 6, 225–244. [Google Scholar] [CrossRef]
- Costas, B.; Conceição, L.E.C.; Dias, J.; Novoa, B.; Figueras, A.; Afonso, A. Dietary arginine and repeated handling increase disease resistance and modulate innate immune mechanisms of Senegalese sole (Solea senegalensis Kaup, 1858). Fish Shellfish Immunol. 2011, 31, 838–847. [Google Scholar] [CrossRef]
- Zhou, Q.C.; Zeng, W.P.; Wang, H.L.; Xie, F.J.; Wang, T.; Zheng, C.Q. Dietary arginine requirement of juvenile yellow grouper Epinephelus awoara. Aquaculture 2012, 350–353, 175–182. [Google Scholar] [CrossRef]
- Gao, Y.-J.; Yang, H.-J.; Guo, D.-Q.; Liu, Y.-J.; Yu, Y.-y.; Chen, S.-J.; Tian, L.-X. Dietary arginine requirement of juvenile grass carp Ctenopharyngodon idella (Valenciennes in Cuvier & Valenciennes, 1844). Aquac. Res. 2015, 46, 3070–3078. [Google Scholar]
- Ren, M.; Ai, Q.; Mai, K. Dietary arginine requirement of juvenile cobia (Rachycentron canadum). Aquac. Res. 2014, 45, 225–233. [Google Scholar] [CrossRef]
- Ren, M.; Liao, Y.; Xie, J.; Liu, B.; Zhou, Q.; Ge, X.; Cui, H.; Pan, L.; Chen, R. Dietary arginine requirement of juvenile blunt snout bream, Megalobrama amblycephala. Aquaculture 2013, 414–415, 229–234. [Google Scholar] [CrossRef]
- Khan, Y.M.; Khan, M.A. Dietary niacin requirement of fingerling Indian major carp Catla catla Hamilton. Aquac. Nutr. 2021, 27, 1482–1493. [Google Scholar]
- Jiang, W.-D.; Feng, L.; Liu, Y.; Jiang, J.; Hu, K.; Li, S.-H.; Zhou, X.Q. Lipid peroxidation, protein oxidant and antioxidant status of muscle, intestine and hepatopancreas for juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of myo-inositol. Food Chem. 2009, 120, 692–697. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, Y.; Zhou, X.Q.; Zeng, X.Y.; Feng, L.; Liu, Y.; Jiang, W.D.; Li, S.H.; Li, D.B.; Wu, X.Q.; et al. Effects of dietary glutamate supplementation on growth performance, digestive enzyme activities and antioxidant capacity in intestine of grass carp (Ctenopharyngodon idella). Aquac. Nutr. 2015, 21, 935–941. [Google Scholar] [CrossRef]
- Hakim, Y.; Harpaz, S.; Uni, Z. Expression of brush border enzymes and transporters in the intestine of European sea bass (Dicentrarchus labrax) following food deprivation. Aquaculture 2009, 290, 110–115. [Google Scholar] [CrossRef]
- Cao, X.J.; Wang, W.M. Histology and Mucin Histochemistry of The Digestive Tract of Yellow Catfish, Pelteobagrus fulvidraco. Anat. Histol. Embryol. 2009, 38, 254–261. [Google Scholar] [CrossRef]
- Villanueva, J.; Vanacore, R.; Goicoechea, O.; Amthauer, R. Intestinal alkaline phosphatase of the fish Cyprinus carpio: Regional distribution and membrane association. J. Exp. Zool. 1997, 279, 347–355. [Google Scholar] [CrossRef]
