Next Article in Journal
Ploidy’s Role in Daylily Plant Resilience to Drought Stress Challenges
Previous Article in Journal
Reproductive Cessation and Post-Reproductive Lifespan in Honeybee Workers
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Chemical Constituents and Their Bioactivities of Plants from the Genus Eupatorium (2015–Present)

School of Science, Xichang University, Xichang 615000, China
Biology 2024, 13(5), 288; https://doi.org/10.3390/biology13050288
Submission received: 1 April 2024 / Revised: 20 April 2024 / Accepted: 23 April 2024 / Published: 24 April 2024
(This article belongs to the Section Plant Science)

Abstract

:

Simple Summary

Based on the important findings of our research group about the chemical constituents of Eupatorium adenophorum, the present review shares an update about the research progress on the chemical constituents of Eupatorium and their biological activities in the last 10 years. For the first time, it also reviews some studies investigating the chemical constituents of the plant. Considering the multiple properties of this genus, the next step should be to strengthen the study of the action mechanism underlying the active components of this genus. Hopefully, this review can provide new insights for prompting future research on Eupatorium applications and drug development.

Abstract

The genus Eupatorium belongs to the Asteraceae (Compositae) family and has multiple properties, such as invasiveness and toxicity, and is used in folk medicine. The last review on the chemical constituents of this genus and their biological activities was published in 2015. The present review provides an overview of 192 natural products discovered from 2015 to the present. These products include 63 sesquiterpenoids, 53 benzofuran derivatives, 39 thymol derivatives, 15 fatty acids, 7 diterpenoids, 5 monoterpenoids, 4 acetophenones, and 6 other compounds. We also characterized their respective chemical structures and cytotoxic, antifungal, insecticidal, antibacterial, anti-inflammatory, and antinociceptive activities.

1. Introduction

Plant-derived natural products have always been a paramount source of novel drugs and pesticides [1,2,3,4,5,6,7,8]. For example, the plant-derived drugs paclitaxel (Taxol) and artemisinin are widely used in antitumor and antimalarial treatment, respectively, and continue to occupy a crucial position among other drugs used for these medical conditions [9,10,11,12,13,14]. Meanwhile, active plant-derived natural products can also serve as substrates for structural modifications for new drug discovery. For example, the anticancer drugs topotecan and irinotecan are the derivatives of camptothecin, which is isolated and identified from the plant Camptotheca acuminata [15,16].
Eupatorium is a large genus belonging to the Asteraceae family that contains approximately 1200 species. This genus is widely distributed in global countries, such as America, Europe, Africa, and Asia [17]. The chemical constituents of Eupatorium have been investigated for more than 100 years, starting from the study of the volatile oil constituents of E. triplinerve [18]. Until now, more than 300 compounds have been reported to be present in Eupatorium, of which some have exhibited certain anticancer, antibacterial, and anti-inflammatory effects [19,20]. Among them, flavonoids and terpenes are the two main chemical constituents of Eupatorium. However, the latest reviews discussing the phytochemical investigations and the biological activities of this genus were published almost 10 years ago [20]. Recent major progress in the study of the chemical constituents of E. adenophorum was made by our group. We discovered two classes of sesquiterpenoids with novel structures, which were continuously selected as hot molecules by Natural Product Reports (NPRs) [21,22]. Considering that E. adenophorum has a potent affinity toward the other plants of the genus, we believe that the discovery of novel structural and active chemical components in the genus Eupatorium deserves further investigation. Consequently, to attract more research attention toward this genus, we summarized the research progress of natural products of this genus discovered since 2015, including their sources, structure types, and biological activities. Here, we reviewed a total of 192 compounds (Figure 1), including their chemical structures and biological activities. In the framework of this review presentation, we want to classify those natural products based on the plant species that produce them, rather than their structural types. We hope this review provides insights into the in-depth study, development, and utilization of this genus.

2. Progress on Chemical Components and Their Biological Activities of the Genus Eupatorium

2.1. Chemical Components of E. adenophorum and Their Biological Activities

E. adenophorum Spreng. (E. adenophorum) is synonymous with Ageratina adenophora (Spreng.) R. M. King & H. Rob., a perennial and herbaceous invasive plant that is ubiquitous worldwide [23]. Although it is invasive, it has been traditionally used as a medicine for treating wounds, inflammation, fever, diabetes, dysentery, and other ailments. Phytochemical investigations have revealed that this is a sesquiterpenoid-rich plant (Figure 2). In total, 30 new compounds were reported (Table 1), namely 17 sesquiterpenoids, 6 thymol derivatives, 3 benzofuran derivatives, 2 flavonoid glycosides, 1 monoterpenoid glucoside, and 1 chromene derivative [23,24,25,26,27,28,29,30,31,32,33,34,35].
Compounds 17 represent two classes of sesquiterpenoids with a novel carbon skeleton. Eupatorid A (1) and its esterified derivatives, eupatoresters A–C (24) [23] and dihyroeupatorid A (7) [26], have a 5/5 bicyclic carbon skeleton. Adenophorone (5) [28] and eupatorione A (6) [25] possess a 5/5/6 tricyclic carbon skeleton. Conspicuously, NPRs had continuously selected compounds 1 and 6 as hot molecules [21,22], because their structures were novel. Unfortunately, the aforementioned seven compounds exhibited no significant activities in the anti-inflammatory, in vitro tumor growth inhibitory, and antibacterial assays, except 5, which displayed potent neuroprotective activity in H2O2-treated human neuroblastoma cells (SH-SY5Y) and pheochromocytoma cells (PC12) [24]. Compounds 817 are typical cadinene-type sesquiterpenoids. However, none of them exhibited significant activities in bacteriostatic, α-glycosidase, and acetylcholine esterase (AChE) inhibitory tests [26,27,28,29,30,31]. Compounds 1823 are thymol derivatives. Compound 18 displayed in vitro bacteriostatic activity against Gram-positive bacteria such as Staphylococcus aureus, Bacillus cereus, and B. subtilis, with minimum inhibitory concentrations ranging from 25 to 50 μg/mL [31,32,33]. Compound 19 exhibited a strong activity against five microorganisms, S. aureus, B. cereus, B. thuringiensis, Escherichia coli, and Salmonella enterica, with MIC values ranging from 3.9 to 15.6 μg/mL. Additionally, compound 19 showed strong cytotoxicity against human breast cancer cells (MCF-7), human cervical carcinoma cells (HeLa), and human large-cell lung cancer cells (NCI-H460) and its half-maximal inhibitory concentration (IC50) values were 7.45, 9.45, and 8.32 μM, respectively [32]. Compounds 2426 are benzofuran derivatives. Among them, compound 24 at 50 μg/disk exhibited broad-spectrum antifungal activity against the growth of Colletotrichum gloeosporioides, C. musae, Rhizoctonia solani, and Fusarium oxysporum f. sp. Niveum, with inhibitory zones having diameters ranging from 13.90 to 17.28 mm [34]. Compounds 27 and 28 are a chromene derivative and a monoterpenoid glucoside, respectively [34]. Compounds 29 and 30 are two highly oxygenated flavonoid glycosides exhibiting potent 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, with IC50 values of 12.0 and 22.9 μM, respectively [35].

