Noises on—How the Brain Deals with Acoustic Noise
Abstract
:Simple Summary
Abstract
1. The Challenge of Noise
‘Nothing essential happens in the absence of noise.’(Jacques Attali, French economist and philosopher)
2. Noise as a Source of Interference—Energetic and Informational Masking
Informational Masking
3. Binaural Hearing—The Brain’s Denoising Algorithm
Neural Mechanisms for Binaural Unmasking
4. Listening Spaces as a Source of Noise—Dealing with Reverberation
The Precedence Effect—Direct Is Correct
5. Filling in the Gaps—Noise as a Masker Even When It Is Not
6. Responding Reflexively to Noise—The Lombard Effect
7. Stochastic Noise and the Brain’s Internal State
8. From Foreground to Background—And Back
Dichotic Pitches—Creating Sounds Objects from Noise
9. Brain Circuits and Listening Loops
Cortico-Subcortical Loops
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haven Wiley, R. Noise Matters: The Evolution of Communication; Harvard University Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Freyman, R.L.; Helfer, K.S.; McCall, D.D.; Clifton, R.K. The Role of Perceived Spatial Separation in the Unmasking of Speech. J. Acoust. Soc. Am. 1999, 106, 3578–3588. [Google Scholar] [CrossRef] [PubMed]
- Freyman, R.L.; Helfer, K.S.; Balakrishnan, U. Spatial and Spectral Factors in Release from Informational Masking in Speech Recognition. Acta Acust. United Acust. 2005, 91, 537–545. [Google Scholar]
- Moore, B.C.J. The Importance of Temporal Fine Structure for the Intelligibility of Speech in Complex Backgrounds. Proc. ISAAR 2011, 3, 21–32. [Google Scholar]
- Vélez, A.; Bee, M.A. Dip Listening and the Cocktail Party Problem in Grey Treefrogs: Signal Recognition in Temporally Fluctuating Noise. Anim. Behav. 2011, 82, 1319–1327. [Google Scholar] [CrossRef]
- Apoux, F.; Healy, E.W. On the Number of Auditory Filter Outputs Needed to Understand Speech: Further Evidence for Auditory Channel Independence. Hear. Res. 2009, 255, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Pérez, H.; Mikiel-Hunter, J.; McAlpine, D.; Dhar, S.; Boothalingam, S.; Monaghan, J.J.M.; McMahon, C.M. Understanding Degraded Speech Leads to Perceptual Gating of a Brainstem Reflex in Human Listeners. PLoS Biol. 2021, 19, e3001439. [Google Scholar] [CrossRef]
- Farrell, D. Auditory Informational Masking—Gerald Kidd Jr. And Christopher Conroy. Acoustics Today. Available online: https://acousticstoday.org/auditory-informational-masking-gerald-kidd-jr-and-christopher-conroy/ (accessed on 21 June 2024).
- Kidd, G., Jr.; Best, V.; Mason, C.R. Listening to Every Other Word: Examining the Strength of Linkage Variables in Forming Streams of Speech. J. Acoust. Soc. Am. 2008, 124, 3793–3802. [Google Scholar] [CrossRef]
- Pressnitzer, D.; Winter, I.M.; Patterson, R.D. The Responses of Single Units in the Ventral Cochlear Nucleus of the Guinea Pig to Damped and Ramped Sinusoids. Hear. Res. 2000, 149, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Cherry, E.C. Some Experiments on the Recognition of Speech, with One and with Two Ears. J. Acoust. Soc. Am. 1953, 25, 975–979. [Google Scholar] [CrossRef]
- Colburn, H.S.; Durlach, N.I. Models of Binaural Interaction. Handb. Percept. 1978, 4, 467–518. [Google Scholar]
- Licklider, J. The Influence of Interaural Phase Relations upon the Masking of Speech by White Noise. J. Acoust. Soc. Am. 1948, 20, 150–159. [Google Scholar] [CrossRef]
- Hirsh, I. The Influence of Interaural Phase on Interaural Summation and Inhibition. J. Acoust. Soc. Am. 1948, 20, 536–544. [Google Scholar] [CrossRef]
