Neural Delays in Processing Speech in Background Noise Minimized after Short-Term Auditory Training
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. General Methods—Experimental Design and Data Acquisition Methods
2.2. Methods Specific to Current Report
2.2.1. Participants
2.2.2. Data Exclusion Criteria
2.2.3. Measuring Changes in FFR Latency
Peak Latency
Response Phase
Comparing Latency and Phase Shifts
2.3. Statistical Analyses
3. Results
3.1. Hearing in Noise Test (HINT)
3.2. Neurophysiology: Formant Transition
3.2.1. Latency Shifts (Figure 2)
3.2.2. Phase Shifts
3.3. Neurophysiology: Steady-State Vowel Region
3.4. Comparing Latency and Phase Shifts
3.5. Comparisons with Previous Report
3.6. Correlations with Behavior
4. Discussion
4.1. Neural Mechanisms
4.2. Clinical Applicability of Our Methodology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sachs, M.B.; Voigt, H.F.; Young, E.D. Auditory nerve representation of vowels in background noise. J. Neurophysiol. 1983, 50, 27–45. [Google Scholar] [CrossRef]
- Simmons, A.M.; Schwartz, J.J.; Ferragamo, M. Auditory nerve representation of a complex communication sound in background noise. J. Acoust. Soc. Am. 1992, 91, 2831–2844. [Google Scholar] [CrossRef] [PubMed]
- Strait, D.L.; Parbery-Clark, A.; Hittner, E.; Kraus, N. Musical training during early childhood enhances the neural encoding of speech in noise. Brain Lang. 2012, 123, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jeng, F.C. Noise tolerance in human frequency-following responses to voice pitch. J. Acoust. Soc. Am. 2011, 129, EL21–EL26. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.; Skoe, E.; Chandrasekaran, B.; Kraus, N. Neural timing is linked to speech perception in noise. J. Neurosci. 2010, 30, 4922–4926. [Google Scholar] [CrossRef] [PubMed]
- Parbery-Clark, A.; Anderson, S.; Hittner, E.; Kraus, N. Musical experience offsets age-related delays in neural timing. Neurobiol. Aging 2012, 33, 1483.e1–1483.e4. [Google Scholar] [CrossRef] [PubMed]
- Parbery-Clark, A.; Skoe, E.; Kraus, N. Musical experience limits the degradative effects of background noise on the neural processing of sound. J. Neurosci. 2009, 29, 14100–14107. [Google Scholar] [CrossRef] [PubMed]
- Delgutte, B.; Kiang, N.Y. Speech coding in the auditory nerve: V. Vowels in background noise. J. Acoust. Soc. Am. 1984, 75, 908–918. [Google Scholar] [CrossRef] [PubMed]
- Prevost, F.; Laroche, M.; Marcoux, A.M.; Dajani, H.R. Objective measurement of physiological signal-to-noise gain in the brainstem response to a synthetic vowel. Clin. Neurophysiol. 2012, 124, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Skoe, E.; Banai, K.; Kraus, N. Perception of speech in noise: Neural correlates. J. Cogn. Neurosci. 2011, 23, 2268–2279. [Google Scholar] [CrossRef]
- Anderson, S.; White-Schwoch, T.; Parbery-Clark, A.; Kraus, N. Reversal of age-related neural timing delays with training. Proc. Natl. Acad. Sci. USA 2013, 110, 4357–4362. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Skoe, E.; Banai, K.; Kraus, N. Training to improve hearing speech in noise: Biological mechanisms. Cereb. Cortex 2012, 22, 1180–1190. [Google Scholar] [CrossRef] [PubMed]
- Sweetow, R.W.; Sabes, J.H. The need for and development of an adaptive Listening and Communication Enhancement (LACE) Program. J. Am. Acad. Audiol. 2006, 17, 538–558. [Google Scholar] [CrossRef]
- Skoe, E.; Kraus, N. Auditory brain stem response to complex sounds: A tutorial. Ear Hear. 2010, 31, 302–324. [Google Scholar] [CrossRef] [PubMed]