2.2. Chemical Components of E. chinense and Their Biological Activities

E. chinense is used as Chinese medicine in the Tujia and Miao minorities of China. The leaves of this plant are also termed “Liu-Yue-Xue” and are used as a folk medicine for cold prevention and treatment. Its roots are widely used as a traditional Chinese medicinal material “Tu-Niu-Xi” and it has a long history of medicinal applications, because of its various pharmacological activities, such as heat-clearing, anticancer, anti-inflammatory, and antiviral activities. It is especially used as a well-known drug for the treatment of diphtheria in Guangdong Province, China [36,37]. Consequently, chemical investigations on E. chinense have predominantly focused on its roots to discover active components. In summary, 57 chemical constituents (3187) were found in different parts of E. chinense (Table 2), namely 26 benzofuran oligomers, 25 sesquiterpenoids, 5 thymol derivatives, and 1 diterpenoid [36,37,38,39,40,41,42,43]. Of note, its roots are chiefly composed of benzofuran oligomers and thymol derivatives, whereas sesquiterpenoids are dominant in the aboveground parts (Figure 3). Compounds 3156 are benzofuran dimers and trimers and are isolated from the roots. Of them, compounds 3145, 50 and 51, as well as 5456 displayed inconspicuous activities in in vitro antiviral, anti-inflammatory, and cytotoxic assays [40,41,42]. Compounds 4649, 52, and 53 exhibited promising inhibitory effects on NO production, with IC50 values of 6.42, 6.29, and 16.03 μM, respectively [38]. Compounds 5761 are thymol derivatives and are isolated from the roots [39,40]. Compound 59 exhibited moderate inhibitory effects on NO production, with the inhibition rate reaching 23.08% at 50 μM [39]. Compound 60 displayed marked cytotoxic activities against human nasopharyngeal carcinoma cells (CNE 2), human cervical cancer cells (Caski), and human gastric cancer cells (HGC-27), with IC50 values of 4.2, 11.9, and 7.3 μM, respectively [40]. Compounds 6286 are sesquiterpenoids, namely 10 germacrane-type and 2 guaiane-type, and are isolated from the aerial parts of the plant [37,41,42,43]. Compounds 62 and 63 exhibited moderate cytotoxic activities against human breast cancer cells (MDA-MB-231) and human hepatocellular carcinoma cells (HepG2), with IC50 values ranging from 3.1 to 9.3 μM [37]. Compounds 7981 exhibited cytotoxicity against MDA-MB-231 and HepG2, with IC50 values of 0.8–7.6 μM [43]. Compound 87 is an acyclic diterpenoid. Usually, a diterpenoid is rarely found in the genus Eupatorium [42].

2.3. Chemical Components of E. fortunei and Their Biological Activities

E. fortunei Turcz. is a perennial herb that primarily grows in the subtropical and warm temperate regions of China. Being a common aromatic and medicinal species with over 2000 years of utilization, it is widely cultivated in most eastern provinces of China. This herb has the function of removing dampness and summer heat from the body. From a modern scientific perspective, some medical symptoms relieved using this herb are partially related to inflammation. The National Health Commission of China has also incorporated this plant into the list of herbal species that can be used as additives to functional foods [44,45,46,47,48,49]. In total, 53 compounds (88140) are isolated from the aerial parts of E. fortunei (Table 3), namely 27 thymol derivatives (88114), 4 acetophenones (115118), 2 benzofuran derivatives (119120), 1 chromanone (121), 1 dithiecine (122), 4 monoterpenoids (123126), and 14 fatty acid derivatives (127140) (Figure 4) [44,45,46,47,48,49,50,51,52]. Compounds 89 and 90 exhibited cytotoxicity against MCF-7, HeLa, human lung cancer cells (A549), and HepG-2, with IC50 values of 6.24–11.96 μM [45]. Compound 105 displayed moderate activity, with an IC50 value of 24.27 μM [49]. Compound 119 showed potent cytotoxicity against A549 and MCF-7, with IC50 values of 5.95 and 5.32 µM, respectively [50]. Compounds 123126 showed promising inhibitory effects on NO production, with the inhibition rate reaching 68.9%, 67.4%, 62.6%, and 65.1%, respectively, at 10 µM [51].

2.4. Chemical Components of E. heterophyllum and Their Biological Activities

E. heterophyllum DC. is a species endemic to China and is widely distributed in the grasslands and forest areas of the Hengduan Mountains and surrounding areas, at an altitude of 1700–3000 m. In Chinese folk medicine, the stems and whole plants of this species have been used to treat various injuries and trauma [53]. However, phytochemical studies are very limited in this plant. The research on the chemical compositions of this plant species has only begun recently and the research is relatively concentrated. Therefore, this is also the first review reporting the chemical compositions of this plant (Table 4). Compounds 141179 are isolated and characterized from the roots and leaves of E. heterophyllum (Figure 5) [53,54,55,56]. Compounds 141166 are benzofuran and thiophene derivatives isolated from the roots of E. heterophyllum [53,54,55]. Compounds 167179 are sesquiterpenoids and are isolated from the leaves of this plant [56]. Unfortunately, none of the aforementioned compounds have been evaluated for any activity. Therefore, in terms of chemical structures, the discovered compounds have a large polarity. In fact, excavation of the medium to lower polarity compounds of this plant may be continued and discoveries may happen.

2.5. Chemical Components of E. lindleyanum and Their Biological Activities

E. lindleyanum, referred to as “Ye-Ma-Zhui” by the local Chinese population, is used for tracheitis and cough treatment and has a bitter, acerbic taste. Compounds 180183 are sesquiterpenoids isolated from E. lindleyanum (Table 5 and Figure 6) [57,58,59]. Compounds 180 and 181 displayed excellent anti-inflammatory activities by lowering tumor necrosis factor-α and interleukin 6 levels in lipopolysaccharide-stimulated murine macrophage RAW 264.7 cells (p < 0.001) [57]. Compound 182 can dramatically attenuate NO secretion at 7.5 μM [58].

2.6. Chemical Components of E. macrocephalum and Their Biological Activities

E. macrocephalum Less. is a perennial herb widely distributed in the New World, from Mexico to Argentina. It is described as an invader of grasslands, wetlands, and roadsides in several provinces of South Africa. However, it is used in Paraguayan folk medicine as an anti-inflammatory and sedative agent and for the treatment of cardiac diseases [60]. Compounds 184186 are three undescribed germacranolide sesquiterpenoids isolated from the aerial parts of E. macrocephalum (Table 5 and Figure 6). Of them, compounds 184 and 185 displayed moderate-to-potent cytotoxicity against nine human cancer cell lines, namely human glioma cells (U251), human melanoma cells (UACC-62), MCF-7, human multiple-drug resistant breast cancer cells (NCI/ADR-RES), renal clear cell adenocarcinoma cells (786–0), non-small cell lung cancer cells (NCI–H460), human ovarian cancer cells (OVCAR-3), human colon cancer cells (HT-29), and human erythroleukemia cells (K562), with IC50 values of 0.576–6.37 μM [60].

2.7. Chemical Components of E. obtusissmum and Their Biological Activities

E. obtusissmum P. DC. is an uncommon and narrowly distributed species in Eupatorium. This is an endemic plant from the island of Hispaniola [61]. Therefore, only one report is available on the chemical composition of E. obtusissmum. Compounds 187192 are six ent-labdane diterpenoids and are isolated from the aerial parts of the plant (Table 5 and Figure 6). No compound displayed conspicuous cytotoxicity against A549, human breast carcinoma cells (HBL-100), HeLa, human lung tumor cells (SW1573), human breast cancer cells (T-47D), and human colorectal cancer cells (WiDr) [61].

3. Conclusions

This review discusses the recent discoveries of new compounds isolated and identified from seven plant species belonging to Eupatorium, since 2015; then, they were categorized according to the plant species. Notably, results of phytochemical investigations on E. heterophyllum and E. obtusissmum have recently been reported. Consequently, this is the first review of these two plant species. Although several compounds have shown anticancer, antibacterial, and anti-inflammatory effects, more compounds exhibited no significant activities and even some new compounds displayed no activity in bioactivity assays. However, if activity assays are continued in vivo or in vitro for these new compounds, we believe that more positive results may be obtained. By providing an essential reference and fresh insights, we hope this review of the recent research progress on the chemical constituents of Eupatorium can support and inspire researchers engaged in studies on natural products and their biological properties.