- Xiao, W.; Feng, L.; Kuang, S.; Liu, Y.; Jiang, J.; Jiang, W.D.; Hu, K.; Li, S.H.; Tang, L.; Zhou, X.Q. Lipid peroxidation, protein oxidant and antioxidant status of muscle and serum for juvenile Jian carp ( Cyprinus carpio var. Jian) fed grade levels of methionine hydroxy analogue. Aquac. Nutr. 2012, 18, 90–97. [Google Scholar]
- Shan, Y.; Shan, A.; Li, J.; Zhou, C. Dietary supplementation of arginine and glutamine enhances the growth and intestinal mucosa development of weaned piglets. Livest. Sci. 2012, 150, 369–373. [Google Scholar] [CrossRef]
- Geering, K. Subunit assembly and functional maturation of Na, K-ATPase. J. Membr. Biol. 1990, 115, 109–121. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, X.-Y.; Zhou, X.-Q.; Feng, L.; Liu, Y.; Jiang, W.-D.; Wu, P.; Zhao, Y. Effects of dietary curcumin supplementation on growth performance, intestinal digestive enzyme activities and antioxidant capacity of crucian carp Carassius auratus. Aquaculture 2016, 463, 174–180. [Google Scholar] [CrossRef]
- Matés, J.M.; Sánchez-Jiménez, F.M. Role of reactive oxygen species in apoptosis: Implications for cancer therapy. Int. J. Biochem. Cell Biol. 2000, 32, 157–170. [Google Scholar] [CrossRef]
- Li, B.; Xian, J.-A.; Guo, H.; Wang, A.-L.; Miao, Y.-T.; Ye, J.-M.; Ye, C.-X.; Liao, S.-A. Effect of temperature decrease on hemocyte apoptosis of the white shrimp Litopenaeus vannamei. Aquac. Int. 2014, 22, 761–774. [Google Scholar] [CrossRef]
- Niyogi, S.; Biswas, S.; Sarker, S.; Datta, A. Seasonal variation of antioxidant and biotransformation enzymes in barnacle, Balanus balanoides, and their relation with polyaromatic hydrocarbons. Mar. Environ. Res. 2001, 52, 13–26. [Google Scholar] [CrossRef]
- Qiang, M. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar]
- Wu, S.; Gao, T.; Zheng, Y.; Wang, W.; Cheng, Y.; Wang, G. Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquaculture 2010, 303, 1–7. [Google Scholar] [CrossRef]
- Bush, R.M.; Welch, E.B.; Mar, B.W. Potential effects of thermal discharges on aquatic systems. Environ. Sci. Technol. 1974, 8, 561–568. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, H.; Wang, G.; Sun, Y.; Wang, L. Energy consumption and intestinal microbiome disorders of yellow catfish (Pelteobagrus fulvidraco) under cold stress. Front. Physiol. 2022, 13, 985046. [Google Scholar] [CrossRef]
- Fagnon, S.M.; Thorin, C.; Calvez, S. Meta-analysis of dietary supplementation effect of turmeric and curcumin on growth performance in fish. Rev. Aquac. 2020, 12, 2268–2283. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Hummel, B.C. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can. J. Biochem. Physiol. 1959, 37, 1393–1399. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.Y.; Yin, L.; Feng, L.; Liu, Y.; Jiang, W.D.; Wu, P.; Zhao, J.; Chen, D.F.; Zhou, X.Q.; et al. Effects of dietary glutamate supplementation on flesh quality, antioxidant defense and gene expression related to lipid metabolism and myogenic regulation in Jian carp (Cyprinus carpio var. Jian). Aquaculture 2019, 502, 212–222. [Google Scholar] [CrossRef]