- Krizman, J.; Kraus, N. Analyzing the FFR: A tutorial for decoding the richness of auditory function. Hear. Res. 2019, 382, 107779. [Google Scholar] [CrossRef]
- Moushegian, G.; Rupert, A.L.; Stillman, R.D. Laboratory note. Scalp-recorded early responses in man to frequencies in the speech range. Electroencephalogr. Clin. Neurophysiol. 1973, 35, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Carcagno, S.; Plack, C.J. Subcortical plasticity following perceptual learning in a pitch discrimination task. J. Assoc. Res. Otolaryngol. 2011, 12, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Skoe, E.; Wong, P.C.; Kraus, N. Plasticity in the adult human auditory brainstem following short-term linguistic training. J. Cogn. Neurosci. 2008, 20, 1892–1902. [Google Scholar] [CrossRef] [PubMed]
- Musacchia, G.; Sams, M.; Skoe, E.; Kraus, N. Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc. Natl. Acad. Sci. USA 2007, 104, 15894–15898. [Google Scholar] [CrossRef]
- Reetzke, R.; Xie, Z.; Llanos, F.; Chandrasekaran, B. Tracing the trajectory of sensory plasticity across different stages of speech learning in adulthood. Curr. Biol. 2018, 28, 1419–1427.e4. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.; Nicol, T.; King, C.; Zecker, S.G.; Kraus, N. Effects of noise and cue enhancement on neural responses to speech in auditory midbrain, thalamus and cortex. Hear. Res. 2002, 169, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Nishi, K.; Lewis, D.E.; Hoover, B.M.; Choi, S.; Stelmachowicz, P.G. Children’s recognition of American English consonants in noise. J. Acoust. Soc. Am. 2010, 127, 3177–3188. [Google Scholar] [CrossRef] [PubMed]
- Tallal, P.; Stark, R.E. Speech acoustic-cue discrimination abilities of normally developing and language-impaired children. J. Acoust. Soc. Am. 1981, 69, 568–574. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.; Thornton, A.R. Neural correlates of perceptual learning in the auditory brainstem: Efferent activity predicts and reflects improvement at a speech-in-noise discrimination task. J. Neurosci. 2008, 28, 4929–4937. [Google Scholar] [CrossRef] [PubMed]
- Russo, N.M.; Nicol, T.G.; Zecker, S.G.; Hayes, E.A.; Kraus, N. Auditory training improves neural timing in the human brainstem. Behav. Brain Res. 2005, 156, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Skoe, E.; Chandrasekaran, B.; Spitzer, E.R.; Wong, P.C.; Kraus, N. Human brainstem plasticity: The interaction of stimulus probability and auditory learning. Neurobiol. Learn. Mem. 2014, 109, 82–93. [Google Scholar] [CrossRef]
- Krizman, J.; Bradlow, A.R.; Lam, S.S.-Y.; Kraus, N. How bilinguals listen in noise: Linguistic and non-linguistic factors. Biling. Lang. Cogn. 2017, 20, 834–843. [Google Scholar] [CrossRef]
- Carcagno, S.; Plack, C.J. Pitch discrimination learning: Specificity for pitch and harmonic resolvability, and electrophysiological correlates. J. Assoc. Res. Otolaryngol. 2011, 12, 503–517. [Google Scholar] [CrossRef]
- Hornickel, J.; Zecker, S.G.; Bradlow, A.R.; Kraus, N. Assistive listening devices drive neuroplasticity in children with dyslexia. Proc. Natl. Acad. Sci. USA 2012, 109, 16731–16736. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.J.; Jayakody, D.M.; Henshaw, H.; Ferguson, M.A.; Eikelboom, R.H.; Loftus, A.M.; Friedland, P.L. Auditory and cognitive training for cognition in adults with hearing loss: A systematic review and meta-analysis. Trends Hear. 2018, 22, 2331216518792096. [Google Scholar] [CrossRef]