Funding

This work was supported by the Doctoral Scientific Research and Double High Talent Project of Xichang University (YBZ202114, LGLZ202302) and the Program of Science and Technology Liangshan (21ZDYF0019).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No data were used for the research described in the article.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Wright, C.W. Recent developments in research on terrestrial plants used for the treatment of malaria. Nat. Prod. Rep. 2010, 27, 961–968. [Google Scholar] [CrossRef] [PubMed]
  2. Hung, H.Y.; Qian, K.D.; Morris-Natschke, S.L.; Hsuc, C.S.; Lee, K.H. Recent discovery of plant-derived anti-diabetic natural products. Nat. Prod. Rep. 2012, 29, 580–606. [Google Scholar] [CrossRef] [PubMed]
  3. Tasneema, S.; Liu, B.; Li, B.; Choudharya, M.I.; Wang, W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol. Res. 2019, 139, 126–140. [Google Scholar] [CrossRef] [PubMed]
  4. Cheng, G.; Ma, T.T.; Deng, Z.H.; Gutiérrez-Gamboa, G.; Ge, Q.; Xu, P.K.; Zhang, Q.W.; Zhang, J.X.; Meng, J.F.; Reiter, R.J.; et al. Plant-derived melatonin from food: A gift of nature. Food Funct. 2021, 12, 2829–2849. [Google Scholar] [CrossRef] [PubMed]
  5. Rahimian, N.; Miraei, H.R.; Amiri, A.; Ebrahimi, M.S.; Nahand, J.S.; Tarrahimofrad, H.; Hamblin, M.R.; Khan, H.; Mirzaei, H. Plant-based vaccines and cancer therapy: Where are we now and where are we going? Pharmacol. Res. 2021, 169, 105655. [Google Scholar] [CrossRef] [PubMed]
  6. Yuan, H.M.; Luo, Z.S.; Ban, Z.J.; Reiter, R.J.; Ma, Q.; Liang, Z.; Yang, M.Y.; Lie, X.H.; Li, L. Bioactive peptides of plant origin: Distribution, functionality, and evidence of benefits in food and health. Food Funct. 2022, 13, 3133–3158. [Google Scholar] [CrossRef] [PubMed]
  7. Woo, S.; Marquez, L.; Crandall, W.J.; Risener, C.J.; Quave, C.L. Recent advances in the discovery of plant-derived antimicrobial natural products to combat antimicrobial resistant pathogens: Insights from 2018–2022. Nat. Prod. Rep. 2023, 40, 1271–1290. [Google Scholar] [CrossRef] [PubMed]
  8. Hui, Z.; Wen, H.; Zhu, J.L.; Deng, H.W.; Jiang, X.Y.; Ye, X.Y.; Wang, L.W.; Xie, T.; Bai, R.R. Discovery of plant-derived anti-tumor natural products: Potential leads for anti-tumor drug discovery. Bioorg. Chem. 2024, 142, 106957. [Google Scholar] [CrossRef] [PubMed]
  9. Shen, B. A new golden age of natural products drug discovery. Cell 2015, 163, 1297–1300. [Google Scholar] [CrossRef]
  10. Yang, Y.H.; Mao, J.W.; Tan, X.L. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin. J. Nat. Med. 2020, 18, 890–897. [Google Scholar] [CrossRef]
  11. Gornstein, E.; Schwarz, T.L. The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology 2014, 76, 175–183. [Google Scholar] [CrossRef] [PubMed]
  12. Howat, S.; Park, B.; Oh, S.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Paclitaxel: Biosynthesis, production and future prospects. New Biotechnol. 2014, 31, 242–245. [Google Scholar] [CrossRef]
  13. Ma, N.; Zhang, Z.Y.; Liao, F.L.; Jiang, T.L.; Tu, Y.Y. The birth of artemisinin. Pharmacol. Therapeut. 2020, 216, 107658. [Google Scholar] [CrossRef] [PubMed]
  14. Guo, Z.R. Artemisinin anti-malarial drugs in China. Acta Pharm. Sin. B 2016, 6, 115–124. [Google Scholar] [CrossRef]
  15. Weathers, P.J. Artemisinin as a therapeutic vs. its more complex Artemisia source material. Nat. Prod. Rep. 2023, 40, 1158–1169. [Google Scholar] [CrossRef]
  16. Wang, X.Z.; Zhuang, Y.M.; Wang, Y.K.; Jiang, M.K.; Yao, L. The recent developments of camptothecin and its derivatives as potential anti-tumor agents. Eur. J. Med. Chem. 2023, 260, 115710. [Google Scholar] [CrossRef]
  17. Simran, G.; Ranabir, S.; Paramita, P.; Gouranga, N.; Tarun, K.D. An updated review on Eupatorium adenophorum Spreng. [Ageratina adenophora (Spreng.)]: Traditional uses, phytochemistry, pharmacological activities and toxicity. Pharmacol. Res. Mod. Chin. Med. 2022, 2, 100068. [Google Scholar]
  18. Semmler, F.W. Zur Kenntnis der Bestandteile ätherischer Öle (Zusammensetzung des Ayapana-öls. Berichte Dtsch. Chem. Ges. 1908, 41, 509–512. [Google Scholar] [CrossRef]
  19. Zhang, M.L.; Wu, M.; Zhang, J.J.; Irwin, D.; Gu, Y.C.; Shi, Q.W. Chemical Constituents of Plants from the Genus Eupatorium. Chem. Boodivers. 2008, 5, 40–54. [Google Scholar] [CrossRef]
  20. Liu, P.Y.; Liu, D.; Li, W.H.; Zhao, T.; Sauriol, F.; Gu, Y.C.; Shi, Q.W.; Zhang, M.L. Chemical constituents of plants from the genus Eupatorium (1904–2014). Chem. Boodivers. 2015, 12, 1482–1514. [Google Scholar] [CrossRef]
  21. Hill, R.A.; Sutherland, A. Hot off the press. Nat. Prod. Rep. 2023, 40, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
  22. Hill, R.A.; Sutherland, A. Hot off the press. Nat. Prod. Rep. 2024, 41, 157–161. [Google Scholar] [CrossRef] [PubMed]
  23. Geng, H.; Luo, J.H.; Gu, W.J.; Zhang, J.J.; Yang, Y.X.; Yu, Y. Unusual 5/5 fused bicyclosesquiterpenoids from Eupatorium adenophorum. Fitoterapia 2023, 170, 105643. [Google Scholar] [CrossRef] [PubMed]
  24. Yin, B.; Li, X.H.; Li, Z.X.; Zhu, X.X.; Zhang, L.; Zhou, X.L.; Xu, J.B.F.; Chen, Z.; Tang, P.; Gao, F. Adenophorone, an unprecedented sesquiterpene from Eupatorium adenophorum: Structural elucidation, bioinspired total synthesis and neuroprotective activity evaluation. Angew. Chem. Int. Ed. 2023, 62, e202306326. [Google Scholar] [CrossRef] [PubMed]
  25. Geng, H.; Gu, W.J.; Luo, J.H.; Yang, Y.X.; Yu, Y. Eupatorione A, an unusual sesquiterpenoid from the aerial parts of Eupatorium adenophorum. Rec. Nat. Prod. 2023, 17, 1064–1068. [Google Scholar] [CrossRef]
  26. Gu, W.J.; Luo, J.H.; Yang, Y.X.; Geng, H. Identification of Diverse Sesquiterpenoids from Eupatorium adenophorum. Rec. Nat. Prod. 2024, 18, 237–277. [Google Scholar]
  27. Phan, M.G.; Dong, N.P.; Do, T.V.H.; Vu, M.T.; To, P.L.; Nguyen, N.V.; Tran, T.T.T.; Kawakami, S.; Otsuka, H. A new cadinane sesquiterpenoid from Eupatorium adenophorum and α-glycosidase and AChE inhibitory activities of a gossypetin acylglucoside. Med. Chem. Res. 2023, 32, 2168–2175. [Google Scholar] [CrossRef]