- Moore, B.C.J. An Introduction to the Psychology of Hearing, 5th ed.; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Palmer, A.R.; Jiang, D.; McAlpine, D. Neural Responses in the Inferior Colliculus to Binaural Masking Level Differences Created by Inverting the Noise in One Ear. J. Neurophysiol. 2000, 84, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.R.; Jiang, D.; McAlpine, D. Desynchronizing Responses to Correlated Noise: A Mechanism for Binaural Masking Level Differences at the Inferior Colliculus. J. Neurophysiol. 1999, 81, 722–734. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; McAlpine, D.; Palmer, A.R. Responses of Neurons in the Inferior Colliculus to Binaural Masking Level Difference Stimuli Measured by Rate-versus-Level Functions. J. Neurophysiol. 1997, 77, 3085–3106. [Google Scholar] [CrossRef] [PubMed]
- Veith, J.; Chaigne, T.; Svanidze, A.; Dressler, L.E.; Hoffmann, M.; Gerhardt, B.; Judkewitz, B. The Mechanism for Directional Hearing in Fish. Nature 2024, 631, 118–124. [Google Scholar] [CrossRef]
- Dietz, M.; Marquardt, T.; Stange, A.; Pecka, M.; Grothe, B.; McAlpine, D. Emphasis of Spatial Cues in the Temporal Fine Structure during the Rising Segments of Amplitude-Modulated Sounds II: Single-Neuron Recordings. J. Neurophysiol. 2014, 111, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Dietz, M.; Marquardt, T.; Salminen, N.H.; McAlpine, D. Emphasis of Spatial Cues in the Temporal Fine Structure during the Rising Segments of Amplitude-Modulated Sounds. Proc. Natl. Acad. Sci. USA 2013, 110, 15151–15156. [Google Scholar] [CrossRef] [PubMed]
- Brughera, A.; Mikiel-Hunter, J.; Dietz, M.; McAlpine, D. Auditory Brainstem Models: Adapting Cochlear Nuclei Improve Spatial Encoding by the Medial Superior Olive in Reverberation. J. Assoc. Res. Otolaryngol. 2021, 22, 289–318. [Google Scholar] [CrossRef]
- Traer, J.; McDermott, J.H. Statistics of Natural Reverberation Enable Perceptual Separation of Sound and Space. Proc. Natl. Acad. Sci. USA 2016, 113, E7856–E7865. [Google Scholar] [CrossRef]
- Blesser, B.; Salter, L.-R. Spaces Speak, Are You Listening: Experiencing Aural Architecture; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Srinivasan, N.K.; Zahorik, P. Prior Listening Exposure to a Reverberant Room Improves Open-Set Intelligibility of High-Variability Sentences. J. Acoust. Soc. Am. 2013, 133, EL33–EL39. [Google Scholar] [CrossRef] [PubMed]
- Brandewie, E.J.; Zahorik, P. Speech Intelligibility in Rooms: Disrupting the Effect of Prior Listening Exposure. J. Acoust. Soc. Am. 2018, 143, 3068. [Google Scholar] [CrossRef] [PubMed]
- Hempton, G.; Grossmann, J. One Square Inch of Silence: One Man’s Quest to Preserve Quiet; Free Press: New York, NY, USA, 2010. [Google Scholar]
- Haas, H. The Influence of a Single Echo on the Audibility of Speech. J. Audio Eng. Soc. 1972, 20, 146–159. [Google Scholar]
- Wallach, H.; Newman, E.B.; Rosenzweig, M.R. The Precedence Effect in Sound Localization. Am. J. Psychol. 1949, 62, 315–336. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.C. Physiological Correlates of the Precedence Effect and Summing Localization in the Inferior Colliculus of the Cat. J. Neurosci. 1994, 14, 5170–5186. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, D.C.; Kuwada, S.; Batra, R.; Trahiotis, C. Neural Responses to Simple Simulated Echoes in the Auditory Brain Stem of the Unanesthetized Rabbit. J. Neurophysiol. 1995, 74, 2469–2486. [Google Scholar] [CrossRef]
- Litovsky, R.Y.; Delgutte, B. Neural Correlates of the Precedence Effect in the Inferior Colliculus: Effect of Localization Cues. J. Neurophysiol. 2002, 87, 976–994. [Google Scholar] [CrossRef]