- Tokur, B.; Korkmaz, K. The effects of an iron-catalyzed oxidation system on lipids and proteins of dark muscle fish. Food Chem. 2007, 104, 754–760. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Zhang, X.-D.; Zhu, Y.-F.; Cai, L.-S.; Wu, T.-X. Effects of fasting on the meat quality and antioxidant defenses of market-size farmed large yellow croaker (Pseudosciaena crocea). Aquaculture 2008, 280, 136–139. [Google Scholar] [CrossRef]
- Lora, J.; Alonso, F.J.; Segura, J.A.; Lobo, C.; Marquez, J.; Matés, J.M. Antisense glutaminase inhibition decreases glutathione antioxidant capacity and increases apoptosis in Ehrlich ascitic tumour cells. FEBS J. 2004, 271, 4298–4306. [Google Scholar] [CrossRef]
- Vardi, N.; Parlakpinar, H.; Ozturk, F.; Ates, B.; Gul, M.; Cetin, A.; Erdogan, A.; Otlu, A. Potent protective effect of apricot and β-carotene on methotrexate-induced intestinal oxidative damage in rats. Food Chem. Toxicol. 2008, 46, 3015–3022. [Google Scholar] [CrossRef]
- Ma, X.; Lin, Y.; Jiang, Z.; Zheng, C.; Zhou, G.; Yu, D.; Cao, T.; Wang, J.; Chen, F. Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 2010, 38, 95–102. [Google Scholar] [CrossRef]
- Zhelyazkov, G. Effect of monosodium glutamate dietary supplementation on some productive traits of common carp (Cyprinus carpio L.), cultivated in net cages. Agric. Sci. Technol. 2018, 10, 204–207. [Google Scholar] [CrossRef]
- Williams, K.C.; Barlow, C.G.; Rodgers, L.; Agcopra, C. Dietary composition manipulation to enhance the performance of juvenile barramundi (Lates calcarifer Bloch) reared in cool water. Aquac. Res. 2006, 37, 914–927. [Google Scholar] [CrossRef]
- Zeng, L.; Fu, C.; Fu, S. The effects of temperature and food availability on growth, flexibility in metabolic rates and their relationships in juvenile common carp. Comp. Biochem. Physiol. Part A 2018, 217, 26–34. [Google Scholar] [CrossRef]
- Green, B.S.; Fisher, R. Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. J. Exp. Mar. Biol. Ecol. 2004, 299, 115–132. [Google Scholar] [CrossRef]
- Ahmed, I.; Khan, M.A.; Jafri, A.K. Dietary methionine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquac. Int. 2003, 11, 449–462. [Google Scholar] [CrossRef]
- Abidi, S.F.; Khan, M.A. Dietary arginine requirement of fingerling Indian major carp, Labeo rohita (Hamilton) based on growth, nutrient retention efficiencies, RNA/DNA ratio and body composition. J. Appl. Ichthyol. 2009, 25, 707–714. [Google Scholar] [CrossRef]