  28. Liang, X.; Yang, X.Z.; Zhou, T.X.; Ma, Y.R.; Peng, Y.; Bahetejiang, Y.L.; Li, Y.Z.; Yuan, J.Q. Three new cadinane-type sesquiterpenes from Eupatorium adenophorum spreng. Nat. Prod. Res. 2023, 36, 4898–4905. [Google Scholar] [CrossRef]
  29. Luo, J.H.; Gu, W.J.; Zhang, E.B.; Huang, Y.; Zhang, Y.H.; Yang, Y.X.; Geng, H. Three new cadinene-type sesquiterpenoids from the aerial parts of Ageratina adenophora. Nat. Prod. Res. 2023. [Google Scholar] [CrossRef]
  30. Liang, X.; Yang, X.Z.; Wu, C.Q.; Li, Y.Z.; Yuan, J.Q. A new cadinane-type sesquiterpenoid from Eupatorium adenophorum Spreng. Acta Pharm. Sin. 2020, 55, 2955–2959. [Google Scholar]
  31. Luo, B.; Dong, L.M.; Xu, Q.L.; Zhang, X.; Zhang, Q.; Liu, W.B.; Tan, J.W. A new monoterpene and a new sesquiterpene from the roots of Ageratina adenophora. Phytochem. Lett. 2018, 24, 67–70. [Google Scholar] [CrossRef]
  32. Zhang, M.; Ouyang, J.K.; Xu, Q.L.; Liu, S.B.; Qian, T.; Dong, L.M.; Tan, J.W. Thymol derivatives with antibacterial and cytotoxic activity from the aerial parts of Ageratina adenophora. RSC Adv. 2021, 11, 5755–5761. [Google Scholar] [CrossRef] [PubMed]
  33. Dong, L.M.; Zhang, M.; Xu, Q.L.; Zhang, Q.; Luo, B.; Luo, Q.W.; Liu, W.B.; Tan, J.W. Two new thymol derivatives from the roots of Ageratina adenophora. Molecules 2017, 22, 592. [Google Scholar] [CrossRef]
  34. Zheng, G.W.; Luo, S.H.; Li, S.F.; Hua, J.; Li, W.Q.; Li, S.H. Specialized metabolites from Ageratina adenophora and their inhibitory activities against pathogenic fungi. Phytochemistry 2018, 148, 57–62. [Google Scholar] [CrossRef]
  35. Wang, C.F.; Yang, R.; Song, L.; Ning, B.M.; Ouyang, C.B.; Cao, A.C.; He, L. Two new highly-oxygenated flavonoid glycosides from Eupatorium adenophorum Spreng. Phytochem. Lett. 2016, 16, 245–248. [Google Scholar] [CrossRef]
  36. Wang, W.J.; Wang, L.; Liu, Z.; Jiang, R.W.; Liu, Z.W.; Li, M.M.; Zhang, Q.W.; Dai, Y.; Li, Y.L.; Zhang, X.Q.; et al. Antiviral benzofurans from Eupatorium chinense. Phytochemistry 2016, 122, 238–245. [Google Scholar] [CrossRef]
  37. Zhang, Q.Q.; Zhou, J.H.; Chen, Y.; Zhang, Z.M.; Liu, Z.X.; Guo, Z.Y.; Liu, C.X.; Zou, K. Seven new chemical constituents from the underground parts of Eupatorium chinense. Fitoterapia 2020, 146, 104674. [Google Scholar] [CrossRef]
  38. Xu, F.; Zhang, L.S.; Zhou, C.X.; Mo, J.X.; Shen, S.N.; Zhang, T.; Li, J.; Lin, L.G.; Wu, R.H.; Gan, L.S. Alkyl-benzofuran dimers from Eupatorium chinense with insulin-sensitizing and anti-inflammatory activities. Bioorg. Chem. 2021, 113, 105030. [Google Scholar] [CrossRef] [PubMed]
  39. Yu, N.; Wang, J.Q.; Yu, X.Q.; Deng, R.; Chen, Z.Y.; Liu, Z.X.; Liu, C.X.; He, H.B.; Zou, K. Chemical constituents of the roots of Eupatorium chinense and their anti-inflammatory activities. Phytochem. Lett. 2022, 48, 11–14. [Google Scholar] [CrossRef]
  40. Zhang, Q.Q.; Sun, Z.Y.; Feng, X.Y.; Chen, R.J.; Deng, W.; Tang, Y.L.; Guo, Z.Y.; Liu, C.X.; Chen, J.F.; Zou, K. Thymol derivatives from the roots of Eupatorium chinense and their cytotoxic activities. Phytochem. Lett. 2019, 29, 165–168. [Google Scholar] [CrossRef]
  41. Chen, Z.A.; Ke, C.Q.; Zhou, S.Z.; Feng, L.; Tang, C.P.; Ye, Y. Ten undescribed cadinane-type sesquiterpenoids from Eupatorium chinense. Fitoterapia 2022, 156, 105091. [Google Scholar] [CrossRef]
  42. Yu, X.Q.; Zhang, Q.Q.; Yan, W.H.; Wang, L.; Guo, Z.Y.; Yang, Q.Q.; Liu, C.X.; He, H.B.; Zou, K. Three new terpenoids from the Eupatorium chinense. Phytochem. Lett. 2017, 20, 224–227. [Google Scholar] [CrossRef]
  43. Yu, X.Q.; Zhang, J.J.; Tian, L.; Guo, Z.Y.; Liu, C.X.; Chen, J.F.; Ebrahim, W.; Liu, Z.; Proksch, P.; Zou, K. Germacrane-type sesquiterpenoids with antiproliferative activities from Eupatorium chinense. J. Nat. Prod. 2018, 81, 85–91. [Google Scholar] [CrossRef]
  44. Phan, M.G.; Vu, M.T.; Do, T.V.H.; Kawakami, S.; Otsuka, H. Thymol Derivatives from Eupatorium fortune. Rec. Nat. Prod. 2019, 13, 434–439. [Google Scholar] [CrossRef]
  45. Yu, Y.; Liu, Y.G.; Shi, R.R.; Zhang, D.M.; Li, C.J.; Shi, J. New thymol and isothymol derivatives from Eupatorium fortunei and their cytotoxic effects. Bioorg. Chem. 2020, 98, 103644. [Google Scholar] [CrossRef] [PubMed]
  46. Shi, J.; Dai, Y.P.; Yuan, M.; Sun, X.M.; Song, C.J.; Liu, Y.G. Two new thymol derivatives from Eupatorium fortunei. Nat. Prod. Res. 2024, 38, 386–392. [Google Scholar] [CrossRef]
  47. Nguyen-Ngoc, H.; Trang, B.T.T.; Thu, D.T.H.; Nguyen, H.T.; Hoang, V.D.; Tran, Q.D.; Nguyen, T.N.; Quang, D.N.; Pham, G.N.; Dang, Q.L. Characterization of thymol derivatives from Eupatorium fortunei Turcz. aerial parts. Nat. Prod. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
  48. Thanh, N.P.; Pham, H.D.; Dinh, K.D.; Thi, T.D.; Thi, P.Q.L.; Quang, D.N.; Dat, N.T. Anticyanobacterial phenolic constituents from the aerial parts of Eupatorium fortunei Turcz. Nat. Prod. Res. 2019, 33, 1345–1348. [Google Scholar]
  49. Miao, L.; Wang, S.T.; Wei, Q.H.; Ma, R.F.; Zhang, H. Bioactive monoterpenoids and acetophenones from the aerial parts of Eupatorium fortunei. Phytochemistry 2024, 219, 113984. [Google Scholar] [CrossRef] [PubMed]
  50. Chang, C.H.; Wu, S.M.; Hsu, K.C.; Huang, W.J.; Chen, J.J. Dibenzofuran, 4-chromanone, acetophenone, and dithiecine derivatives: Cytotoxic constituents from Eupatorium fortunei. Int. J. Mol. Sci. 2021, 22, 7448. [Google Scholar] [CrossRef]
  51. Shi, J.; Yuan, M.; Yu, Y.; Shi, S.B.; Liu, Y.G. Chiral resolution, absolute configuration of two pairs of unusual monoterpene enantiomers from Eupatorium fortunei. Tetraheron. Lett. 2020, 61, 151655. [Google Scholar] [CrossRef]
  52. Miao, L.; Wei, Q.H.; Wang, S.T.; Sun, P.; Zhang, H. Chemical constituents from Eupatorium fortunei and their anti-inflammatory evaluation by in silico and experimental approaches. Fitoterapia 2023, 171, 105700. [Google Scholar] [CrossRef] [PubMed]
  53. Hu, Y.M.; Saito, Y.; Matsuo, Y.; Gong, X.; Tanaka, T. New benzofuran oligomers from the roots of Eupatorium heterophyllum collected in China. Molecules 2022, 27, 8856. [Google Scholar] [CrossRef] [PubMed]
  54. Hu, Y.M.; Saito, Y.; Gong, X.; Matsuo, Y.; Tanaka, T. Dihydrobenzofurans and propynylthiophenes from the roots of Eupatorium heterophyllum. Nat. Prod. Commun. 2022, 17, 1–9. [Google Scholar] [CrossRef]