- Litovsky, R.Y.; Yin, T.C. Physiological Studies of the Precedence Effect in the Inferior Colliculus of the Cat. I. Correlates of Psychophysics. J. Neurophysiol. 1998, 80, 1285–1301. [Google Scholar] [CrossRef]
- Tollin, D.J.; Populin, L.C.; Yin, T.C.T. Neural Correlates of the Precedence Effect in the Inferior Colliculus of Behaving Cats. J. Neurophysiol. 2004, 92, 3286–3297. [Google Scholar] [CrossRef] [PubMed]
- Zurek, P.M. The Precedence Effect and Its Possible Role in the Avoidance of Interaural Ambiguities. J. Acoust. Soc. Am. 1980, 67, 953–964. [Google Scholar] [CrossRef]
- Tollin, D.J.; Henning, G.B. Some Aspects of the Lateralization of Echoed Sound in Man. I. The Classical Interaural-Delay Based Precedence Effect. J. Acoust. Soc. Am. 1998, 104, 3030–3038. [Google Scholar] [CrossRef] [PubMed]
- Hartung, K.; Trahiotis, C. Peripheral Auditory Processing and Investigations of the “Precedence Effect” Which Utilize Successive Transient Stimuli. J. Acoust. Soc. Am. 2001, 110 Pt 1, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.A.; Koehnke, J.; Besing, J. Effects of Noise and Reverberation on the Precedence Effect in Listeners with Normal Hearing and Impaired Hearing. Am. J. Audiol. 2003, 12, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.A.; Lister, J.J. Effects of Age and Hearing Loss on Gap Detection and the Precedence Effect: Broadband Stimuli. J. Speech Lang. Hear. Res. 2004, 47, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Bregman, A.S. Auditory Scene Analysis. In Encyclopedia of Neuroscience; Elsevier: Amsterdam, The Netherlands, 2009; pp. 729–736. [Google Scholar]
- Riecke, L.; Van Orstal, A.J.; Formisano, E. The Auditory Continuity Illusion: A Parametric Investigation and Filter Model. Percept. Psychophys. 2008, 70, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kluender, K.R.; Jenison, R.L. Effects of Glide Slope, Noise Intensity, and Noise Duration on the Extrapolation of FM Glides through Noise. Percept. Psychophys. 1992, 51, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Kashino, M. Effect of Flanking Sounds on the Auditory Continuity Illusion. PLoS ONE 2012, 7, e51969. [Google Scholar] [CrossRef] [PubMed]
- Bregman, A.S. Auditory Scene Analysis: The Perceptual Organization of Sound; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Petkov, C.I.; O’Connor, K.N.; Sutter, M.L. Illusory Sound Perception in Macaque Monkeys. J. Neurosci. 2003, 23, 9155–9161. [Google Scholar] [CrossRef]
- Petkov, C.I.; O’Connor, K.N.; Sutter, M.L. Encoding of Illusory Continuity in Primary Auditory Cortex. Neuron 2007, 54, 153–165. [Google Scholar] [CrossRef]
- Miller, C.T.; Dibble, E.; Hauser, M.D. Amodal Completion of Acoustic Signals by a Nonhuman Primate. Nat. Neurosci. 2001, 4, 783–784. [Google Scholar] [CrossRef] [PubMed]
- Sugita, Y. Neuronal Correlates of Auditory Induction in the Cat Cortex. Neuroreport 1997, 8, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Parks, N.; Goldwyn, J.H. Dynamics of the Auditory Continuity Illusion. Front. Comput. Neurosci. 2021, 15, 676637. [Google Scholar] [CrossRef]
- DeWitt, L.A.; Samuel, A.G. The Role of Knowledge-Based Expectations in Music Perception: Evidence from Musical Restoration. J. Exp. Psychol. Gen. 1990, 119, 123–144. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, A.; Carlyon, R.P.; Davis, M.H.; Johnsrude, I.S. Illusory Vowels Resulting from Perceptual Continuity: A Functional Magnetic Resonance Imaging Study. J. Cogn. Neurosci. 2008, 20, 1737–1752. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.M.; Wrightson, J.M.; Puretz, J. Illusory Continuity of Tonal and Infratonal Periodic Sounds. J. Acoust. Soc. Am. 1988, 84, 1338–1342. [Google Scholar] [CrossRef]