- Zhou, F.; Xiong, W.; Xiao, J.X.; Shao, Q.J.; Bergo, O.N.; Hua, Y.; Chai, X. Optimum arginine requirement of juvenile black sea bream, Sparus macrocephalus. Aquac. Res. 2010, 41, e418–e430. [Google Scholar] [CrossRef]
- Pohlenz, C.; Buentello, A.; Miller, T.; Small, B.C.; MacKenzie, D.S.; Gatlin, D.M. Effects of dietary arginine on endocrine growth factors of channel catfish, Ictalurus punctatus. Comp. Biochem. Physiol. Part A 2013, 166, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Hakim, Y.; Uni, Z.; Hulata, G.; Harpaz, S. Relationship between intestinal brush border enzymatic activity and growth rate in tilapias fed diets containing 30% or 48% protein. Aquaculture 2006, 257, 420–428. [Google Scholar] [CrossRef]
- Perez-Casanova, J.C.; Murray, H.M.; Gallant, J.W.; Ross, N.W.; Douglas, S.E.; Johnson, S.C. Development of the digestive capacity in larvae of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua). Aquaculture 2006, 251, 377–401. [Google Scholar] [CrossRef]
- Hazel, J.R. Effects of temperature on the structure and metabolism of cell membranes in fish. Am. J. Physiol.—Regul. Integr. Comp. Physiol. 1984, 246, R460. [Google Scholar] [CrossRef]
- Brett, J.R.; Higgs, D.A. Effect of temperature on the rate of gastric digestion in finger ling sockeye salmon, Oncorhynchus nerka. J. Fish. Board Can. 1970, 27, 1767–1779. [Google Scholar] [CrossRef]
- Klinger, T.S.; Hsieh, H.L.; Pangallo, R.A.; Chen, C.P.; Lawrence, J.M. The effect of temperature on feeding, digestion, and absorption of Lytechinus variegatus (Lamarck) (Echinodermata: Echinoidea). Physiol. Zool. 1986, 59, 332–336. [Google Scholar] [CrossRef]
- Geering, K. Functional roles of Na,K-ATPase subunits. Curr. Opin. Nephrol. Hypertens. 2008, 17, 526–532. [Google Scholar] [CrossRef]
- Tengjaroenkul, B.; Smith, B.J.; Caceci, T.; Smith, S.A. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 2000, 182, 317–327. [Google Scholar] [CrossRef]
- Ogawa, M.; Shiozawa, M.; Hiraoka, Y.; Takeuchi, Y.; Aiso, S. Immunohistochemical study of localization of γ-glutamyl transpeptidase in the rat brain. Tissue Cell 1998, 30, 597–601. [Google Scholar] [CrossRef]
- Holst, J.J.; Rasmussen, T.N.; Schmidt, P. Role of nitric oxide in neurally induced pancreatic exocrine secretion in pigs. Am. J. Physiol. 1984, 266, G206–G213. [Google Scholar] [CrossRef]
- Péres, A.; Cahu, C.L.; Infante, J.L.Z. Dietary spermine supplementation induces intestinal maturation in sea bass (Dicentrarchus labrax) larvae. Fish Physiol. Biochem. 1997, 16, 479–485. [Google Scholar] [CrossRef]
- Cadenas, E. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 1989, 58, 79–110. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Selvaraj, V.; Yeager Armstead, M.; Murray, E. Protective and antioxidant role of selenium on arsenic trioxide–induced oxidative stress and genotoxicity in the fish hepatoma cell line PLHC-1. Environ. Toxicol. Chem. 2012, 31, 2861–2869. [Google Scholar] [CrossRef]
- David, M.; Munaswamy, V.; Halappa, R.; Marigoudar, S.R. Impact of sodium cyanide on catalase activity in the freshwater exotic carp, Cyprinus carpio (Linnaeus). Pestic. Biochem. Physiol. 2008, 92, 15–18. [Google Scholar] [CrossRef]
- Chang, H.R.; Arsenijevic, D.; Vladoianu, I.; Girardier, L.; Dulloo, A.G. Fish oil enhances macrophage tumor necrosis factor-alpha mRNA expression at the transcriptional level. Metabolism 1995, 44, 800–805. [Google Scholar] [CrossRef]
- Wang, B.; Feng, L.; Jiang, W.-D.; Wu, P.; Kuang, S.-Y.; Jiang, J.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Liu, Y.; et al. Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-κB, TOR and Nrf2 signaling molecules in the gills of fish: Preventive role of arginine. Aquat. Toxicol. 2015, 158, 125–137. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Feng, L.; Jiang, W.-D.; Kuang, S.-Y.; Jiang, J.; Li, S.-H.; Tang, L.; Zhou, X.-Q. Effects of dietary arginine supplementation on growth performance, flesh quality, muscle antioxidant capacity and antioxidant-related signalling molecule expression in young grass carp (Ctenopharyngodon idella). Food Chem. 2015, 167, 91–99. [Google Scholar] [CrossRef]
- Sies, H. Glutathione and its role in cellular functions. Free Radic. Biol. Med. 1997, 27, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Regulation of glutathione synthesis. Mol. Asp. Med. 2009, 30, 42–59. [Google Scholar] [CrossRef]
Ingredient | Arg 0.179% | Arg 0.211% | Arg 0.236% | Arg 0.268% | Arg 0.295% | Arg 0.326% |
---|---|---|---|---|---|---|
Soybean meal | 100 | 100 | 100 | 100 | 100 | 100 |
Rapeseed meal | 103 | 103 | 103 | 103 | 103 | 103 |
Fishmeal | 230 | 230 | 230 | 230 | 230 | 230 |
wheat flour | 254 | 255 | 256 | 258 | 259 | 260 |
Corn gluten meal | 210 | 210 | 210 | 210 | 210 | 210 |
Soya bean oil | 20 | 20 | 20 | 20 | 20 | 20 |
Lysine | 9 | 9 | 9 | 9 | 9 | 9 |
Threonine | 3 | 3 | 3 | 3 | 3 | 3 |
L-Gly | 21 | 17 | 13 | 8 | 4 | 0 |
L-Arg-HCL | 0 | 3 | 6 | 9 | 12 | 15 |
CaH2PO4 | 20 | 20 | 20 | 20 | 20 | 20 |
Choline chloride | 5 | 5 | 5 | 5 | 5 | 5 |
Vitamin premix/g/kg 1 | 10 | 10 | 10 | 10 | 10 | 10 |
Mineral premixg/kg 2 | 15 | 15 | 15 | 15 | 15 | 15 |
Nutrients content (%) 3 | ||||||
Crude protein | 36.8 | 37.2 | 36.8 | 36.8 | 37.2 | 36.9 |
Crude lipid | 7.00 | 6.98 | 6.97 | 6.69 | 6.93 | 6.60 |
Ash | 7.67 | 7.75 | 7.83 | 7.92 | 7.54 | 7.58 |
Arg | 1.79 | 2.11 | 2.36 | 2.68 | 2.95 | 3.26 |
Primes | Sequences | OAT (°C) | AP (bp) | Accession Number |
---|---|---|---|---|
β-actin-RTF | CCTAAAGCCAACAGGGAAAA | 59.0 | 186 bp | EU161066 |
β-actin-RTR | ATGGGGCAGAGCATAACC | |||
CuZnSOD-RTF | ATCTGGGTAATGTGACTGCCGA | 60.4 | 152 bp | KX455916 |
CuZnSOD-RTR | TTCATCATCTCCGCCCTTGC | |||
CAT-RTF | ACACCGATGAGGGAAACTGG | 58 | 89 bp | KX455919 |
CAT-RTR | GTGGATGAAGGACGGGAACA | |||
GPX 1a-RTF | GTGACGACTCTGTGTCCTTG | 61.0 | 139 bp | KY312111 |
GPX 1a-RTR | AACCTTCTGCTGTATCTCTTGA | |||
GCLC-RTF | GACAAACGGAGGAAGGAGG | 58.2 | 161 bp | KX455918 |
GCLC-RTR | TCATCAGGAAAGAAGAGGGACT | |||
Nrf2-RTF | CGGAACAAGATGGAGAAGCC | 64.0 | 122 bp | KX455917 |
Nrf2-RTR | ACAGGGAGGAATGGAGGGA |
Ingredient | Arg 0.179% | Arg 0.211% | Arg 0.236% | Arg 0.268% | Arg 0.295% | Arg 0.326% | p-Value |
---|---|---|---|---|---|---|---|
IBW | 61.2 ± 0.17 | 61.2 ± 0.17 | 61.2 ± 0.17 | 61.3 ± 0.17 | 61.3 ± 0.17 | 61.3 ± 0.17 | 0.326 |
FBW | 80.9 ± 0.26 a | 84.4 ± 0.30 ab | 86.9 ± 0.32 bc | 88.9 ± 2.45 c | 86.8 ± 1.74 bc | 85.1 ± 0.32 bc | 0.042 |
PWG | 32.3 ± 0.60 a | 38.0 ± 0.75 b | 42.1 ± 0.49 c | 45.0 ± 0.74 d | 41.5 ± 0.78 c | 38.8 ± 0.15 b | 0.033 |
SGR | 0.50 ± 0.01 a | 0.58 ± 0.01 b | 0.63 ± 0.01 c | 0.66 ± 0.01 d | 0.62 ± 0.02 c | 0.59 ± 0.01 b | 0.031 |
SR | 100 ± 0.00 | 99.2 ± 0.83 | 98.3 ± 0.83 | 100 ± 0.00 | 97.5 ± 2.5 | 100 ± 0.00 | 0.935 |
FI | 40.9 ± 0.89 a | 46.7 ± 2.03 ab | 48.0 ± 2.36 ab | 49.4 ± 2.31 b | 46.9 ± 2.50 b | 46.6 ± 2.43 ab | 0.047 |
FE | 48.4 ± 0.91 a | 50.0 ± 0.09 ab | 53.6 ± 0.42 cd | 55.8 ± 1.22 d | 54.2 ± 1.06 d | 51.4 ± 0.62 bc | 0.024 |
PER | 1.32 ± 0.03 a | 1.33 ± 0.03 ab | 1.33 ± 0.02 ab | 1.51 ± 0.01 d | 1.46 ± 0.03 cd | 1.41 ± 0.03 bc | 0.019 |
Regression | |||||||
YSGR = −0.190X2 + 1.017X − 0.717 | X = 2.68 | R2 = 0.933 |
Ingredient | Arg 0.179% | Arg 0.211% | Arg 0.236% | Arg 0.268% | Arg 0.295% | Arg 0.326% | p-Value |
---|---|---|---|---|---|---|---|
Moisture | 67.9 ± 0.07 | 68.2 ± 0.42 | 67.5 ± 0.47 | 67.6 ± 0.53 | 68.3 ± 0.14 | 68.1 ± 0.80 | 0.658 |
Protein | 15.6 ± 0.10 a | 15.6 ± 0.30 a | 15.6 ± 0.41 a | 16.5 ± 0.35 b | 16.5 ± 0.16 b | 16.0 ± 0.04 b | 0.039 |
Lipid | 11.3 ± 0.26 a | 11.7 ± 0.23 ab | 12.3 ± 0.31 bc | 12.6 ± 0.23 c | 11.7 ± 0.17 ab | 11.4 ± 0.19 a | 0.042 |
Ash | 4.58 ± 0.16 | 4.51 ± 0.13 | 4.46 ± 0.15 | 4.20 ± 0.10 | 4.43 ± 0.03 | 4.44 ± 0.07 | 0.527 |
PPV | 14.2 ± 0.14 a | 15.4 ± 0.57 a | 14.9 ± 0.82 a | 22.8 ± 1.03 c | 19.5 ± 0.66 b | 18.1 ± 0.60 b | 0.016 |
LPV | 96.0 ± 6.02 a | 115 ± 7.92 ab | 131 ± 9.47bc | 144 ± 7.43 c | 113 ± 6.03 ab | 112 ± 3.42 ab | 0.021 |
APV | 33.9 ± 1.61 | 35.6 ± 0.51 | 33.9 ± 0.80 | 35.0 ± 0.83 | 34.5 ± 0.44 | 33.6 ± 0.93 | 0.834 |
Ingredient | Arg 0.179% | Arg 0.211% | Arg 0.236% | Arg 0.268% | Arg 0.295% | Arg 0.326% | p-Value |
---|---|---|---|---|---|---|---|
Stomach | |||||||
SPC | 3.14 ± 0.12 | 3.32 ± 0.24 | 3.58 ± 0.22 | 3.50 ± 0.10 | 3.19 ± 0.05 | 3.07 ± 0.05 | 0.237 |
Pancreas | |||||||
PPC | 3.23 ± 0.09 a | 3.70 ± 0.13 bc | 3.86 ± 0.06 c | 4.26 ± 0.12 d | 3.82 ± 0.16 c | 3.46 ± 0.07 ab | 0.018 |
Intestine | |||||||
ISI | 0.99 ± 0.03 | 1.05 ± 0.02 | 1.03 ± 0.03 | 1.06 ± 0.04 | 1.07 ± 0.03 | 1.08 ± 0.04 | 0.569 |
RGL | 0.60 ± 0.02 a | 0.68 ± 0.01 b | 0.63 ± 0.02 ab | 0.65 ± 0.02 ab | 0.64 ± 0.01 ab | 0.64 ± 0.02 ab | 0.035 |
IPC | 2.85 ± 0.21 a | 2.92 ± 0.12 ab | 3.29 ± 0.10 b | 3.17 ± 0.12 ab | 3.16 ± 0.09 ab | 2.90 ± 0.09 ab | 0.027 |
Liver | |||||||
HSI | 1.37 ± 0.04 | 1.37 ± 0.05 | 1.48 ± 0.07 | 1.42 ± 0.04 | 1.45 ± 0.03 | 1.43 ± 0.05 | 0.663 |
LPC | 9.41 ± 0.21 a | 10.1 ± 0.13 a | 10.7 ± 0.57 ab | 11.1 ± 0.13 b | 9.81 ± 0.12 a | 9.21 ± 0.32 a | 0.047 |
Ingredient | Arg 0.179% | Arg 0.211% | Arg 0.236% | Arg 0.268% | Arg 0.295% | Arg 0.326% | p-Value |
---|---|---|---|---|---|---|---|
Stomach | |||||||
Pepsin | 967 ± 57.2 a | 1057 ± 26.2 ab | 1519 ± 26.8 c | 1129 ± 22.4 b | 1020 ± 65.5 ab | 1042 ± 29.0 ab | 0.023 |
Pancreas | |||||||
Trypsin | 20.6 ± 0.4 a | 31.8 ± 2.1 bc | 36.3 ± 3.3 bcd | 42.0 ± 1.7 d | 35.5 ± 1.6 bc | 30.0 ± 1.4 b | <0.001 |
Chymotrypsin | 27.6 ± 1.2 a | 28.8 ± 1.6 a | 33.6 ± 1.2 b | 46.8 ± 3.6 d | 36.0 ± 1.3 c | 26.4 ± 0.6 a | 0.019 |
Lipase | 6.42 ± 0.48 a | 8.80 ± 0.22 ab | 9.59 ± 0.59 b | 13.3 ± 0.86 c | 9.84 ± 0.15 b | 6.80 ± 0.23 a | <0.001 |
Amylase | 1617 ± 33 a | 2099 ± 84 ab | 2255 ± 75 b | 2121 ± 34 ab | 2016 ± 34 ab | 2028 ± 90 ab | 0.025 |
Intestine | |||||||
Trypsin | 128 ± 3.3 a | 145 ± 2.8 b | 190 ± 6.8 d | 199 ± 8.6 d | 186 ± 2.8 d | 162 ± 3.9 c | 0.033 |
Chymotrypsin | 60.1 ± 2.8 a | 66.1 ± 6.0 a | 118 ± 6.0 c | 90.1 ± 2.1 b | 92.5 ± 3.2 b | 93.7 ± 3.6 b | <0.001 |
Lipase | 2.10 ± 0.10 a | 2.13 ± 0.11 ab | 2.35 ± 0.09 ab | 2.43 ± 0.09 bc | 2.66 ± 0.12 c | 2.27 ± 0.01 ab | 0.046 |
Amylase | 90.0 ± 9.3 | 93.7 ± 1.6 | 107 ± 9.9 | 105 ± 5.2 | 105 ± 7.8 | 90.9 ± 10.1 | 0.095 |
Regression | |||||||
YIntestine Trypsin = −89.696X2 + 483.244X − 457.516 | X = 2.69 | R2 = 0.819 | |||||
YPancreas Trypsin = −26.725X2 + 141.121X − 146.711 | X = 2.64 | R2 = 0.823 |
Ingredient | Arg 0.179% | Arg 0.211% | Arg 0.236% | Arg 0.268% | Arg 0.295% | Arg 0.326% | p-Value |
---|---|---|---|---|---|---|---|
PI | |||||||
γ-GT | 54.9 ± 0.9 a | 54.1 ± 1.5 a | 62.0 ± 0.9 b | 60.3 ± 1.2 b | 53.4 ± 0.5 a | 55.3 ± 0.5 a | 0.046 |
CK | 54.5 ± 2.4 ab | 53.5 ± 0.8 ab | 58.9 ± 2.4 abc | 60.8 ± 2.1 bc | 62.1 ± 2.6 c | 52.9 ± 1.8 a | 0.037 |
NKA | 190 ± 15.8 ab | 198 ± 8.6 ab | 217 ± 8.4 ab | 231 ± 10.7 b | 198 ± 10.8 ab | 173 ± 7.6 a | 0.029 |
AKP | 21.3 ± 2.5 b | 22.8 ± 1.2 b | 30.6 ± 2.5 c | 24.7 ± 3.0 bc | 18.5 ± 0.4 b | 14.7 ± 0.1 a | <0.001 |
DI | |||||||
γ-GT | 11.1 ± 1.1 a | 15.5 ± 0.8 b | 18.0 ± 1.1 b | 25.4 ± 1.7 c | 18.1 ± 1.4 b | 15.3 ± 1.3 b | <0.001 |
CK | 51.3 ± 2.1 a | 60.1 ± 3.0 b | 84.5 ± 0.9 c | 61.0 ± 2.8 b | 57.3 ± 1.3 ab | 55.2 ± 2.3 ab | 0.017 |
NKA | 191 ± 5.2 a | 227 ± 15.6 bc | 239 ± 8.1 bc | 256 ± 9.1 c | 236 ± 7.7 bc | 215 ± 3.5 ab | 0.035 |
AKP | 15.2 ± 0.09 ab | 18.9 ± 0.66 b | 29.7 ± 0.61 d | 25.3 ± 1.3 c | 17.9 ± 0.42 b | 13.1 ± 1.0 a | 0.016 |
Regression | |||||||
YDI AKP = −23.604X2 + 117.556X − 120.526 | X = 2.49 | R2 = 0.751 |
Ingredient | Arg 0.179% | Arg 0.211% | Arg 0.236% | Arg 0.268% | Arg 0.295% | Arg 0.326% | p-Value |
---|---|---|---|---|---|---|---|
MDA | 95.1 ± 5.4 e | 86.4 ± 6.9 cd | 77.7 ± 1.2 bc | 59.3 ± 2.4 a | 70.4 ± 2.1 ab | 76.5 ± 2.5 bc | <0.001 |
PC | 140 ± 3.8 bc | 128 ± 3.8 bc | 121 ± 13.7 b | 83.3 ± 7.6 a | 125 ± 17.4 b | 163 ± 10.0 c | <0.001 |
T-SOD | 79.2 ± 6.6 a | 92.0 ± 4.7 ab | 101.5 ± 4.9 b | 105.6 ± 2.3 b | 102.3 ± 1.9 b | 96.6 ± 2.5 b | 0.021 |
CAT | 54.0 ± 3.6 a | 69.0 ± 3.9 b | 72.3 ± 4.7 b | 75.5 ± 8.1 b | 54.9 ± 3.0 a | 44.3 ± 2.1 a | 0.006 |
GST | 126 ± 7.1 a | 166 ± 7.9 b | 176 ± 7.8b | 213 ± 14.2 c | 187 ± 14.1 bc | 160 ± 7.6 b | <0.001 |
GPX | 5393 ± 210 a | 6190 ± 261 b | 6270 ± 174 b | 6040 ± 220 b | 6088 ± 174 b | 5997 ± 124 ab | 0.003 |
GR | 41.2 ± 2.4 a | 43.8 ± 3.6 ab | 52.1 ± 5.0 bc | 58.9 ± 2.3 c | 52.6 ± 2.2 bc | 47.8 ± 1.7 ab | <0.001 |
T-GSH | 0.76 ± 0.04 ab | 0.83 ± 0.02 bc | 0.90 ± 0.04 c | 0.83 ± 0.02 bc | 0.76 ± 0.03 ab | 0.72 ± 0.03 a | 0.029 |
ASA | 261 ± 7.7 a | 277 ± 7.7 ab | 299 ± 11.7 bc | 325 ±11.6 c | 312 ± 6.5 bc | 311 ± 6.1 bc | 0.006 |
AHR | 218 ± 6.6 a | 259 ± 19.7 ab | 252 ± 18.5 ab | 288 ± 8.5 b | 222 ± 7.8 a | 226 ± 12.0 a | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Kisha, M.S.; Gaafar, A.; Younes, A.M.; Liu, H.; Jiang, J. Evaluation of the Dietary Arginine Supplementation on Yellow Catfish: From a Low-Temperature Farming Perspective. Biology 2024, 13, 881. https://doi.org/10.3390/biology13110881
Cao Q, Kisha MS, Gaafar A, Younes AM, Liu H, Jiang J. Evaluation of the Dietary Arginine Supplementation on Yellow Catfish: From a Low-Temperature Farming Perspective. Biology. 2024; 13(11):881. https://doi.org/10.3390/biology13110881
Chicago/Turabian StyleCao, Quanquan, Mohamed S. Kisha, Alkhateib Gaafar, Abdelgayed Metwaly Younes, Haifeng Liu, and Jun Jiang. 2024. "Evaluation of the Dietary Arginine Supplementation on Yellow Catfish: From a Low-Temperature Farming Perspective" Biology 13, no. 11: 881. https://doi.org/10.3390/biology13110881
APA StyleCao, Q., Kisha, M. S., Gaafar, A., Younes, A. M., Liu, H., & Jiang, J. (2024). Evaluation of the Dietary Arginine Supplementation on Yellow Catfish: From a Low-Temperature Farming Perspective. Biology, 13(11), 881. https://doi.org/10.3390/biology13110881