  55. Hu, Y.M.; Saito, Y.; Matsuo, Y.; Gong, X.; Tanaka, T. Two new dimeric benzofuran diastereomers from the roots of Eupatorium heterophyllum. Tetrahedron Lett. 2022, 102, 153924. [Google Scholar] [CrossRef]
  56. Hu, Y.M.; Saito, Y.; Okamoto, Y.; Matsuo, Y.; Gong, X.; Tanaka, T. Chemical compositions of Eupatorium heterophyllum leaf samples from Yunnan and Sichuan provinces of China-Isolation of 13 new sesquiterpene lactones. Molecules 2023, 28, 5107. [Google Scholar] [CrossRef] [PubMed]
  57. Wang, F.; Zhong, H.H.; Fang, S.Q.; Zheng, Y.F.; Li, C.Y.; Peng, G.P.; Shen, X.C. Potential anti-inflammatory sesquiterpene lactones from Eupatorium lindleyanum. Planta Med. 2015, 81, 1469–1475. [Google Scholar] [CrossRef] [PubMed]
  58. Yan, J.; Guo, W.X.; Huo, X.Y.; Hu, Y.J.; Zhou, L.Y.; Xie, X.F.; Pei, J.; Deng, Y.; Xiao, B.; Liu, D.; et al. Eupalinolide N, a previously undescribed sesquiterpene lactone with anti-inflammatory activity from Eupatorium lindleyanum. Rec. Nat. Prod. 2023, 17, 529–535. [Google Scholar]
  59. Yang, B.; Shen, J.W.; Zhou, D.H.; Zhao, Y.P.; Wang, W.Q.; Zhu, Y.; Zhao, H.J. Precise discovery of a STAT3 inhibitor from Eupatorium lindleyanum and evaluation of its activity of anti-triple negative breast cancer. Nat. Prod. Res. 2019, 33, 477–485. [Google Scholar] [CrossRef]
  60. Pereira Cabral, M.R.; Cecchetto, M.; Batista, J.M., Jr.; Batista, A.N.L.; Foglio, M.A.; Tasca Gois Ruiz, A.L.; Barrotto do Carmo, M.R.; Ferreira da Costa, W.; Baldoqui, D.C.; Sarragiotto, M.H. Cytotoxic sesquiterpene lactones from Campuloclinium macrocephalum (=Eupatorium macrocephalum). Phytochemistry 2020, 179, 112469. [Google Scholar] [CrossRef]
  61. Castillo, Q.A.; Triana, J.; Eiroa, J.L.; Calcul, L.; Rivera, E.; Wojtas, L.; Padron, J.M.; Boberieth, L.; Keramane, M.; Abel-Santos, E.; et al. ent-Labdane diterpenoids from the aerial parts of Eupatorium obtusissmum. J. Nat. Prod. 2016, 79, 907–913. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Classification and proportion of the reviewed natural products from Eupatorium.
Figure 1. Classification and proportion of the reviewed natural products from Eupatorium.
Biology 13 00288 g001
Figure 2. The chemical structures isolated from E. adenophorum.
Figure 2. The chemical structures isolated from E. adenophorum.
Biology 13 00288 g002aBiology 13 00288 g002b
Figure 3. The chemical structures isolated from E. chinense.
Figure 3. The chemical structures isolated from E. chinense.
Biology 13 00288 g003aBiology 13 00288 g003bBiology 13 00288 g003c
Figure 4. The chemical structures isolated from E. fortunei.
Figure 4. The chemical structures isolated from E. fortunei.
Biology 13 00288 g004aBiology 13 00288 g004bBiology 13 00288 g004cBiology 13 00288 g004d
Figure 5. The chemical structures isolated from E. heterophyllum.
Figure 5. The chemical structures isolated from E. heterophyllum.
Biology 13 00288 g005aBiology 13 00288 g005bBiology 13 00288 g005c
Figure 6. The chemical structures isolated from E. lindleyanum, E. macrocephalum, and E. obtusissmum.
Figure 6. The chemical structures isolated from E. lindleyanum, E. macrocephalum, and E. obtusissmum.
Biology 13 00288 g006
Table 1. Chemical constituents (130) from the plant E. adenophorum.
Table 1. Chemical constituents (130) from the plant E. adenophorum.
No.Plant SourceCompound NameStructure
Classification
Extraction MethodType of
Bioactivity Evaluation
Ref.
1E. adenophorumEupatorid ASesquiterpenoidPetroleum ether at room temperatureAnti-inflammatory, antibacterial, and cytotoxic[23]
2E. adenophorumEupatorester ASesquiterpenoidPetroleum ether at room temperatureAnti-inflammatory, antibacterial, and cytotoxic[23]
3E. adenophorumEupatorester BSesquiterpenoidPetroleum ether at room temperatureAnti-inflammatory, antibacterial, and cytotoxic[23]
4E. adenophorumEupatorester CSesquiterpenoidPetroleum ether at room temperatureAnti-inflammatory, antibacterial, and cytotoxic[23]
5E. adenophorumAdenophoroneSesquiterpenoidReflux with ethyl acetateNeuroprotective[24]
6E. adenophorumEupatorione ASesquiterpenoidPetroleum ether at room temperatureAnti-inflammatory[25]
7E. adenophorumDihyroeupatorid ASesquiterpenoidPetroleum ether at room temperatureAnti-inflammatory and cytotoxic[26]
8E. adenophorum(5S, 6S, 7R, 9R, 10S)-7-HydroxyageraphoroneSesquiterpenoidPetroleum ether at room temperatureAnti-inflammatory and cytotoxic[26]
9E. adenophorumAdenophoroneSesquiterpenoidMethanol at room temperatureα-glycosidase and AChE inhibitory[27]
10E. adenophorumEupatorinone ASesquiterpenoid95% ethanol at room temperatureCytotoxic and antidiabetic[28]
11E. adenophorumEupatorinone BSesquiterpenoid95% ethanol at room temperatureCytotoxic and antidiabetic[28]
12E. adenophorumEupatorinone CSesquiterpenoid95% ethanol at room temperatureCytotoxic and antidiabetic[28]
13E. adenophorumAgeratinone ASesquiterpenoidPetroleum ether at room temperatureCytotoxic[29]
14E. adenophorumAgeratinone BSesquiterpenoidPetroleum ether at room temperatureCytotoxic[29]
15E. adenophorumAgeratinone CSesquiterpenoidPetroleum ether at room temperatureCytotoxic[29]
16E. adenophorumEupatorinolSesquiterpenoid95% ethanol at room temperatureCytotoxic[30]
17E. adenophorum1,6-Dihydroxy-1-isopropyl-4,7-dimethyl-3,4- dihydronaphthalen-2(1H)-oneSesquiterpenoid95% ethanol at room temperatureAntibacterial[31]
18E. adenophorum2α-Methoxyl-3β-methyl-6-(acetyl-O-methyl)-2,3-dihydrobenzofuranThymol 95% ethanol at room temperatureAntibacterial[31]
19E. adenophorum7-Formyl-9-isobutyryloxy-8-hydroxythymolThymol 95% ethanol at room temperatureAntibacterial and cytotoxic[32]
20E. adenophorum7,9-Di-isobutyryloxy-8,10-dehydrothymolThymol 95% ethanol at room temperatureAntibacterial and cytotoxic[32]
21E. adenophorum2a-Methoxyl-3b-methyl-6-methylol-2,3-dihydrobenzofuranThymol 95% ethanol at room temperatureAntibacterial and cytotoxic[32]
22E. adenophorum7,9-Diisobutyryloxy-8-ethoxythymolThymol 95% ethanol at room temperatureAntibacterial and cytotoxic[33]
23E. adenophorum7-Acetoxy-8-methoxy-9-isobutyryloxythymolThymol 95% ethanol at room temperatureAntibacterial and cytotoxic[33]