- Aiken, S.J.; Picton, T.W. Envelope and spectral frequency-following responses to vowel sounds. Hear. Res. 2008, 245, 35–47. [Google Scholar] [CrossRef]
- Chimento, T.C.; Schreiner, C.E. Selectively eliminating cochlear microphonic contamination from the frequency-following response. Electroencephalogr. Clin. Neurophysiol. 1990, 75, 88–96. [Google Scholar] [CrossRef]
- Skoe, E.; Nicol, T.; Kraus, N. Cross-phaseogram: Objective neural index of speech sound differentiation. J. Neurosci. Methods 2011, 196, 308–317. [Google Scholar] [CrossRef] [PubMed]
- John, M.S.; Picton, T.W. Human auditory steady-state responses to amplitude-modulated tones: Phase and latency measurements. Hear. Res. 2000, 141, 57–79. [Google Scholar] [CrossRef]
- Tierney, A.; Parbery-Clark, A.; Skoe, E.; Kraus, N. Frequency-dependent effects of background noise on subcortical response timing. Hear. Res. 2011, 282, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Nicol, T.; Kraus, N. Test-retest reliability of the speech-evoked auditory brainstem response. Clin. Neurophysiol. 2011, 122, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Whitton, J.P.; Hancock, K.E.; Shannon, J.M.; Polley, D.B. Audiomotor perceptual training enhances speech intelligibility in background noise. Curr. Biol. 2017, 27, 3237–3247.e6. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.; Chandrasekaran, B.; Yi, H.G.; Kraus, N. Cortical-evoked potentials reflect speech-in-noise perception in children. Eur. J. Neurosci. 2010, 32, 1407–1413. [Google Scholar] [CrossRef]
- Parbery-Clark, A.; Anderson, S.; Hittner, E.; Kraus, N. Musical experience strengthens the neural representation of sounds important for communication in middle-aged adults. Front. Aging Neurosci. 2012, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Lerud, K.D.; Hancock, R.; Skoe, E. A high-density EEG and structural MRI source analysis of the frequency following response to missing fundamental stimuli reveals subcortical and cortical activation to low and high frequency stimuli. NeuroImage 2023, 279, 120330. [Google Scholar] [CrossRef]
- Bidelman, G.M. Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. NeuroImage 2018, 175, 56–69. [Google Scholar] [CrossRef]
- Coffey, E.B.; Nicol, T.; White-Schwoch, T.; Chandrasekaran, B.; Krizman, J.; Skoe, E.; Zatorre, R.J.; Kraus, N. Evolving perspectives on the sources of the frequency-following response. Nat. Commun. 2019, 10, 5036. [Google Scholar] [CrossRef] [PubMed]
- Bidelman, G.M.; Momtaz, S. Subcortical rather than cortical sources of the frequency-following response (FFR) relate to speech-in-noise perception in normal-hearing listeners. Neurosci. Lett. 2021, 746, 135664. [Google Scholar] [CrossRef] [PubMed]
- Hayes, E.A.; Warrier, C.M.; Nicol, T.G.; Zecker, S.G.; Kraus, N. Neural plasticity following auditory training in children with learning problems. Clin. Neurophysiol. 2003, 114, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Pantev, C.; Wollbrink, A.; Roberts, L.E.; Engelien, A.; Lütkenhöner, B. Short-term plasticity of the human auditory cortex. Brain Res. 1999, 842, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Ahissar, M.; Nahum, M.; Nelken, I.; Hochstein, S. Reverse hierarchies and sensory learning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Nahum, M.; Nelken, I.; Ahissar, M. Low-level information and high-level perception: The case of speech in noise. PLoS Biol. 2008, 6, e126. [Google Scholar] [CrossRef] [PubMed]
- Kraus, N. Memory for sound: The BEAMS hypothesis [Perspective]. Hear. Res. 2021, 407, 1. [Google Scholar] [CrossRef] [PubMed]
- Usrey, W.M.; Sherman, S.M. Corticofugal circuits: Communication lines from the cortex to the rest of the brain. J. Comp. Neurol. 2019, 527, 640–650. [Google Scholar] [CrossRef]
- Liberman, M.C.; Guinan, J.J., Jr. Feedback control of the auditory periphery: Anti-masking effects of middle ear muscles vs. olivocochlear efferents. J. Commun. Disord. 1998, 31, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Suga, N.; Xiao, Z.; Ma, X.; Ji, W. Plasticity and corticofugal modulation for hearing in adult animals. Neuron 2002, 36, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Brashears, S.M.; Morlet, T.G.; Berlin, C.I.; Hood, L.J. Olivocochlear efferent suppression in classical musicians. J. Am. Acad. Audiol. 2003, 14, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Bajo, V.M.; Nodal, F.R.; Moore, D.R.; King, A.J. The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nat. Neurosci. 2010, 13, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, G.C.; Olfman, D.M.; Huffman, T.M. Selective attention affects human brain stem frequency-following response. Neuroreport 2003, 14, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Hairston, W.D.; Letowski, T.R.; McDowell, K. Task-Related Suppression of the Brainstem Frequency following Response. PLoS ONE 2013, 8, e55215. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, T.; Weisz, N. Auditory cortical generators of the Frequency Following Response are modulated by intermodal attention. NeuroImage 2019, 203, 116185. [Google Scholar] [CrossRef] [PubMed]
- Bidelman, G.; Powers, L. Response properties of the human frequency-following response (FFR) to speech and non-speech sounds: Level dependence, adaptation and phase-locking limits. Int. J. Audiol. 2018, 57, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Hornickel, J.; Knowles, E.; Kraus, N. Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children. Hear. Res. 2012, 284, 52–58. [Google Scholar] [CrossRef]
- Warrier, C.M.; Abrams, D.A.; Nicol, T.G.; Kraus, N. Inferior colliculus contributions to phase encoding of stop consonants in an animal model. Hear. Res. 2011, 282, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Parbery-Clark, A.; Tierney, A.; Strait, D.L.; Kraus, N. Musicians have fine-tuned neural distinction of speech syllables. Neuroscience 2012, 219, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Neef, N.E.; Schaadt, G.; Friederici, A.D. Auditory brainstem responses to stop consonants predict literacy. Clin. Neurophysiol. 2017, 128, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Henshaw, H.; Ferguson, M.A. Efficacy of individual computer-based auditory training for people with hearing loss: A systematic review of the evidence. PLoS ONE 2013, 8, e62836. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.; Holland, C.; Merzenich, M.M.; Vinogradov, S. Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia. Am. J. Psychiatry 2009, 166, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Buriti, A.K.L.; Gil, D. Mild traumatic brain injury: Long-term follow-up of central auditory processing after auditory training. J. Audiol. Otol. 2022, 26, 22. [Google Scholar] [CrossRef] [PubMed]
- Gaeta, L.; Stark, R.K.; Ofili, E. Methodological Considerations for Auditory Training Interventions for Adults With Hearing Loss: A Rapid Review. Am. J. Audiol. 2021, 30, 211–225. [Google Scholar] [CrossRef]
