Predictors of Speech-in-Noise Understanding in a Population of Occupationally Noise-Exposed Individuals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Participants
2.3. Mobile Laboratory
2.4. Speech-in-Noise Audiometry
2.5. Consonant Identification Test
2.6. Words-in-Noise Recognition
2.7. French Sentence Matrix Test
2.8. Speech, Spatial and Quality of Hearing Questionnaire
2.9. Predictors of Speech-in-Noise Tests
2.9.1. Pure Tone Audiometry
2.9.2. Amplitude and Frequency Modulation Detection Thresholds
2.9.3. Distortion Products of Otoacoustic Emissions
2.9.4. Electrocochleography
2.9.5. Random Forest Analysis
2.9.6. Missing Values
3. Results
3.1. Consonant Identification
3.1.1. Predictor Importance
3.1.2. Correlations between Predictors and Consonant Identification Scores
3.2. Words-in-Noise Recognition
3.2.1. Predictor Importance
3.2.2. Correlations between Predictors and Words-in-Noise Recognition Scores
3.3. French Matrix Test
3.3.1. Predictor Importance
3.3.2. Correlations between Predictors and French Matrix Test Scores
3.4. Speech-in-Noise Pragmatic Scale from the Speech, Spatial and Quality of Hearing Questionnaire
3.4.1. Predictor Importance
3.4.2. Correlations between Predictors and Speech-in-Noise Pragmatic Scale
3.5. Relationship across the Speech-in-Noise Tests
3.5.1. Speech-in-Noise Tests
3.5.2. Speech-in-Noise Pragmatic Scale and Speech-in-Noise tests
4. Discussion
4.1. Comparisons between Speech-in-Noise Tests
4.2. Speech-in-Noise Test Predictors
4.2.1. Audiometric Thresholds
4.2.2. Amplitude and Frequency Modulation Detection
4.2.3. Age
4.2.4. Physiological Measurements: Distortion Products of Otoacoustic Emissions and Electrocochleography
4.3. Clinical Implications
4.4. Limits of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Amplitude Modulation and Frequency Modulation Detection Threshold
Appendix A.2. Electrocochleography
Appendix A.3. Distortion Products of Otoacoustic Emissions
Appendix B
Appendix B.1. Acoustical Analyses of the Three Speech Corpora
Appendix B.2. Upper Frequency Bound Comprising 99% of the Total Power of the Spectrum
Appendix B.3. Ratio of Acoustical Power in High vs. Low Frequencies
References
- Moore, B.C.J. An Introduction to the Psychology of Hearing, 5th ed.; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Le Prell, C.G.; Clavier, O.H. Effects of noise on speech recognition: Challenges for communication by service members. Hear. Res. 2017, 349, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Hope, A.J.; Luxon, L.M.; Bamiou, D.-E. Effects of chronic noise exposure on speech-in-noise perception in the presence of normal audiometry. J. Laryngol. Otol. 2013, 127, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Alvord, L.S. Cochlear Dysfunction in “Normal-Hearing” Patients with History of Noise Exposure. Ear Hear. 1983, 4, 247. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, S.G.; Liberman, M.C. Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. J. Neurosci. 2009, 29, 14077–14085. [Google Scholar] [CrossRef]
- Liberman, M.C.; Kujawa, S.G. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear. Res. 2017, 349, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Plack, C.J.; Barker, D.; Prendergast, G. Perceptual consequences of “hidden” hearing loss. Trends Hear. 2014, 18, 2331216514550621. [Google Scholar] [CrossRef] [PubMed]
- Schaette, R.; McAlpine, D. Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model. J. Neurosci. 2011, 31, 13452–13457. [Google Scholar] [CrossRef] [PubMed]
- Le Prell, C.G.; Brungart, D.S. Speech-in-Noise Tests and Supra-threshold Auditory Evoked Potentials as Metrics for Noise Damage and Clinical Trial Outcome Measures. Otol. Neurotol. 2016, 37, e295. [Google Scholar] [CrossRef] [PubMed]
- Plack, C.J.; Léger, A.; Prendergast, G.; Kluk, K.; Guest, H.; Munro, K.J. Toward a Diagnostic Test for Hidden Hearing Loss. Trends Hear. 2016, 20, 2331216516657466. [Google Scholar] [CrossRef]
- Dryden, A.; Allen, H.A.; Henshaw, H.; Heinrich, A. The Association Between Cognitive Performance and Speech-in-Noise Perception for Adult Listeners: A Systematic Literature Review and Meta-Analysis. Trends Hear. 2017, 21, 2331216517744675. [Google Scholar] [CrossRef]
- DiNino, M.; Holt, L.L.; Shinn-Cunningham, B.G. Cutting Through the Noise: Noise-Induced Cochlear Synaptopathy and Individual Differences in Speech Understanding Among Listeners With Normal Audiograms. Ear Hear. 2022, 43, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Strelcyk, O.; Dau, T. Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing. J. Acoust. Soc. Am. 2009, 125, 3328–3345. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, K.; Moore, B.C.J. The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise. J. Acoust. Soc. Am. 2011, 130, 334–349. [Google Scholar] [CrossRef] [PubMed]
- Ruggles, D.; Bharadwaj, H.; Shinn-Cunningham, B.G. Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proc. Natl. Acad. Sci. USA 2011, 108, 15516–15521. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, H.M.; Masud, S.; Mehraei, G.; Verhulst, S.; Shinn-Cunningham, B.G. Individual differences reveal correlates of hidden hearing deficits. J. Neurosci. 2015, 35, 2161–2172. [Google Scholar] [CrossRef] [PubMed]
- Füllgrabe, C.; Moore, B.C.J.; Stone, M.A. Age-group differences in speech identification despite matched audiometrically normal hearing: Contributions from auditory temporal processing and cognition. Front. Aging Neurosci. 2015, 6, 347. [Google Scholar] [CrossRef] [PubMed]
- Lough, M.; Plack, C.J. Extended high-frequency audiometry in research and clinical practice. J. Acoust. Soc. Am. 2022, 151, 1944. [Google Scholar] [CrossRef] [PubMed]
- Le Prell, C.G.; Spankovich, C.; Lobarinas, E.; Griffiths, S.K. Extended High Frequency Thresholds in College Students: Effects of Recreational Noise. J. Am. Acad. Audiol. 2013, 24, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, G.; Millman, R.E.; Guest, H.; Munro, K.J.; Kluk, K.; Dewey, R.S.; Hall, D.A.; Heinz, M.G.; Plack, C.J. Effects of noise exposure on young adults with normal audiograms II: Behavioral measures. Hear. Res. 2017, 356, 74–86. [Google Scholar] [CrossRef]
- Grant, K.J.; Mepani, A.M.; Wu, P.; Hancock, K.E.; de Gruttola, V.; Liberman, M.C.; Maison, S.F. Electrophysiological markers of cochlear function correlate with hearing-in-noise performance among audiometrically normal subjects. J. Neurophysiol. 2020, 124, 418–431. [Google Scholar] [CrossRef]
- Parker, M.A. Identifying three otopathologies in humans. Hear. Res. 2020, 398, 108079. [Google Scholar] [CrossRef]
- Bramhall, N.F.; McMillan, G.P.; Mashburn, A.N. Subclinical Auditory Dysfunction: Relationship Between Distortion Product Otoacoustic Emissions and the Audiogram. Am. J. Audiol. 2021, 30, 854–869. [Google Scholar] [CrossRef]
- Bharadwaj, H.M.; Mai, A.R.; Simpson, J.M.; Choi, I.; Heinz, M.G.; Shinn-Cunningham, B.G. Non-Invasive Assays of Cochlear Synaptopathy—Candidates and Considerations. Neuroscience 2019, 407, 53–66. [Google Scholar] [CrossRef]
- Bramhall, N.; Beach, E.F.; Epp, B.; Le Prell, C.G.; Lopez-Poveda, E.A.; Plack, C.J.; Schaette, R.; Verhulst, S.; Canlon, B. The search for noise-induced cochlear synaptopathy in humans: Mission impossible? Hear. Res. 2019, 377, 88–103. [Google Scholar] [CrossRef]
- Le Prell, C.G.; Hammill, T.L.; Murphy, W.J. Noise-induced hearing loss and its prevention: Integration of data from animal models and human clinical trials. J. Acoust. Soc. Am. 2019, 146, 4051–4074. [Google Scholar] [CrossRef]
- Prendergast, G.; Guest, H.; Munro, K.J.; Kluk, K.; Léger, A.; Hall, D.A.; Heinz, M.G.; Plack, C.J. Effects of noise exposure on young adults with normal audiograms I: Electrophysiology. Hear. Res. 2017, 344, 68–81. [Google Scholar] [CrossRef]
- Guest, H.; Dewey, R.S.; Plack, C.J.; Couth, S.; Prendergast, G.; Bakay, W.; Hall, D.A. The Noise Exposure Structured Interview (NESI): An Instrument for the Comprehensive Estimation of Lifetime Noise Exposure. Trends Hear. 2018, 22, 2331216518803213. [Google Scholar] [CrossRef]
- Liberman, M.C.; Epstein, M.J.; Cleveland, S.S.; Wang, H.; Maison, S.F. Toward a Differential Diagnosis of Hidden Hearing Loss in Humans. PLoS ONE 2016, 11, e0162726. [Google Scholar] [CrossRef]
- Bramhall, N.F.; Konrad-Martin, D.; McMillan, G.P.; Griest, S.E. Auditory Brainstem Response Altered in Humans With Noise Exposure Despite Normal Outer Hair Cell Function. Ear Hear. 2017, 38, e1–e12. [Google Scholar] [CrossRef]
- Kumar, U.A.; Ameenudin, S.; Sangamanatha, A.V. Temporal and speech processing skills in normal hearing individuals exposed to occupational noise. Noise Health 2012, 14, 100–105. [Google Scholar] [CrossRef]
- Yeend, I.; Beach, E.F.; Sharma, M.; Dillon, H. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise. Hear. Res. 2017, 353, 224–236. [Google Scholar] [CrossRef]
- Balan, J.R.; Rodrigo, H.; Saxena, U.; Mishra, S.K. Explainable machine learning reveals the relationship between hearing thresholds and speech-in-noise recognition in listeners with normal audiograms. J. Acoust. Soc. Am. 2023, 154, 2278–2288. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Choung, Y.-H.; Jang, J.H.; Ko, J. Predicting speech discrimination scores from pure-tone thresholds—A machine learning-based approach using data from 12,697 subjects. PLoS ONE 2021, 16, e0261433. [Google Scholar] [CrossRef]
- International Bureau for Audiophonology. Audiometric Classification of Hearing Impairments; International Bureau for Audiophonology recommendation 02/1; International Bureau for Audiophonology: Liege, Belgium, 1997. [Google Scholar]
- Gatehouse, S.; Noble, W. The Speech, Spatial and Qualities of Hearing Scale (SSQ). Int. J. Audiol. 2004, 43, 85–99. [Google Scholar] [CrossRef]
- Moulin, A.; Pauzie, A.; Richard, C. Validation of a French translation of the Speech, Spatial, and Qualities of Hearing Scale (SSQ) and comparison with other language versions. Int. J. Audiol. 2015, 54, 889–898. [Google Scholar] [CrossRef]
- Jansen, S.; Luts, H.; Wagener, K.C.; Kollmeier, B.; Del Rio, M.; Dauman, R.; James, C.; Fraysse, B.; Vormès, E.; Frachet, B.; et al. Comparison of three types of French speech-in-noise tests: A multi-center study. Int. J. Audiol. 2012, 51, 164–173. [Google Scholar] [CrossRef]
- HörTech gGmbH. Instruction Manual “French Matrix Test” FRAMATRIX for Oldenburg Measurement Applications from release 1.5.4.0 2014. Available online: https://download.hz-ol.de/OMA (accessed on 1 April 2024).
- Moulin, A.; Richard, C. Validation of a French-Language Version of the Spatial Hearing Questionnaire, Cluster Analysis and Comparison with the Speech, Spatial, and Qualities of Hearing Scale. Ear Hear. 2016, 37, 412–423. [Google Scholar] [CrossRef]
- Akeroyd, M.A.; Guy, F.H.; Harrison, D.L.; Suller, S.L. A factor analysis of the SSQ (Speech, Spatial, and Qualities of Hearing Scale). Int. J. Audiol. 2014, 53, 101–114. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M. Random Forests. In Genuer R, Poggi J-M, editors. Random Forests with R; Springer International Publishing: Cham, Switzerland, 2020; pp. 33–55. [Google Scholar] [CrossRef]
- Lenatti, M.; Moreno-Sánchez Pedro, A.; Polo, E.M.; Mollura, M.; Barbieri, R.; Paglialonga, A. Evaluation of Machine Learning Algorithms and Explainability Techniques to Detect Hearing Loss From a Speech-in-Noise Screening Test. Am. J. Audiol. 2022, 31, 961–979. [Google Scholar] [CrossRef]
- Moulin, A.; Bernard, A.; Tordella, L.; Vergne, J.; Gisbert, A.; Martin, C.; Richard, C. Variability of word discrimination scores in clinical practice and consequences on their sensitivity to hearing loss. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 2117–2124. [Google Scholar] [CrossRef]
- Moulin, A.; Richard, C. Lexical Influences on Spoken Spondaic Word Recognition in Hearing-Impaired Patients. Front. Neurosci. 2015, 9, 170662. [Google Scholar] [CrossRef]
- Stenbäck, V.; Marsja, E.; Ellis, R.; Rönnberg, J. Relationships between behavioural and self-report measures in speech recognition in noise. Int. J. Audiol. 2023, 62, 101–109. [Google Scholar] [CrossRef]
- Hällgren, M.; Larsby, B.; Arlinger, S. A Swedish version of the Hearing In Noise Test (HINT) for measurement of speech recognition: Una versión sueca de la Prueba de Audición en Ruido (HINT) para evaluar el reconocimiento del lenguaje. Int. J. Audiol. 2006, 45, 227–237. [Google Scholar] [CrossRef]
- Hagerman, B. Sentences for Testing Speech Intelligibility in Noise. Scand. Audiol. 1982, 11, 79–87. [Google Scholar] [CrossRef]
- Yeend, I.; Beach, E.F.; Sharma, M. Working Memory and Extended High-Frequency Hearing in Adults: Diagnostic Predictors of Speech-in-Noise Perception. Ear Hear. 2019, 40, 458–467. [Google Scholar] [CrossRef]
- Motlagh Zadeh, L.; Silbert, N.H.; Sternasty, K.; Swanepoel, D.W.; Hunter, L.L.; Moore, D.R. Extended high-frequency hearing enhances speech perception in noise. Proc. Natl. Acad. Sci. USA 2019, 116, 23753–23759. [Google Scholar] [CrossRef]
- Monson, B.B.; Hunter, E.J.; Lotto, A.J.; Story, B.H. The perceptual significance of high-frequency energy in the human voice. Front. Psychol. 2014, 5, 91153. [Google Scholar] [CrossRef]
- Fettiplace, R.; Nam, J.-H. Tonotopy in calcium homeostasis and vulnerability of cochlear hair cells. Hear. Res. 2019, 376, 11–21. [Google Scholar] [CrossRef]
- Furman, A.C.; Kujawa, S.G.; Liberman, M.C. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J. Neurophysiol. 2013, 110, 577–586. [Google Scholar] [CrossRef]
- Gülseven Güven, S.; Binay, Ç. The Importance of Extended High Frequencies in Hearing Evaluation of Pediatric Patients with Type 1 Diabetes. J. Clin. Res. Pediatr. Endocrinol. 2023, 15, 127–137. [Google Scholar] [CrossRef]
- Cunningham, D.R.; Vise, L.K.; Jones, L.A. Influence of Cigarette Smoking on Extra-High-Frequency Auditory Thresholds. Ear Hear. 1983, 4, 162. [Google Scholar] [CrossRef]
- Bharadwaj, H.M.; Verhulst, S.; Shaheen, L.; Liberman, M.C.; Shinn-Cunningham, B.G. Cochlear neuropathy and the coding of supra-threshold sound. Front. Syst. Neurosci. 2014, 8, 26. [Google Scholar] [CrossRef]
- Parthasarathy, A.; Kujawa, S.G. Synaptopathy in the aging cochlea: Characterizing early-neural deficits in auditory temporal envelope processing. J. Neurosci. 2018, 38, 7108–7119. [Google Scholar] [CrossRef]
- Lorenzi, C.; Gilbert, G.; Carn, H.; Garnier, S.; Moore, B.C.J. Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc. Natl. Acad. Sci. USA 2006, 103, 18866–18869. [Google Scholar] [CrossRef]
- Grose, J.H.; Mamo, S.K. Processing of temporal fine structure as a function of age. Ear Hear. 2010, 31, 755–760. [Google Scholar] [CrossRef]
- Wu, P.Z.; Liberman, L.D.; Bennett, K.; de Gruttola, V.; O’Malley, J.T.; Liberman, M.C. Primary Neural Degeneration in the Human Cochlea: Evidence for Hidden Hearing Loss in the Aging Ear. Neuroscience 2019, 407, 8–20. [Google Scholar] [CrossRef]
- Paraouty, N.; Ewert, S.D.; Wallaert, N.; Lorenzi, C. Interactions between amplitude modulation and frequency modulation processing: Effects of age and hearing loss. J. Acoust. Soc. Am. 2016, 140, 121. [Google Scholar] [CrossRef]
- Arlinger, S.; Lunner, T.; Lyxell, B.; Pichora-Fuller, M.K. The emergence of cognitive hearing science. Scand. J. Psychol. 2009, 50, 371–384. [Google Scholar] [CrossRef]
- Rönnberg, J.; Signoret, C.; Andin, J.; Holmer, E. The cognitive hearing science perspective on perceiving, understanding, and remembering language: The ELU model. Front. Psychol. 2022, 13, 967260. [Google Scholar] [CrossRef]
- Klaassen, E.B.; Evers, E.A.T.; de Groot, R.H.M.; Backes, W.H.; Veltman, D.J.; Jolles, J. Working memory in middle-aged males: Age-related brain activation changes and cognitive fatigue effects. Biol. Psychol. 2014, 96, 134–143. [Google Scholar] [CrossRef]
- Füllgrabe, C.; Rosen, S. On The (Un)importance of Working Memory in Speech-in-Noise Processing for Listeners with Normal Hearing Thresholds. Front. Psychol. 2016, 7, 1268. [Google Scholar] [CrossRef] [PubMed]
- Helfer, K.S.; Merchant, G.R.; Wasiuk, P.A. Age-Related Changes in Objective and Subjective Speech Perception in Complex Listening Environments. J. Speech Lang. Hear. Res. 2017, 60, 3009–3018. [Google Scholar] [CrossRef] [PubMed]
- Bramhall, N.; Ong, B.; Ko, J.; Parker, M. Speech Perception Ability in Noise is Correlated with Auditory Brainstem Response Wave I Amplitude. J. Am. Acad. Audiol. 2015, 26, 509–517. [Google Scholar] [CrossRef]
- Johannesen, P.T.; Buzo, B.C.; Lopez-Poveda, E.A. Evidence for age-related cochlear synaptopathy in humans unconnected to speech-in-noise intelligibility deficits. Hear. Res. 2019, 374, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Giraudet, F.; Labanca, L.; Souchal, M.; Avan, P. Decreased Reemerging Auditory Brainstem Responses Under Ipsilateral Broadband Masking as a Marker of Noise-Induced Cochlear Synaptopathy. Ear Hear. 2021, 42, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Gorga, M.P.; Neely, S.T.; Ohlrich, B.; Hoover, B.; Redner, J.; Peters, J. From laboratory to clinic: A large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss. Ear Hear. 1997, 18, 440–455. [Google Scholar] [CrossRef]
- Moore, D.; Hunter, L.; Munro, K. Benefits of Extended High-Frequency Audiometry for Everyone. Hear. J. 2017, 70, 50. [Google Scholar] [CrossRef]
Test | Conditions | N | Abbreviation |
---|---|---|---|
Consonant identification | 61 | ||
Word in noise recognition | 56 | ||
French matrix test | 69 | FrMatrix | |
Age | 70 | Age | |
History of hearing pathology | 70 | History_of_Hearing_Pathology | |
Years of motorcycling | 70 | Years_of_Motocycling | |
AMDT | 60 dB SL 4000 Hz | 42 | AMDT_60 dB_4000 Hz |
60 dB SL 500 Hz | 55 | AMDT_60 dB_500 Hz | |
10 dB SL 4000 Hz | 55 | AMDT_10 dB_4000 Hz | |
10 dB SL 500 Hz | 55 | AMDT_10 dB_500 Hz | |
FMDT | 60 dB SL 4000 Hz | 22 | FMDT_60 dB_4000 Hz |
60 dB SL 500 Hz | 61 | FMDT_60 dB_500 Hz | |
10 dB SL 4000 Hz | 23 | FMDT_10 dB_4000 Hz | |
10 dB SL 500 Hz | 45 | FMDT_10 dB_500 Hz | |
60 dB SL 4000 Hz Ability | 60 | FMDT_60 dB_4000 Hz_Ab | |
10 dB SL 4000 Hz Ability | 61 | FMDT_10 dB_4000 Hz_Ab | |
10 dB SL 500 Hz Ability | 61 | FMDT_10 dB_500 Hz_Ab | |
DPOAE | Left Ear 1000 Hz | 59 | LE_DPOAE_1000 Hz |
Left Ear 1500 Hz | 62 | LE_DPOAE_1500 Hz | |
Left Ear 2000 Hz | 62 | LE_DPOAE_2000 Hz | |
Left Ear 3000 Hz | 62 | LE_DPOAE_3000 Hz | |
Left Ear 4000 Hz | 62 | LE_DPOAE_4000 Hz | |
Left Ear 5000 Hz | 58 | LE_DPOAE_5000 Hz | |
Right Ear 1000 Hz | 65 | RE_DPOAE_1000 Hz | |
Right Ear 1500 Hz | 63 | RE_DPOAE_1500 Hz | |
Right Ear 2000 Hz | 65 | RE_DPOAE_2000 Hz | |
Right Ear 3000 Hz | 65 | RE_DPOAE_3000 Hz | |
Right Ear 4000 Hz | 65 | RE_DPOAE_4000 Hz | |
Right Ear 5000 Hz | 61 | RE_DPOAE_5000 Hz | |
Tonal audiometry | Left Ear 125 Hz | 70 | LE_125 Hz |
Left Ear 250 Hz | 70 | LE_250 Hz | |
Left Ear 500 Hz | 70 | LE_500 Hz | |
Left Ear 1000 Hz | 70 | LE_1000 Hz | |
Left Ear 2000 Hz | 70 | LE_2000 Hz | |
Left Ear 4000 Hz | 70 | LE_4000 Hz | |
Left Ear 8000 Hz | 70 | LE_8000 Hz | |
Left Ear EHF | 70 | LE_EHF | |
Left Ear PTA | 70 | LE_PTA | |
Right Ear 125 Hz | 70 | RE_125 Hz | |
Right Ear 250 Hz | 70 | RE_250 Hz | |
Right Ear 500 Hz | 70 | RE_500 Hz | |
Right Ear 1000 Hz | 70 | RE_1000 Hz | |
Right Ear 2000 Hz | 70 | RE_2000 Hz | |
Right Ear 4000 Hz | 70 | RE_4000 Hz | |
Right Ear 8000 Hz | 70 | RE_8000 Hz | |
Right Ear EHF | 70 | RE_EHF | |
Right Ear PTA | 70 | RE_PTA | |
Best Ear PTA | 70 | Best_Ear_PTA | |
Electrocochleography | Left Ear Wave I 80 dB HL | 37 | LE_WaveI_80 dB |
Left Ear Wave I 90 dB HL | 38 | LE_WaveI_90 dB | |
Right Ear Wave I 80 dB HL | 49 | RE_WaveI_80 dB | |
Right Ear Wave I 90 dB HL | 52 | LE_WaveI_90 dB | |
Left Ear Wave I Slope | 34 | LE_Slope | |
Right Ear Wave I Slope | 46 | RE_Slope |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andéol, G.; Paraouty, N.; Giraudet, F.; Wallaert, N.; Isnard, V.; Moulin, A.; Suied, C. Predictors of Speech-in-Noise Understanding in a Population of Occupationally Noise-Exposed Individuals. Biology 2024, 13, 416. https://doi.org/10.3390/biology13060416
Andéol G, Paraouty N, Giraudet F, Wallaert N, Isnard V, Moulin A, Suied C. Predictors of Speech-in-Noise Understanding in a Population of Occupationally Noise-Exposed Individuals. Biology. 2024; 13(6):416. https://doi.org/10.3390/biology13060416
Chicago/Turabian StyleAndéol, Guillaume, Nihaad Paraouty, Fabrice Giraudet, Nicolas Wallaert, Vincent Isnard, Annie Moulin, and Clara Suied. 2024. "Predictors of Speech-in-Noise Understanding in a Population of Occupationally Noise-Exposed Individuals" Biology 13, no. 6: 416. https://doi.org/10.3390/biology13060416
APA StyleAndéol, G., Paraouty, N., Giraudet, F., Wallaert, N., Isnard, V., Moulin, A., & Suied, C. (2024). Predictors of Speech-in-Noise Understanding in a Population of Occupationally Noise-Exposed Individuals. Biology, 13(6), 416. https://doi.org/10.3390/biology13060416