24E. adenophorum7-Hydroxy-dehydrotremetoneBenzofuran Methanol at room temperatureAntipathogenic fungi[34]
25E. adenophorum7,10,11-Trihydroxy-dehydrotremetoneBenzofuran Methanol at room temperatureAntipathogenic fungi[34]
26E. adenophorum10-oxo-7-Hydroxy-nordehydrotremetoneBenzofuran Methanol at room temperatureAntipathogenic fungi[34]
27E. adenophorum5-β-Glucosyl-7-demethoxy-encecalinChromene Methanol at room temperatureAntipathogenic fungi[34]
28E. adenophorum8-Hydroxy-8-β-glucosyl-2-careneMonoterpenoid Methanol at room temperatureAntipathogenic fungi[34]
29E. adenophorumGossypetin-5-O-(6″-(E)-caffeoyl)-β-D-glucosideFlavonoidReflux with 70% ethanol Cytotoxic and antiradical[35]
30E. adenophorumHerbacetin-5-O-(6″-(E)-caffeoyl)-β-D-glucosideFlavonoidReflux with 70% ethanol Cytotoxic and antiradical[35]
Table 2. Chemical constituents (3187) from the plant E. chinense.
Table 2. Chemical constituents (3187) from the plant E. chinense.
No.Plant SourceCompound NameStructure ClassificationExtraction MethodType of Bioactivity EvaluationRef.
31E. chinense(+)-Dieupachinin ABenzofuran Reflux with 70% ethanol Antiviral[36]
32E. chinense(−)-Dieupachinin ABenzofuran Reflux with 70% ethanol Antiviral[36]
33E. chinense(+)-Dieupachinin BBenzofuran Reflux with 70% ethanolAntiviral[36]
34E. chinense(−)-Dieupachinin BBenzofuran Reflux with 70% ethanolAntiviral[36]
35E. chinense(+)-Dieupachinin CBenzofuran Reflux with 70% ethanolAntiviral[36]
36E. chinense(−)-Dieupachinin CBenzofuran Reflux with 70% ethanolAntiviral[36]
37E. chinense(+)-Dieupachinin DBenzofuran Reflux with 70% ethanolAntiviral[36]
38E. chinense(−)-Dieupachinin DBenzofuran Reflux with 70% ethanolAntiviral[36]
39E. chinense(+)-Dieupachinin EBenzofuran Reflux with 70% ethanolAntiviral[36]
40E. chinense(−)-Dieupachinin EBenzofuran Reflux with 70% ethanolAntiviral[36]
41E. chinenseDieupachinin FBenzofuran Reflux with 70% ethanolAntiviral[36]
42E. chinense(+)-Dieupachinin GBenzofuran 95% ethanol at room temperatureCytotoxic[37]
43E. chinense(−)-Dieupachinin GBenzofuran 95% ethanol at room temperatureCytotoxic[37]
44E. chinense(+)-Dieupachinin HBenzofuran 95% ethanol at room temperatureCytotoxic[37]
45E. chinense(−)-Dieupachinin HBenzofuran 95% ethanol at room temperatureCytotoxic[37]
46E. chinense(+)-Dieupachinin IBenzofuran 95% ethanol at room temperatureAnti-inflammatory[38]
47E. chinense(−)-Dieupachinin IBenzofuran 95% ethanol at room temperatureAnti-inflammatory[38]
48E. chinense(+)-Dieupachinin JBenzofuran 95% ethanol at room temperatureAnti-inflammatory[38]
49E. chinense(−)-Dieupachinin JBenzofuran 95% ethanol at room temperatureAnti-inflammatory[38]
50E. chinense(+)-Dieupachinin KBenzofuran 95% ethanol at room temperatureAnti-inflammatory[38]
51E. chinense(−)-Dieupachinin KBenzofuran 95% ethanol at room temperatureAnti-inflammatory[38]
52E. chinense(+)-Dieupachinin LBenzofuran 95% ethanol at room temperatureAnti-inflammatory[38]
53E. chinense(−)-Dieupachinin LBenzofuran 95% ethanol at room temperatureAnti-inflammatory[38]
54E. chinense(+)-Dieupachinin MBenzofuran 95% ethanol at room temperatureAnti-inflammatory[38]
55E. chinense(−)-Dieupachinin MBenzofuran 95% ethanol at room temperatureAnti-inflammatory[38]
56E. chinenseTrieupachinin ABenzofuran Reflux with 70% ethanolAntiviral[36]
57E. chinense8R-hydroxy-9-methyl-butyryloxythymolThymol 95% ethanol at room temperatureCytotoxic and anti-inflammatory[39]
58E. chinense10-isobutyryloxy-8, 9-didehydrothymyl-isobutyrateThymol 95% ethanol at room temperatureCytotoxic and anti-inflammatory[39]
59E. chinense(8R, 9S)-1, 8-dimethyl-8, 9-dihydro benzofuran-8, 9-diolThymol 95% ethanol at room temperatureCytotoxic and anti-inflammatory[39]
60E. chinense8R-hydroxy-9-isobutyryloxythymolThymol 95% ethanol at room temperatureCytotoxic[40]
61E. chinense(Z)-8(9)-ene-9-isobutyryloxythymolThymol 95% ethanol at room temperatureCytotoxic[40]
62E. chinenseEupachinsin ESesquiterpenoid95% ethanol at room temperatureCytotoxic[37]
63E. chinenseEupachinsin FSesquiterpenoid95% ethanol at room temperatureCytotoxic[37]
64E. chinense14-Deacetylguaiaglehnin ASesquiterpenoid95% ethanol at room temperatureCytotoxic[37]
65E. chinenseEupatorinolide ASesquiterpenoid95% ethanol at room temperatureNone[41]
66E. chinenseEupatorinolide BSesquiterpenoid95% ethanol at room temperatureNone[41]
67E. chinenseEupatorinolide CSesquiterpenoid95% ethanol at room temperatureNone[41]
68E. chinenseEupatorinolide DSesquiterpenoid95% ethanol at room temperatureNone[41]
69E. chinenseEupatorinolide ESesquiterpenoid95% ethanol at room temperatureNone[41]
70E. chinenseEupatorinolide FSesquiterpenoid95% ethanol at room temperatureNone[41]
71E. chinenseEupatorinic acid ASesquiterpenoid95% ethanol at room temperatureNone[41]
72E. chinenseEupatorinic acid BSesquiterpenoid95% ethanol at room temperatureNone[41]
73E. chinenseEupatorinic acid CSesquiterpenoid95% ethanol at room temperatureNone[41]
74E. chinenseEupatorinic acid DSesquiterpenoid95% ethanol at room temperatureNone[41]
75E. chinenseEupaguaiane ASesquiterpenoid95% ethanol at room temperatureCytotoxic[42]
76E. chinenseEupaguaiane BSesquiterpenoid95% ethanol at room temperatureCytotoxic[42]
77E. chinenseEupachinsin ASesquiterpenoid95% ethanol at room temperatureCytotoxic[43]
78E. chinenseEupachinisin A 2-acetateSesquiterpenoid95% ethanol at room temperatureCytotoxic[43]
79E. chinenseEupachinsin BSesquiterpenoid95% ethanol at room temperatureCytotoxic[43]
80E. chinense3-Epi-eupachinisin BSesquiterpenoid95% ethanol at room temperatureCytotoxic[43]
81E. chinense15-Hydroxyeupachinisin BSesquiterpenoid95% ethanol at room temperatureCytotoxic[43]
82E. chinenseEupachinsin CSesquiterpenoid95% ethanol at room temperatureCytotoxic[43]
83E. chinense4′-Hydroxyeupachinisin C 15-acetateSesquiterpenoid95% ethanol at room temperatureCytotoxic[43]
84E. chinenseEupachinsin DSesquiterpenoid95% ethanol at room temperatureCytotoxic[43]
85E. chinense15-Hydroxyeupachinisin DSesquiterpenoid95% ethanol at room temperatureCytotoxic[43]
86E. chinense3-Epi-eupachinisin DSesquiterpenoid95% ethanol at room temperatureCytotoxic[43]