- Stropahl, M.; Besser, J.; Launer, S. Auditory training supports auditory rehabilitation: A state-of-the-art review. Ear Hear. 2020, 41, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Assmann, P.; Summerfield, Q. The Perception of Speech Under Adverse Conditions. In Speech Processing in the Auditory System; Springer: New York, NY, USA, 2004; Volume 18, pp. 231–308. [Google Scholar]
- Merzenich, M.M.; Jenkins, W.M.; Johnston, P.; Schreiner, C.; Miller, S.L.; Tallal, P. Temporal processing deficits of language-learning impaired children ameliorated by training. Science 1996, 271, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Millward, K.E.; Hall, R.L.; Ferguson, M.A.; Moore, D.R. Training speech-in-noise perception in mainstream school children. Int. J. Pediatr. Otorhinolaryngol. 2011, 75, 1408–1417. [Google Scholar] [CrossRef]
HINT-F | HINT-F (SNR) | HINT-R (SNR) | HINT-L (SNR) | QUICKSIN (SNR Loss) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Session | Trained | Native | Mean | SD | SE | Mean | SD | SE | Mean | SD | SE | Mean | SD | SE |
1 | 0 | 0 | 0.814 | 2.712 | 0.725 | −4.517 | 2.865 | 0.74 | −3.813 | 3.353 | 0.866 | 3.528 | 3.567 | 0.921 |
1 | −3.055 | 0.662 | 0.2 | −8.8 | 1.76 | 0.531 | −8.473 | 1.054 | 0.318 | −0.382 | 0.83 | 0.25 | ||
1 | 0 | 0.839 | 3.486 | 0.822 | −4 | 3.751 | 0.884 | −4.241 | 4.649 | 1.096 | 4.008 | 3.742 | 0.882 | |
1 | −3.13 | 0.757 | 0.239 | −7.77 | 2.063 | 0.653 | −7.87 | 1.025 | 0.324 | −0.592 | 0.976 | 0.309 | ||
2 | 0 | 0 | 0.564 | 2.119 | 0.566 | −4.8 | 2.745 | 0.709 | −3.487 | 2.898 | 0.748 | 2.878 | 2.843 | 0.734 |
1 | −2.645 | 0.753 | 0.227 | −8.109 | 1.768 | 0.533 | −8.682 | 1.064 | 0.321 | −0.771 | 0.853 | 0.257 | ||
1 | 0 | −1.117 | 2.627 | 0.619 | −5.606 | 3.174 | 0.748 | −4.889 | 3.652 | 0.861 | 2.303 | 2.884 | 0.68 | |
1 | −3.272 | 1.617 | 0.511 | −8.97 | 1.122 | 0.355 | −8.23 | 0.821 | 0.26 | −1.901 | 1.064 | 0.336 | ||
Statistics | Statistics | Statistics | Statistics | |||||||||||
Trained × Test Session | F(1,49) = 7.20, p = 0.01, Σ2 = 0.01 | F(1,49) = 12.58, p < 0.001, Σ2 = 0.02 | F(1,49) = 1.10, p = 0.298, Σ2 <0.001 | F(1,50) = 1.77 p = 0.19, Σ2 = 0.001 | ||||||||||
Trained × Test Session × Native | F(1,1,49) = 0.18, p = 0.176, Σ2 = 0.003 | F(1,1,49) = 0.40, p = 0.53, Σ2 < 0.001 | F(1,1,49) = 0.95, p = 0.335, Σ2 < 0.001 | F(1,1,50) = 0.015, p = 0.902, Σ2 < 0.001 | ||||||||||
Native | F(1,49) = 29.07, p < 0.001, Σ2 = 0.33 | F(1,49) = 25.57, p < 0.001, Σ2 = 0.31 | F(1,49) = 25.6, p < 0.001, Σ2 = 0.33 | F(1,50) = 35.2, p < 0.001, Σ2 = 0.36 |
Peak | Trained | Mean (Change in ms) | SD | SE |
---|---|---|---|---|
1 | 0 | 0.015 | 0.611 | 0.118 |
1 | −0.02 | 0.529 | 0.1 | |
2 | 0 | 0.106 | 0.586 | 0.113 |
1 | −0.184 | 0.63 | 0.119 | |
3 | 0 | 0.041 | 0.465 | 0.09 |
1 | −0.107 | 0.347 | 0.066 | |
4 | 0 | 0.087 | 0.659 | 0.127 |
1 | −0.223 | 0.574 | 0.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skoe, E.; Kraus, N. Neural Delays in Processing Speech in Background Noise Minimized after Short-Term Auditory Training. Biology 2024, 13, 509. https://doi.org/10.3390/biology13070509
Skoe E, Kraus N. Neural Delays in Processing Speech in Background Noise Minimized after Short-Term Auditory Training. Biology. 2024; 13(7):509. https://doi.org/10.3390/biology13070509
Chicago/Turabian StyleSkoe, Erika, and Nina Kraus. 2024. "Neural Delays in Processing Speech in Background Noise Minimized after Short-Term Auditory Training" Biology 13, no. 7: 509. https://doi.org/10.3390/biology13070509
APA StyleSkoe, E., & Kraus, N. (2024). Neural Delays in Processing Speech in Background Noise Minimized after Short-Term Auditory Training. Biology, 13(7), 509. https://doi.org/10.3390/biology13070509