- Junqua, J.C. The Lombard Reflex and Its Role on Human Listeners and Automatic Speech Recognizers. J. Acoust. Soc. Am. 1993, 93, 510–524. [Google Scholar] [CrossRef] [PubMed]
- Derryberry, E.P.; Phillips, J.N.; Derryberry, G.E.; Blum, M.J.; Luther, D. Singing in a Silent Spring: Birds Respond to a Half-Century Soundscape Reversion during the COVID-19 Shutdown. Science 2020, 370, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Hage, S.R.; Moss, C.F. The Lombard Effect: From Acoustics to Neural Mechanisms. Trends Neurosci. 2018, 41, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Heinks-Maldonado, T.H.; Houde, J.F. Compensatory Responses to Brief Perturbations of Speech Amplitude. Acoust. Res. Lett. Online 2005, 6, 131–137. [Google Scholar] [CrossRef]
- Bauer, J.J.; Mittal, J.; Larson, C.R.; Hain, T.C. Vocal Responses to Unanticipated Perturbations in Voice Loudness Feedback: An Automatic Mechanism for Stabilizing Voice Amplitude. J. Acoust. Soc. Am. 2006, 119, 2363–2371. [Google Scholar] [CrossRef]
- Osmanski, M.S.; Dooling, R.J. The Effect of Altered Auditory Feedback on Control of Vocal Production in Budgerigars (Melopsittacus Undulatus). J. Acoust. Soc. Am. 2009, 126, 911–919. [Google Scholar] [CrossRef]
- Luo, J.; Kothari, N.B.; Moss, C.F. Sensorimotor Integration on a Rapid Time Scale. Proc. Natl. Acad. Sci. USA 2017, 114, 6605–6610. [Google Scholar] [CrossRef]
- Pick, H.L.; Siegel, G.M.; Fox, P.W.; Garber, S.R.; Kearney, J.K. Inhibiting the Lombard Effect. J. Acoust. Soc. Am. 1989, 85, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Brumm, H.; Todt, D. Noise-Dependent Song Amplitude Regulation in a Territorial Songbird. Anim. Behav. 2002, 63, 891–897. [Google Scholar] [CrossRef]
- Sinnott, J.M.; Stebbins, W.C.; Moody, D.B. Regulation of Voice Amplitude by the Monkey. J. Acoust. Soc. Am. 1975, 58, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Hage, S.R.; Jiang, T.; Berquist, S.W.; Feng, J.; Metzner, W. Ambient Noise Induces Independent Shifts in Call Frequency and Amplitude within the Lombard Effect in Echolocating Bats. Proc. Natl. Acad. Sci. USA 2013, 110, 4063–4068. [Google Scholar] [CrossRef]
- Stowe, L.M.; Golob, E.J. Evidence That the Lombard Effect Is Frequency-Specific in Humans. J. Acoust. Soc. Am. 2013, 134, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Schilling, A.; Gerum, R.; Metzner, C.; Maier, A.; Krauss, P. Intrinsic Noise Improves Speech Recognition in a Computational Model of the Auditory Pathway. Front. Neurosci. 2022, 16, 908330. [Google Scholar] [CrossRef]
- Chatterjee, M.; Robert, M.E. Noise Enhances Modulation Sensitivity in Cochlear Implant Listeners: Stochastic Resonance in a Prosthetic Sensory System? J. Assoc. Res. Otolaryngol. 2001, 2, 159–171. [Google Scholar] [CrossRef]
- Morse, R.P.; Holmes, S.D.; Irving, R.; McAlpine, D. Noise Helps Cochlear Implant Listeners to Categorize Vowels. JASA Express Lett. 2022, 2, 042001. [Google Scholar] [CrossRef]
- Schaette, R.; Kempter, R. Development of Hyperactivity after Hearing Loss in a Computational Model of the Dorsal Cochlear Nucleus Depends on Neuron Response Type. Hear. Res. 2008, 240, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, S.G.; Liberman, M.C. Adding Insult to Injury: Cochlear Nerve Degeneration after “Temporary” Noise-Induced Hearing Loss. J. Neurosci. 2009, 29, 14077–14085. [Google Scholar] [CrossRef] [PubMed]
- Schaette, R.; McAlpine, D. Tinnitus with a Normal Audiogram: Physiological Evidence for Hidden Hearing Loss and Computational Model. J. Neurosci. 2011, 31, 13452–13457. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, J.J.M.; Garcia-Lazaro, J.A.; McAlpine, D.; Schaette, R. Hidden Hearing Loss Impacts the Neural Representation of Speech in Background Noise. Curr. Biol. 2020, 30, 4710–4721.e4. [Google Scholar] [CrossRef]
- Bakay, W.M.H.; Anderson, L.A.; Garcia-Lazaro, J.A.; McAlpine, D.; Schaette, R. Hidden Hearing Loss Selectively Impairs Neural Adaptation to Loud Sound Environments. Nat. Commun. 2018, 9, 4298. [Google Scholar] [CrossRef] [PubMed]
- Schilling, A.; Sedley, W.; Gerum, R.; Metzner, C.; Tziridis, K.; Maier, A.; Schulze, H.; Zeng, F.-G.; Friston, K.J.; Krauss, P. Predictive Coding and Stochastic Resonance as Fundamental Principles of Auditory Phantom Perception. Brain 2023, 146, 4809–4825. [Google Scholar] [CrossRef]
- Sohoglu, E.; Chait, M. Detecting and Representing Predictable Structure during Auditory Scene Analysis. eLife 2016, 5, e19113. [Google Scholar] [CrossRef] [PubMed]
- Aman, L.; Picken, S.; Andreou, L.-V.; Chait, M. Sensitivity to Temporal Structure Facilitates Perceptual Analysis of Complex Auditory Scenes. Hear. Res. 2021, 400, 108111. [Google Scholar] [CrossRef]
- Chait, M.; Ruff, C.C.; Griffiths, T.D.; McAlpine, D. Cortical Responses to Changes in Acoustic Regularity Are Differentially Modulated by Attentional Load. Neuroimage 2012, 59, 1932–1941. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.H.; Schemitsch, M.; Simoncelli, E.P. Summary Statistics in Auditory Perception. Nat. Neurosci. 2013, 16, 493–498. [Google Scholar] [CrossRef]
- Agus, T.R.; Thorpe, S.J.; Pressnitzer, D. Rapid Formation of Robust Auditory Memories: Insights from Noise. Neuron 2010, 66, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Blom, J.D. Chapter 24—Auditory Hallucinations. In Handbook of Clinical Neurology; Aminoff, M.J., Boller, F., Swaab, D.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 129, pp. 433–455. [Google Scholar]
- Culling, J.F.; Summerfield, A.Q.; Marshall, D.H. Dichotic Pitches as Illusions of Binaural Unmasking. I. Huggins’ Pitch and the “Binaural Edge Pitch”. J. Acoust. Soc. Am. 1998, 103, 3509–3526. [Google Scholar] [CrossRef] [PubMed]
- Blauert, J.; Lindemann, W. Spatial Mapping of Intracranial Auditory Events for Various Degrees of Interaural Coherence. J. Acoust. Soc. Am. 1986, 79, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.A.; Barrett, D.J.K.; Akeroyd, M.A.; Summerfield, A.Q. Cortical Representations of Temporal Structure in Sound. J. Neurophysiol. 2005, 94, 3181–3191. [Google Scholar] [CrossRef] [PubMed]
- Akeroyd, M.A.; Moore, B.C.; Moore, G.A. Melody Recognition Using Three Types of Dichotic-Pitch Stimulus. J. Acoust. Soc. Am. 2001, 110 Pt 1, 1498–1504. [Google Scholar] [CrossRef]
- Freiwald, W.; Tsao, D. Taking Apart the Neural Machinery of Face Processing; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Mesgarani, N.; David, S.V.; Fritz, J.B.; Shamma, S.A. Mechanisms of Noise Robust Representation of Speech in Primary Auditory Cortex. Proc. Natl. Acad. Sci. USA 2014, 111, 6792–6797. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.C.; Channing Moore, R.; Lee, T.; Theunissen, F.E. Noise-Invariant Neurons in the Avian Auditory Cortex: Hearing the Song in Noise. PLoS Comput. Biol. 2013, 9, e1002942. [Google Scholar] [CrossRef]
- Schneider, D.M.; Woolley, S.M.N. Sparse and Background-Invariant Coding of Vocalizations in Auditory Scenes. Neuron 2013, 79, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, N.C.; Willmore, B.D.B.; King, A.J.; Schnupp, J.W.H. Constructing Noise-Invariant Representations of Sound in the Auditory Pathway. PLoS Biol. 2013, 11, e1001710. [Google Scholar] [CrossRef]
- Kell, A.J.E.; McDermott, J.H. Invariance to Background Noise as a Signature of Non-Primary Auditory Cortex. Nat. Commun. 2019, 10, 3958. [Google Scholar] [CrossRef]
- Bar-Yosef, O.; Nelken, I. The Effects of Background Noise on the Neural Responses to Natural Sounds in Cat Primary Auditory Cortex. Front. Comput. Neurosci. 2007, 1, 3. [Google Scholar] [CrossRef]
- Wiegrebe, L.; Winter, I.M. Temporal Representation of Iterated Rippled Noise as a Function of Delay and Sound Level in the Ventral Cochlear Nucleus. J. Neurophysiol. 2001, 85, 1206–1219. [Google Scholar] [CrossRef] [PubMed]
- Woolley, S.M.N.; Casseday, J.H. Processing of Modulated Sounds in the Zebra Finch Auditory Midbrain: Responses to Noise, Frequency Sweeps, and Sinusoidal Amplitude Modulations. J. Neurophysiol. 2005, 94, 1143–1157. [Google Scholar] [CrossRef] [PubMed]
- Khatami, F.; Escabí, M.A. Spiking Network Optimized for Word Recognition in Noise Predicts Auditory System Hierarchy. PLoS Comput. Biol. 2020, 16, e1007558. [Google Scholar] [CrossRef]
- Souffi, S.; Nodal, F.R.; Bajo, V.M.; Edeline, J.-M. When and How Does the Auditory Cortex Influence Subcortical Auditory Structures? New Insights About the Roles of Descending Cortical Projections. Front. Neurosci. 2021, 15, 690223. [Google Scholar] [CrossRef]
- Souffi, S.; Lorenzi, C.; Varnet, L.; Huetz, C.; Edeline, J.-M. Noise-Sensitive But More Precise Subcortical Representations Coexist with Robust Cortical Encoding of Natural Vocalizations. J. Neurosci. 2020, 40, 5228–5246. [Google Scholar] [CrossRef] [PubMed]
- Robinson, B.L.; Harper, N.S.; McAlpine, D. Meta-Adaptation in the Auditory Midbrain under Cortical Influence. Nat. Commun. 2016, 7, 13442. [Google Scholar] [CrossRef] [PubMed]
- Norman-Haignere, S.V.; McDermott, J.H. Neural Responses to Natural and Model-Matched Stimuli Reveal Distinct Computations in Primary and Nonprimary Auditory Cortex. PLoS Biol. 2018, 16, e2005127. [Google Scholar] [CrossRef]
- Selezneva, E.; Gorkin, A.; Budinger, E.; Brosch, M. Neuronal Correlates of Auditory Streaming in the Auditory Cortex of Behaving Monkeys. Eur. J. Neurosci. 2018, 48, 3234–3245. [Google Scholar] [CrossRef]
- Cruces-Solís, H.; Jing, Z.; Babaev, O.; Rubin, J.; Gür, B.; Krueger-Burg, D.; Strenzke, N.; de Hoz, L. Auditory Midbrain Coding of Statistical Learning That Results from Discontinuous Sensory Stimulation. PLoS Biol. 2018, 16, e2005114. [Google Scholar] [CrossRef]
- Chen, C.; Cruces-Solís, H.; Ertman, A.; de Hoz, L. Subcortical Coding of Predictable and Unsupervised Sound-Context Associations. Curr. Res. Neurobiol. 2023, 5, 100110. [Google Scholar] [CrossRef] [PubMed]
- Asokan, M.M.; Williamson, R.S.; Hancock, K.E.; Polley, D.B. Inverted Central Auditory Hierarchies for Encoding Local Intervals and Global Temporal Patterns. Curr. Biol. 2021, 31, 1762–1770.e4. [Google Scholar] [CrossRef]
- Henin, S.; Turk-Browne, N.B.; Friedman, D.; Liu, A.; Dugan, P.; Flinker, A.; Doyle, W.; Devinsky, O.; Melloni, L. Learning Hierarchical Sequence Representations across Human Cortex and Hippocampus. Sci. Adv. 2021, 7, eabc4530. [Google Scholar] [CrossRef]
- Happel, M.F.K.; Hechavarria, J.C.; de Hoz, L. Editorial: Cortical-Subcortical Loops in Sensory Processing. Front. Neural Circuits 2022, 16, 851612. [Google Scholar] [CrossRef]
- de Hoz, L.; Busse, L.; Hechavarria, J.C.; Groh, A.; Rothermel, M. SPP2411: “Sensing LOOPS: Cortico-Subcortical Interactions for Adaptive Sensing”. Neuroforum 2022, 28, 249–251. [Google Scholar] [CrossRef]
- Cardin, J.A. Functional Flexibility in Cortical Circuits. Curr. Opin. Neurobiol. 2019, 58, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Saldaña, E. All the Way from the Cortex: A Review of Auditory Corticosubcollicular Pathways. Cerebellum 2015, 14, 584–596. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, K.T.; Mellott, J.G.; Killius, J.; Storey-Workley, M.E.; Sowick, C.S.; Schofield, B.R. Ultrastructural Examination of the Corticocollicular Pathway in the Guinea Pig: A Study Using Electron Microscopy, Neural Tracers, and GABA Immunocytochemistry. Front. Neuroanat. 2013, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Yudintsev, G.; Asilador, A.R.; Sons, S.; Vaithiyalingam Chandra Sekaran, N.; Coppinger, M.; Nair, K.; Prasad, M.; Xiao, G.; Ibrahim, B.A.; Shinagawa, Y.; et al. Evidence for Layer-Specific Connectional Heterogeneity in the Mouse Auditory Corticocollicular System. J. Neurosci. 2021, 41, 9906–9918. [Google Scholar] [CrossRef] [PubMed]
- Bajo, V.M.; Nodal, F.R.; Moore, D.R.; King, A.J. The Descending Corticocollicular Pathway Mediates Learning-Induced Auditory Plasticity. Nat. Neurosci. 2010, 13, 253–260. [Google Scholar] [CrossRef]
- Bajo, V.M.; King, A.J. Cortical Modulation of Auditory Processing in the Midbrain. Front. Neural Circuits 2012, 6, 114. [Google Scholar] [CrossRef] [PubMed]
- Gao, E.; Suga, N. Experience-Dependent Plasticity in the Auditory Cortex and the Inferior Colliculus of Bats: Role of the Corticofugal System. Proc. Natl. Acad. Sci. USA 2000, 97, 8081–8086. [Google Scholar] [CrossRef]
- Bajo, V.M.; Nodal, F.R.; Korn, C.; Constantinescu, A.O.; Mann, E.O.; Boyden, E.S., 3rd; King, A.J. Silencing Cortical Activity during Sound-Localization Training Impairs Auditory Perceptual Learning. Nat. Commun. 2019, 10, 3075. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.R.; Liang, F.; Zingg, B.; Ji, X.-Y.; Ibrahim, L.A.; Tao, H.W.; Zhang, L.I. Auditory Cortex Controls Sound-Driven Innate Defense Behaviour through Corticofugal Projections to Inferior Colliculus. Nat. Commun. 2015, 6, 7224. [Google Scholar] [CrossRef]
- Dean, I.; Robinson, B.L.; Harper, N.S.; McAlpine, D. Rapid Neural Adaptation to Sound Level Statistics. J. Neurosci. 2008, 28, 6430–6438. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Wang, G.I.; Dean, I.; Delgutte, B. Time Course of Dynamic Range Adaptation in the Auditory Nerve. J. Neurophysiol. 2012, 108, 69–82. [Google Scholar] [CrossRef]
- Dean, I.; Harper, N.S.; McAlpine, D. Neural Population Coding of Sound Level Adapts to Stimulus Statistics. Nat. Neurosci. 2005, 8, 1684–1689. [Google Scholar] [CrossRef]
- Watkins, P.V.; Barbour, D.L. Level-Tuned Neurons in Primary Auditory Cortex Adapt Differently to Loud versus Soft Sounds. Cereb. Cortex 2011, 21, 178–190. [Google Scholar] [CrossRef]
- Willmore, B.D.B.; Schoppe, O.; King, A.J.; Schnupp, J.W.H.; Harper, N.S. Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing. J. Neurosci. 2016, 36, 280–289. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Hoz, L.; McAlpine, D. Noises on—How the Brain Deals with Acoustic Noise. Biology 2024, 13, 501. https://doi.org/10.3390/biology13070501
de Hoz L, McAlpine D. Noises on—How the Brain Deals with Acoustic Noise. Biology. 2024; 13(7):501. https://doi.org/10.3390/biology13070501
Chicago/Turabian Stylede Hoz, Livia, and David McAlpine. 2024. "Noises on—How the Brain Deals with Acoustic Noise" Biology 13, no. 7: 501. https://doi.org/10.3390/biology13070501
APA Stylede Hoz, L., & McAlpine, D. (2024). Noises on—How the Brain Deals with Acoustic Noise. Biology, 13(7), 501. https://doi.org/10.3390/biology13070501