87E. chinenseEupaditerpenoid ADiterpenoid95% ethanol at room temperatureCytotoxic[42]
Table 3. Chemical constituents (88140) from the plant E. fortunei.
Table 3. Chemical constituents (88140) from the plant E. fortunei.
No.Plant SourceCompound NameStructure ClassificationExtraction MethodType of Bioactivity EvaluationRef.
88E. fortunei9-O-Angeloxy-10-hydroxy-8-methoxythymolThymol Methanol at room temperatureNone[44]
89E. fortunei9-Angeloyloxy-8,9-dehydrothymolThymol Refluxed with 95% ethanolCytotoxic[45]
90E. fortunei9-(3-Methyl-2-butenoyloxy)-8,10-dehydrothymolThymol Refluxed with 95% ethanolCytotoxic[45]
91E. fortunei7-IsobutyryloxythymolThymol Refluxed with 95% ethanolCytotoxic[45]
92E. fortunei7-Isobutyryloxy-8,9-dehydrothymolThymol Refluxed with 95% ethanolCytotoxic[45]
93E. fortunei2-Acetyl-7-tigloyloxy-isothymolIsothymolRefluxed with 95% ethanolCytotoxic[45]
94E. fortunei8, 9-dehydrothymol-3-O-β-glucosideThymol 95% ethanol at room temperatureCytotoxic[46]
95E. fortunei3-methylbut-2-enoateThymol 95% ethanol at room temperatureCytotoxic[46]
96E. fortunei 2-(2-hydroxy-4-methylphenyl)-2-methyl-3-(5-methylbenzofuran-3-yl)propanoic acidThymol Methanol at room temperatureNone[47]
97E. fortunei9-acetoxyl-3-isobutyroylthymolThymol Methanol at room temperaturea-Glucosidase and acetylcholinesterase inhibitory[47]
98E. fortunei7,8,9-trihydroxythymolThymol 95% ethanol at room temperatureAntibacterial[48]
99E. fortunei8,10-didehydro-7,9-dihydroxythymolThymol 95% ethanol at room temperatureAntibacterial[48]
100E. fortunei(−)-Eupafortunin AThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
101E. fortunei(+)-Eupafortunin AThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
102E. fortunei(+)-Eupafortunin BThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
103E. fortunei(−)-eupafortunin BThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
104E. fortuneiEupafortunin CThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
105E. fortuneiEupafortunin DThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
106E. fortuneiEupafortunin EThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
107E. fortunei(+)-Eupafortunin FThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
108E. fortunei(−)-Eupafortunin FThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
109E. fortuneiEupafortunin GThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
110E. fortuneiEupafortunin HThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
111E. fortuneiEupafortunin IThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
112E. fortuneiEupafortunin JThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
113E. fortunei(+)-Eupafortunin KThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
114E. fortunei(−)-Eupafortunin KThymol 95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
115E. fortuneiEupafortunin LAcetophenone95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
116E. fortuneiEupafortunin MAcetophenone95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
117E. fortuneiEupafortunin NAcetophenone95% ethanol at room temperatureAntiradical and anti-inflammatory[49]
118E. fortuneiEupatofortunoneAcetophenoneMethanol at room temperatureCytotoxic[50]
119E. fortuneiEupatodibenzofuran ABenzofuran Methanol at room temperatureCytotoxic[50]
120E. fortuneiEupatodibenzofuran BBenzofuran Methanol at room temperatureCytotoxic[50]
121E. fortunei6-acetyl-8-methoxy-2,2-dimethylchroman-4-oneChromanoneMethanol at room temperatureCytotoxic[50]
122E. fortuneiEupatodithiecineDithiecineMethanol at room temperatureCytotoxic[50]
123E. fortunei(+)-Eupafortin AMonoterpenoid95% ethanol at room temperatureAnti-inflammatory[51]
124E. fortunei(−)-Eupafortin AMonoterpenoid95% ethanol at room temperatureAnti-inflammatory[51]
125E. fortunei(+)-Eupafortin BMonoterpenoid95% ethanol at room temperatureAnti-inflammatory[51]
126E. fortunei(−)-Eupafortin BMonoterpenoid95% ethanol at room temperatureAnti-inflammatory[51]
127E. fortunei Eupatorid AFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
128E. fortunei Eupatorid AFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
129E. fortunei Eupatorid BFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
130E. fortunei Eupatorid BFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
131E. fortunei Eupatorid CFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
132E. fortunei Eupatorid CFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
133E. fortunei Eupatorid DFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
134E. fortunei Eupatorid DFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
135E. fortunei Eupatorid EFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
136E. fortunei Eupatorid EFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
137E. fortunei Eupatorid FFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
138E. fortunei Eupatorid FFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
139E. fortunei Eupatorid GFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
140E. fortunei Eupatorid GFatty acid 95% ethanol at room temperatureAnti-inflammatory[52]
Table 4. Chemical constituents (141179) from the plant E. heterophyllum.
Table 4. Chemical constituents (141179) from the plant E. heterophyllum.
No.Plant SourceCompound NameStructure
Classification
Extraction MethodType of
Bioactivity
Evaluation
Ref.
141E. heterophyllumEupaheterin ABenzofuran Methanol at room temperatureNone[53]
142E. heterophyllumEupaheterin BBenzofuran Methanol at room temperatureNone[53]
143E. heterophyllumEupaheterin CBenzofuran Methanol at room temperatureNone[53]
144E. heterophyllumEupaheterin DBenzofuran Methanol at room temperatureNone[53]
145E. heterophyllumEupaheterin EBenzofuran Methanol at room temperatureNone[53]
146E. heterophyllumEupaheterin FBenzofuran Methanol at room temperatureNone[53]
147E. heterophyllumEupaheterin GBenzofuran Methanol at room temperatureNone[53]
148E. heterophyllumEupaheterin HBenzofuran Methanol at room temperatureNone[53]
149E. heterophyllumEupaheterin IBenzofuran Methanol at room temperatureNone[53]
150E. heterophyllumEupaheterin JBenzofuran Methanol at room temperatureNone[53]
151E. heterophyllum4-Acetyl-3β,5-dihydroxy-2α-(propen-2-yl)-2,3-dihydrobenzofuranBenzofuran Methanol at room temperatureNone[54]
152E. heterophyllum4-Acetyl-3β-angeloyloxy-5-hydroxy-2α-(propen-2-yl)- 2,3-dihydrobenzofuranBenzofuran Methanol at room temperatureNone[54]
153E. heterophyllum6-Acetyl-3β,5-dihydroxy-2α-(propen-2-yl)-2,3-dihydrobenzofuranBenzofuran Methanol at room temperatureNone[54]
154E. heterophyllum5-Acetyl-6-hydroxy-3α-methoxyl-2α-(propen-2-yl)-2,3- dihydrobenzofuranBenzofuran Methanol at room temperatureNone[54]
155E. heterophyllum5-Acetyl-3α-angeloyloxy-6-hydroxy-2α-(2-methyloxiran-2-yl)-2,3-dihydrobenzofuranBenzofuran Methanol at room temperatureNone[54]
156E. heterophyllum5-Acetyl-3α-angeloyloxy-6-hydroxy-2α-(2-methyloxiran-2-yl)-2,3-dihydrobenzofuranBenzofuran Methanol at room temperatureNone[54]
157E. heterophyllum3,9β-Epoxy-9α-isobutanoyloxymentha-13,5-trien-8α-olBenzofuran Methanol at room temperatureNone[54]
158E. heterophyllumDieupaheterin ABenzofuran Methanol at room temperatureNone[53]
159E. heterophyllumDieupaheterin BBenzofuran Methanol at room temperatureNone[53]
160E. heterophyllumDieupaheterin CBenzofuran Methanol at room temperatureNone[53]
161E. heterophyllumDieupaheterin DBenzofuran Methanol at room temperatureNone[53]
162E. heterophyllumDieupaheterin EBenzofuran Methanol at room temperatureNone[55]
163E. heterophyllumDieupaheterin FBenzofuran Methanol at room temperatureNone[55]
164E. heterophyllumTrieupaheterin ABenzofuran Methanol at room temperatureNone[53]
165E. heterophyllum2-(Hydroxyacetyl)-3-methoxy-5-(propyn-1-yl)thiopheneThiopheneMethanol at room temperatureNone[54]
166E. heterophyllum2-Acetyl-3-hydroxy-5-(propyn-1-yl)thiophene-3-O-(6-O-malonyl)-β-glucosideThiopheneMethanol at room temperatureNone[54]
167E. heterophyllum (3R,6R,7R,8R)-(4Z)-3α-acetoxy-8β-(3-furoyloxy)germacra-1(10),4,11(13)-trien-(12,6α)-olideSesquiterpenoidMethanol at room temperatureNone[56]
168E. heterophyllum (4Z)-3α-acetoxy-8β-(4′,5′ -dihydroxytigloyloxy)-1β-hydroperoxygermacra-4,10(14),11(13)-trien-(12,6α)-olideSesquiterpenoidMethanol at room temperatureNone[56]
169E. heterophyllum5′-deoxy-(4Z)-3α-acetoxy-8β-(4′,5′ -dihydroxytigloyloxy)-1β-hydroperoxygermacra-4,10(14),11(13)-trien-(12,6α)-olideSesquiterpenoidMethanol at room temperatureNone[56]
170E. heterophyllum(4Z)-3β-acetoxy-1β,10α-epoxy-8β-(4′,5-epoxy-4′-hydroxytigloyloxy)germacra-4,11(13)-dien-(12,6α)-olideSesquiterpenoidMethanol at room temperatureNone[56]
171E. heterophyllum8β-(2′-methylbutanoyloxy)germacra-1(10),4,11(13)-trien-(12,6α)-olideSesquiterpenoidMethanol at room temperatureNone[56]
172E. heterophyllum1β-hydroperoxy-2α-hydroxy-8β-(5′-hydroxyangeloyloxy)germacra-4,10(14),11(13)-trien-(12,6α)-olideSesquiterpenoidMethanol at room temperatureNone[56]
173E. heterophyllum8β-(4′-acetoxytigloyloxy)-1β-hydroperoxy-3β-hydroxygermacra-4,10(14),11(13)-trien-(12,6α)-olideSesquiterpenoidMethanol at room temperatureNone[56]
174E. heterophyllum1β-hydroxy-8β-(5′-hydroxyangeloyloxy)eudesma-4(15),11(13)-dien-(12,6α)-olideSesquiterpenoidMethanol at room temperatureNone[56]
175E. heterophyllum1β,2α-dihydroxy-8β-(5′-hydroxyangeloyloxy)eudesma-4(15),11(13)-dien- (12,6α)-olideSesquiterpenoidMethanol at room temperatureNone[56]
176E. heterophyllum SesquiterpenoidMethanol at room temperatureNone[56]
177E. heterophyllum8β-(4′,5′-dihydroxytigloyloxy)-3α-hydroperoxyguaia-4,10(14),11(13)-trien-(12,6α)-olideSesquiterpenoidMethanol at room temperatureNone[56]
178E. heterophyllum SesquiterpenoidMethanol at room temperatureNone[56]
179E. heterophyllum8β-(5′-hydroxyangeloyloxy)-1-oxo-2-norelema-3,11(13)-dien-(12,6α)-olidSesquiterpenoidMethanol at room temperatureNone[56]
Compounds 141150 and 158164 were not named in the original article, but were named by the author for ease of reading.
Table 5. Chemical constituents from the plants E. lindleyanum (180183), E. macrocephalum (184186), and E. obtusissmum (187192).
Table 5. Chemical constituents from the plants E. lindleyanum (180183), E. macrocephalum (184186), and E. obtusissmum (187192).
No.Plant SourceCompound NameStructure
Classification
Extraction MethodType of Bioactivity EvaluationRef.
180E. lindleyanumEupalinolide LSesquiterpenoidBoiling waterAnti-inflammatory[57]
181E. lindleyanumEupalinolide MSesquiterpenoidBoiling waterAnti-inflammatory[57]
182E. lindleyanumEupalinolide NSesquiterpenoidRefluxed with 90% ethanolAnti-inflammatory[58]
183E. lindleyanumEupalinolide OSesquiterpenoid95% ethanol at room temperatureCytotoxic[59]
184E. macrocephalumMacrocephalide ASesquiterpenoidMethanol at room temperatureCytotoxic[60]
185E. macrocephalumMacrocephalide BSesquiterpenoidMethanol at room temperatureCytotoxic[60]
186E. macrocephalumMacrocephalide CSesquiterpenoidMethanol at room temperatureCytotoxic[60]
187E. obtusissmumUasdlabdane ADiterpenoid95% ethanol at room temperatureCytotoxic[61]
188E. obtusissmumUasdlabdane BDiterpenoid95% ethanol at room temperatureCytotoxic[61]
189E. obtusissmumUasdlabdane CDiterpenoid95% ethanol at room temperatureCytotoxic[61]
190E. obtusissmumUasdlabdane DDiterpenoid95% ethanol at room temperatureCytotoxic[61]
191E. obtusissmumUasdlabdane EDiterpenoid95% ethanol at room temperatureCytotoxic[61]
192E. obtusissmumUasdlabdane FDiterpenoid95% ethanol at room temperatureCytotoxic[61]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Geng, H. Chemical Constituents and Their Bioactivities of Plants from the Genus Eupatorium (2015–Present). Biology 2024, 13, 288. https://doi.org/10.3390/biology13050288

AMA Style

Geng H. Chemical Constituents and Their Bioactivities of Plants from the Genus Eupatorium (2015–Present). Biology. 2024; 13(5):288. https://doi.org/10.3390/biology13050288

Chicago/Turabian Style

Geng, Hao. 2024. "Chemical Constituents and Their Bioactivities of Plants from the Genus Eupatorium (2015–Present)" Biology 13, no. 5: 288. https://doi.org/10.3390/biology13050288

APA Style

Geng, H. (2024). Chemical Constituents and Their Bioactivities of Plants from the Genus Eupatorium (2015–Present). Biology, 13(5), 288. https://doi.org/10.3390/biology13050288

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop