Status of Cassava Witches’ Broom Disease in the Philippines and Identification of Potential Pathogens by Metagenomic Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Assessment of Disease Incidence and Severity
2.2. Sample Collection
2.3. DNA Extraction and Microbial DNA Enrichment
2.4. RNA Extraction
2.5. Polymerase Chain Reaction and Sanger Sequencing
2.6. Next-Generation Sequencing
2.7. Bioinformatic Analysis
3. Results
3.1. Symptoms and Prevalence of Cassava Witches’ Broom Disease (CWBD) in the Philippines
3.2. Phytoplasma Detection Using Nested PCR
3.3. Metagenomic Sequencing Analysis of Symptomatic Cassava Samples
3.4. Microbial Composition in Symptomatic and Asymptomatic Cassava as Determined by RNA-Seq
3.5. Ceratobasidium sp. Detection by PCR and Sequence Analysis
4. Discussion
4.1. Current Status of CWBD in the Philippines and Southeast Asia
4.2. Low Detection Rate of Phytoplasma in Symptomatic Cassava by Nested PCR
4.3. Microbial Composition in Symptomatic and Asymptomatic Cassava as Revealed by Next-Generation Sequencing
4.4. High Detection Rate of Ceratobasidium and Rare Co-Infection Event with Phytoplasma
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parmar, A.; Sturm, B.; Hensel, O. Crops That Feed the World: Production and Improvement of Cassava for Food, Feed, and Industrial Uses. Food Secur. 2017, 9, 907–927. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO) Cassava. Available online: https://web.archive.org/web/20161118061344/http://www.fao.org/ag/agp/agpc/gcds/ (accessed on 17 November 2023).
- Food and Agriculture Organization of the United Nations FAOSTAT Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 9 May 2023).
- Álvarez, E. Phytoplasma Diseases Affecting Cassava. In Sustainable Management of Phytoplasma Diseases in Crops Grown in the Tropical Belt; Springer: Cham, Switzerland, 2019; Volume 12, pp. 145–179. [Google Scholar]
- ARC-LNR Cassava. Available online: https://www.arc.agric.za/arc-iic/Pages/Cassava.aspx (accessed on 9 May 2023).
- Department of Agriculture Investment Guide for Cassava. Available online: https://www.da.gov.ph/wp-content/uploads/2021/04/Investment-Guide-for-Cassava.pdf (accessed on 5 March 2023).
- PSA (Philippine Statistics Authority). Major Vegetables and Rootcrops Quarterly Bulletin, January-March 2016; PSA (Philippine Statistics Authority): Quezon City, Philippines, 2016; Volume 13, No. 4. [Google Scholar]
- Howeler, R.H.; Lutaladio, N.; Thomas, G. Save and Grow Cassava: A Guide to Sustainable Production Intensification; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; p. 129. [Google Scholar]
- Bacusmo, J.L. Status and Potentials of the Philippines Cassava Industry. In Cassava’s Potential Asia 21st Century Present Situat. Future Research and Development Needs, Proceedings of the 6th Regional Workshop, Ho Chi Minh City, Vietnam, 21–25 February 2001; Nippon Foundation: Tokyo, Japan, 2001. [Google Scholar]
- OECD; Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2022-2031; OECD: Paris, France, 2022; ISBN 978-92-64-58870-7. [Google Scholar]
- Graziosi, I.; Minato, N.; Alvarez, E.; Ngo, D.T.; Hoat, T.X.; Aye, T.M.; Pardo, J.M.; Wongtiem, P.; Wyckhuys, K.A. Emerging Pests and Diseases of South-East Asian Cassava: A Comprehensive Evaluation of Geographic Priorities, Management Options and Research Needs. Pest Manag. Sci. 2016, 72, 1071–1089. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, R.D.; Normanha, E.S.; Boock, O.J. O Superbrotamento Ou Envassouramento Da Mandioca; Secretaria de Agricultura, Industria e Comercio do Estado de Sao Paulo: São Paulo, Brazil, 1942. [Google Scholar]
- Arocha, Y.; Echodu, R.; Talengera, D.; Muhangi, J.; Rockefeller, E.; Asher, O.; Nakacwa, R.; Serugga, R.; Gumisiriza, G.; Tripathi, J.; et al. Occurrence of ‘Candidatus Phytoplasma aurantifolia’ (16SrII Group) in Cassava and Four Other Species in Uganda. Plant Pathol. 2009, 58, 390. [Google Scholar] [CrossRef]
- Howeler, R.H. The Cassava Handbook: A Reference Manual Based on the Asian Regional Cassava Training Course, Held in Thailand. Centro Internacional de Agricultura Tropical (CIAT), Bangkok, Thailand. 2012, p. 801. Available online: https://hdl.handle.net/10568/54299 (accessed on 8 August 2023).
- Vasquez, E.A.; Borines, L.M.; Palermo, L.F.G. Molecular Detection and Diagnosis of Phytoplasma Infection in Cassava. IJRDO-J. Biol. Sci. 2016, 2, 30–48. [Google Scholar] [CrossRef]
- Argana, R. Addressing the Threats of Cassava Phytoplasma Disease; DOST-PCAARRD T Media Services: Los Baños, Laguna, Philippines, 2016. [Google Scholar]
- Namba, S. Molecular and Biological Properties of Phytoplasmas. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019, 95, 401–418. [Google Scholar] [CrossRef] [PubMed]
- Bertaccini, A.; Duduk, B. Phytoplasma and Phytoplasma Diseases: A Review of Recent Research. Phytopathol. Mediterr. 2010, 48, 355–378. [Google Scholar] [CrossRef]
- Hogenhout, S.A.; Oshima, K.; Ammar, E.D.; Kakizawa, S.; Kingdom, H.N.; Namba, S. Phytoplasmas: Bacteria That Manipulate Plants and Insects. Mol. Plant Pathol. 2008, 9, 403–423. [Google Scholar] [CrossRef]
- Maejima, K.; Oshima, K.; Namba, S. Exploring the Phytoplasmas, Plant Pathogenic Bacteria. J. Gen. Plant Pathol. 2014, 80, 210–221. [Google Scholar] [CrossRef]
- Lee, I.-M. Universal Amplification and Analysis of Pathogen 16S rDNA for Classification and Identification of Mycoplasmalike Organisms. Phytopathology 1993, 83, 834. [Google Scholar] [CrossRef]
- Gundersen, D.E.; Lee, I.-M. Ultrasensitive Detection of Phytoplasmas by Nested-PCR Assays Using Two Universal Primer Pairs. Phytopathol. Mediterr. 1996, 35, 144–151. [Google Scholar]
- Alvarez, E.; Pardo, J.M.; Mejia, J.F.; Bertaccini, A.; Thanh, N.D.; Hoat, T.X. Detection and Identification of ‘Candidatus Phytoplasma asteris’-Related Phytoplasmas Associated with a Witches’ Broom Disease of Cassava in Vietnam. Phytopathogenic Mollicutes 2013, 3, 77–81. [Google Scholar] [CrossRef]
- Flôres, D.; Haas, I.C.; Canale, M.C.; Bedendo, I.P. Molecular Identification of a 16SrIII-B Phytoplasma Associated with Cassava Witches’ Broom Disease. Eur. J. Plant Pathol. 2013, 137, 237–242. [Google Scholar] [CrossRef]
- Dolores, L.M.; Langres, J.A.; Pinili, M.S.; Caasi-Lit, M.T.; Cortaga, C.Q.; Retuta, Y.M.; Dela Cueva, F.M. Incidence, Distribution, and Genetic Diversity of ‘Candidatus Phytoplasma luffae’-Related Strain (16SrVIII) Associated with the Cassava Witches’ Broom (CWB) Disease in the Philippines. Crop Prot. 2023, 169, 106244. [Google Scholar] [CrossRef]
- Davis, R.I.; Arocha, Y.; Jones, P.; Malau, A. First Report of the Association of Phytoplasmas with Plant Diseases in the Territory of Wallis and Futuna. Australas. Plant Pathol. 2005, 34, 417–418. [Google Scholar] [CrossRef]
- Kra, K.D.; Toualy, Y.M.N.; Kouamé, A.C.; Diallo, H.A.; Rosete, Y.A. First Report of a Phytoplasma Affecting Cassava Orchards in Cote d’Ivoire. New Dis. Rep. 2017, 35, 21. [Google Scholar] [CrossRef]
- de Los Rios, M.; Fernando, J. Identification and Genetic Diversity in Phytoplasmas Associated with Diseases of Cassava and Other Agronomic Relevant Crops in South-East Asia and Latin America. Dissertation Thesis, Alma Mater Studiorum Università di Bologna, Bologna, Italy, 2014. [Google Scholar]
- Ong, S.; Jonson, G.B.; Calassanzio, M.; Rin, S.; Chou, C.; Oi, T.; Sato, I.; Takemoto, D.; Tanaka, T.; Choi, I.R.; et al. Geographic Distribution, Genetic Variability and Biological Properties of Rice Orange Leaf Phytoplasma in Southeast Asia. Pathogens 2021, 10, 169. [Google Scholar] [CrossRef]
- Sta Cruz, F.C.; Habili, N.; Wu, Q.; Sagarino, R.B.; Randles, J.W. Detection of ‘Candidatus Phytoplasma luffae’ in Sponge Gourd, Bitter Gourd, and Bamboo from Laguna in Luzon, Philippines. Philipp. Agric. Sci. 2021, 104, 181–185. [Google Scholar]
- Borines, L.; Duero, N.; Nuñez, J.A.; Sagarino-Borines, R.; McDougall, S.; Gerona, R. Insect Vectors Transmission of Phytoplasma to Vegetables in Eastern Visayas Philippines. Ann. Trop. Res. 2022, 44, 46–60. [Google Scholar] [CrossRef]
- Pardo, J.M.; Chittarath, K.; Vongphachanh, P.; Hang, L.T.; Oeurn, S.; Arinaitwe, W.; Rodriguez, R.; Sophearith, S.; Malik, A.I.; Cuellar, W.J. Cassava Witches’ Broom Disease in Southeast Asia: A Review of Its Distribution and Associated Symptoms. Plants 2023, 12, 2217. [Google Scholar] [CrossRef]
- Fernández, F.; Uset, A.; Baumgratz, G.; Conci, L. Detection and Identification of a 16SrIII-J Phytoplasma Affecting Cassava (Manihot esculenta Crantz) in Argentina. Australas. Plant Dis. Notes 2018, 13, 24. [Google Scholar] [CrossRef]
- Leiva, A.M.; Pardo, J.M.; Arinaitwe, W.; Newby, J.; Vongphachanh, P.; Chittarath, K.; Oeurn, S.; Thi Hang, L.; Gil-Ordóñez, A.; Rodriguez, R.; et al. Ceratobasidium sp. is Associated with Cassava Witches’ Broom Disease, a Re-Emerging Threat to Cassava Cultivation in Southeast Asia. Sci. Rep. 2023, 13, 22500. [Google Scholar] [CrossRef]
- Azizpour, N.; Nematollahi, S.; Khakvar, R.; Jamshidi, M.; Norouzi-Beirami, M.H. Identification of Endophytic Microbiota of Phytoplasma-Infected Russian Olive Trees “Elaeagnus angustifolia L”. in the Northwest of Iran. Forests 2022, 13, 1684. [Google Scholar] [CrossRef]
- Ren, F.; Dong, W.; Shi, S.; Dou, G.; Yan, D.-H. Chinese Chestnut Yellow Crinkle Disease Influence Microbiota Composition of Chestnut Trees. Microb. Pathog. 2021, 152, 104606. [Google Scholar] [CrossRef]
- Contaldo, N.; Nicolaisen, M.; Kudjordjie, E.N.; Bertaccini, A. Investigating the Microbial Composition of “Flavescence Doree”-Infected Grapevine Plants. Phytopathogenic Mollicutes 2023, 13, 25–26. [Google Scholar] [CrossRef]
- Nicolaisen, M.; Contaldo, N.; Makarova, O.; Paltrinieri, S.; Bertaccini, A.; Maini, S. Deep Amplicon Sequencing Reveals Mixed Phytoplasma Infection within Single Grapevine Plants. Bull. Insectology 2011, 64, S35–S36. [Google Scholar]
- Eichmeier, A.; Kiss, T.; Necas, T.; Penazova, E.; Tekielska, D.; Bohunicka, M.; Valentova, L.; Cmejla, R.; Morais, D.; Baldrian, P. High-Throughput Sequencing Analysis of the Bacterial Community in Stone Fruit Phloem Tissues Infected by “Candidatus Phytoplasma prunorum”. Microb. Ecol. 2019, 77, 664–675. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Li, M.; Su, Y.; Sun, Z.; Ma, H. Combined Transcriptome and Metabolome Analysis of Nerium indicum L. Elaborates the Key Pathways That Are Activated in Response to Witches’ Broom Disease. BMC Plant Biol. 2022, 22, 291. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.-K.; Kim, M.-K.; Kwak, H.-R.; Kim, J.-S.; Choi, H.-S. Complete Genome Sequence of Longan Witches’ Broom-Associated Virus, a Novel Member of the Family Potyviridae. Arch. Virol. 2017, 162, 2885–2889. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.S.; Mora-Ocampo, I.Y.; de Novais, D.P.S.; Aguiar, E.R.G.R.; Pirovani, C.P. State of the Art of the Molecular Biology of the Interaction between Cocoa and Witches’ Broom Disease: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 5684. [Google Scholar] [CrossRef]
- Santana, J.O.; Gramacho, K.P.; de Souza Eduvirgens Ferreira, K.T.; Rezende, R.P.; Mangabeira, P.A.O.; Dias, R.P.M.; Couto, F.M.; Pirovani, C.P. Witches’ Broom Resistant Genotype CCN51 Shows Greater Diversity of Symbiont Bacteria in Its Phylloplane than Susceptible Genotype Catongo. BMC Microbiol. 2018, 18, 194. [Google Scholar] [CrossRef]
- Vennapusa, A.R.; Somayanda, I.M.; Doherty, C.J.; Jagadish, S.V.K. A Universal Method for High-Quality RNA Extraction from Plant Tissues Rich in Starch, Proteins and Fiber. Sci. Rep. 2020, 10, 16887. [Google Scholar] [CrossRef] [PubMed]
- Green, M.J.; Thompson, D.A.; MacKenzie, D.J. Easy and Efficient DNA Extraction from Woody Plants for the Detection of Phytoplasmas by Polymerase Chain Reaction. Plant Dis. 1999, 83, 482–485. [Google Scholar] [CrossRef] [PubMed]
- FAO ISPM 27 Diagnostic Protocols for Regulated Pests—DP 12: Phytoplasmas. Available online: https://www.ippc.int/en/publications/82349/ (accessed on 23 August 2023).
- Constable, F. National Diagnostic Protocol for X-Disease Phytoplasma. Available online: https://www.plantbiosecuritydiagnostics.net.au/app/uploads/2018/11/NDP-17-X-disease-phytoplasma-V1.2.pdf (accessed on 9 May 2023).
- Nijo, T.; Iwabuchi, N.; Tokuda, R.; Suzuki, T.; Matsumoto, O.; Miyazaki, A.; Maejima, K.; Oshima, K.; Namba, S.; Yamaji, Y. Enrichment of Phytoplasma Genome DNA through a Methyl-CpG Binding Domain-Mediated Method for Efficient Genome Sequencing. J. Gen. Plant Pathol. 2021, 87, 154–163. [Google Scholar] [CrossRef]
- QIAGEN RNeasy Mini Handbook. Available online: https://www.qiagen.com/es/resources/resourcedetail?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en (accessed on 10 May 2023).
- Burgess, S.J. QIAGEN RNeasy Plant RNA Extraction Protocol (Modified); University of Illinois at Urbana-Champaign: Urbana IL, USA, 2021. [Google Scholar] [CrossRef]
- Adams, I.P.; Abidrabo, P.; Miano, D.W.; Alicai, T.; Kinyua, Z.M.; Clarke, J.; Macarthur, R.; Weekes, R.; Laurenson, L.; Hany, U.; et al. High throughput Real-Time RT-PCR Assays for Specific Detection of Cassava Brown Streak Disease Causal Viruses and their Application to Testing Planting Material. Plant Pathol. 2013, 62, 233–242. [Google Scholar] [CrossRef]
- Weller, S.A.; Elphinstone, J.G.; Smith, N.C.; Boonham, N.; Stead, D.E. Detection of Ralstonia solanacearum Strains with a Quantitative, Multiplex, Real-Time, Fluorogenic PCR (TaqMan) Assay. Applied and Environmental Microbiology 2000, 66, 2853. [Google Scholar] [CrossRef]
- Schneider, B.; Seemueller, E.; Smart, C.D.; Kirkpatrick, B.C. Phylogenetic Classification of Plant Pathogenic Mycoplasma-like Organisms or Phytoplasmas. In Molecular and Diagnostic Procedures in Mycoplasmology; Razin, S., Tully, J.G., Eds.; Academic Press: San Diego, CA, USA, 1995; pp. 369–380. ISBN 978-0-12-583805-4. [Google Scholar]
- Deng, S.; Hiruki, C. Amplification of 16S rRNA Genes from Culturable and Nonculturable Mollicutes. J. Microbiol. Methods 1991, 14, 53–61. [Google Scholar] [CrossRef]
- Koinuma, H.; Miyazaki, A.; Wakaki, R.; Fujimoto, Y.; Iwabuchi, N.; Nijo, T.; Kitazawa, Y.; Shigaki, T.; Maejima, K.; Yamaji, Y.; et al. First Report of ‘Candidatus Phytoplasma pruni’ Infecting Cassava in Japan. J. Gen. Plant Pathol. 2018, 84, 300–304. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. ISBN 978-0-12-372180-8. [Google Scholar]
- Gantner, S.; Andersson, A.F.; Alonso-Sáez, L.; Bertilsson, S. Novel Primers for 16S rRNA-Based Archaeal Community Analyses in Environmental Samples. J. Microbiol. Methods 2011, 84, 12–18. [Google Scholar] [CrossRef]
- Muyzer, G.; de Waal, E.C.; Uitterlinden, A.G. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.S.; Yilmaz, L.S.; Noguera, D.R. DECIPHER, a Search-Based Approach to Chimera Identification for 16S rRNA Sequences. Appl. Environ. Microbiol. 2012, 78, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and Chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Davis, R.E.; Lee, I.-M. Phylogenetic Positions of “Candidatus Phytoplasma asteris” and Spiroplasma Kunkelii as Inferred from Multiple Sets of Concatenated Core Housekeeping Proteins. Int. J. Syst. Evol. Microbiol. 2005, 55, 2131–2141. [Google Scholar] [CrossRef]
- Samuels, G.J.; Ismaiel, A.; Rosmana, A.; Junaid, M.; Guest, D.; McMahon, P.; Keane, P.; Purwantara, A.; Lambert, S.; Rodriguez-Carres, M.; et al. Vascular Streak Dieback of Cacao in Southeast Asia and Melanesia: In Planta Detection of the Pathogen and a New Taxonomy. Fungal Biol. 2012, 116, 11–23. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive Metagenomic Visualization in a Web Browser. BMC Bioinform. 2011, 12, 385. [Google Scholar] [CrossRef]
- Menzel, P.; Ng, K.L.; Krogh, A. Fast and Sensitive Taxonomic Classification for Metagenomics with Kaiju. Nat. Commun. 2016, 7, 11257. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinforma. Oxf. Engl. 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Krueger, F.T.G. A Wrapper Tool around Cutadapt and FastQC to Consistently Apply Quality and Adapter Trimming to FastQ Files. 2015. Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 24 August 2023).
- Wingett, S.W.; Andrews, S. FastQ Screen: A Tool for Multi-Genome Mapping and Quality Control. F1000Research 2018, 7, 1338. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Department of Agriculture DA Beefs up Control of Cassava Witches’ Broom Disease. Available online: https://www.officialgazette.gov.ph/2015/06/23/da-beefs-up-control-of-cassava-witches-broom-disease/ (accessed on 3 May 2023).
- Landicho, D.; Reyes, J. Plant Quarantine Policy Formulation and Implementation for Cassava Witches’ Broom (CWB) Disease Control in Bukidnon, Philippines; University of the Philippines Los Baños: Laguna, Philippines, 2019. [Google Scholar]
- DA-BPI Declaring Cassava Witches’ Broom (CWB) a Dangerous Disease of Cassava, Providing for Its Control and Placing under Quarantine the Province of Bukidnon Where the Disease Exists. Available online: https://npqsd.bpi-npqsd.com.ph/wp-content/uploads/2021/05/BPI-Special-Quarantine-Order-No.-1-Series-of-2015.pdf (accessed on 5 May 2023).
- Reyes, L.N.D. BAR Digest; DA-Bureau of Agricultural Research: Quezon City, Philippines, 2022; p. 15. [Google Scholar]
- DA-BAR. Nationwide Survey and Early-Warning on Cassava Arthropod Pests and Diseases in the Philippines; Complementing R&D Efforts to Strengthen the Agri-Fishery Sector; DA-BAR: Quezon City, Philippines, 2018; p. 30. [Google Scholar]
- DA-BAR. Resisting CPD through Sustainable and Ecofriendly Solutions; Raising the BAR of Excellence: Bridging Adaptive Reforms; DA-BAR: Quezon City, Philippines, 2022; p. 15. [Google Scholar]
- Domingo, O.F. New Project to Address Cassava Plants’ Diseases Using Smart Information Technology. Available online: https://pcaarrd.dost.gov.ph/index.php/quick-information-dispatch-qid-articles/new-project-to-address-cassava-plants-diseases-using-smart-information-technology (accessed on 6 May 2023).
- Plata, I.T.; Panganiban, E.B.; Bartolome, B.B.; Labuanan, F.E.R.; Taracatac, A.C. A Concept of Cassava Phytoplasma Disease Monitoring and Mapping System Using GIS and SMS Technology. Int. J. Adv. Trends Comput. Sci. Eng. 2019, 8, 3357–3361. [Google Scholar] [CrossRef]
- Bulquerin, K.M.B.; Nepomuceno, R.A. BAR Digest; DA-BAR: Quezon City, Philippines, 2022; p. 14. [Google Scholar]
- McMahon, P.; Purwantara, A. Vascular Streak Dieback (Ceratobasidium theobromae): History and Biology. In Cacao Diseases: A History of Old Enemies and New Encounters; Bailey, B.A., Meinhardt, L.W., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 307–335. ISBN 978-3-319-24789-2. [Google Scholar]
- Keane, P. Epidemiology of Vascular-streak Dieback of Cocoa. Ann. Appl. Biol. 1981, 98, 227–241. [Google Scholar] [CrossRef]
- McMahon, P.J.; Susilo, A.W.; Parawansa, A.K.; Bryceson, S.R.; Mulia, S.; Saftar, A.; Purwantara, A.; bin Purung, H.; Lambert, S.; Guest, D.I. Testing Local Cacao Selections in Sulawesi for Resistance to Vascular Streak Dieback. Crop Prot. 2018, 109, 24–32. [Google Scholar] [CrossRef]
- Fránová, J. Difficulties with Conventional Phytoplasma Diagnostic Using PCR/RFLP Analyses. Bull. Insectology 2011, 64, S287–S288. [Google Scholar]
- Tiwarekar, B.; Kirdat, K.; Sathe, S.; Foissac, X.; Yadav, A. Chimera Alert! The Threat of Chimeric Sequences Causing Inaccurate Taxonomic Classification of Phytoplasma Strains bioRxiv 2023. [Google Scholar] [CrossRef]
- Bertaccini, A.; Arocha-Rosete, Y.; Contaldo, N.; Duduk, B.; Fiore, N.; Montano, H.G.; Kube, M.; Kuo, C.-H.; Martini, M.; Oshima, K.; et al. Revision of the “Candidatus Phytoplasma” Species Description Guidelines. Int. J. Syst. Evol. Microbiol. 2022, 72, 005353. [Google Scholar] [CrossRef]
- Cho, S.-T.; Kung, H.-J.; Huang, W.; Hogenhout, S.A.; Kuo, C.-H. Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis. Front. Microbiol. 2020, 11, 1531. [Google Scholar] [CrossRef]
- Trivellone, V.; Cao, Y.; Dietrich, C.H. Comparison of Traditional and Next-Generation Approaches for Uncovering Phytoplasma Diversity, with Discovery of New Groups, Subgroups and Potential Vectors. Biology 2022, 11, 977. [Google Scholar] [CrossRef]
- Rihne, T.; Namita; Singh, K.P.; Singh, M.K.; Talukdar, A. Improvement in Molecular Detection of Phytoplasma Associated with Rose by Selection of Suitable Primers and Development of a Multiplex PCR Assay. 3 Biotech 2021, 11, 190. [Google Scholar] [CrossRef]
- Wang, G.; Wu, W.; Tan, S.; Liang, Y.; He, C.; Chen, H.; Huang, X.; Yi, K. Development of a Specific Nested PCR Assay for the Detection of 16SrI Group Phytoplasmas Associated with Sisal Purple Leafroll Disease in Sisal Plants and Mealybugs. Plants 2022, 11, 2817. [Google Scholar] [CrossRef]
- Sémétey, O.; Gaudin, J.; Danet, J.-L.; Salar, P.; Theil, S.; Fontaine, M.; Krausz, M.; Chaisse, E.; Eveillard, S.; Verdin, E.; et al. Lavender Decline in France Is Associated with Chronic Infection by Lavender-Specific Strains of “Candidatus Phytoplasma Solani”. Appl. Environ. Microbiol. 2018, 84, e01507-18. [Google Scholar] [CrossRef]
- Frediansyah, A. The Microbiome of Cassava (Manihot esculenta). In Cassava—Biology, Production, and Use; IntechOpen: London, UK, 2021; ISBN 978-1-83968-909-3. [Google Scholar]
- Siviero, A.; de Macedo, P.E.F.; Moreira, G.T.S.; Nechet, K.L.; Coelho, R.M.S.; Halfeld-Vieira, B.A. First Report of Cassava Leaf Blight Caused by Rhizoctonia solani AG-1 IA. Australas. Plant Dis. Notes 2019, 14, 25. [Google Scholar] [CrossRef]
- de Melo, M.P.; Matos, K.S.; Moreira, S.I.; Silva, F.F.; Conceição, G.H.; Nechet, K.L.; Halfeld-Vieira, B.A.; Beserra Júnior, J.E.A.; Ventura, J.A.; Costa, H.; et al. Two New Ceratobasidium Species Causing White Thread Blight on Tropical Plants in Brazil. Trop. Plant Pathol. 2018, 43, 559–571. [Google Scholar] [CrossRef]
- Mosquera-Espinosa, A.T.; Bayman, P.; Prado, G.A.; Gómez-Carabalí, A.; Otero, J.T. The Double Life of Ceratobasidium: Orchid Mycorrhizal Fungi and Their Potential for Biocontrol of Rhizoctonia solani Sheath Blight of Rice. Mycologia 2013, 105, 141–150. [Google Scholar] [CrossRef]
- Schroeder, K.L.; Paulitz, T.C. First Report of a Ceratobasidium Sp. Causing Root Rot on Canola in Washington State. Plant Dis. 2012, 96, 591. [Google Scholar] [CrossRef]
- Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus Taxonomy: The Database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018, 46, D708–D717. [Google Scholar] [CrossRef] [PubMed]
- Hillman, B.I.; Cohen, A.B. Mitoviruses (Mitoviridae). In Encyclopedia of Virology, 4th ed.; Bamford, D.H., Zuckerman, M., Eds.; Academic Press: Oxford, UK, 2021; pp. 601–606. ISBN 978-0-12-814516-6. [Google Scholar]
- Nibert, M.L.; Vong, M.; Fugate, K.K.; Debat, H.J. Evidence for Contemporary Plant Mitoviruses. Virology 2018, 518, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Abdoulaye, A.H.; Foda, M.F.; Kotta-Loizou, I. Viruses Infecting the Plant Pathogenic Fungus Rhizoctonia solani. Viruses 2019, 11, 1113. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.W.L.; Li, H.; Sivasithamparam, K.; Dixon, K.W.; Jones, M.G.K.; Wylie, S.J. Novel and Divergent Viruses Associated with Australian Orchid-Fungus Symbioses. Virus Res. 2018, 244, 276–283. [Google Scholar] [CrossRef]
- Gao, M.; Xiong, C.; Gao, C.; Tsui, C.K.M.; Wang, M.-M.; Zhou, X.; Zhang, A.-M.; Cai, L. Disease-Induced Changes in Plant Microbiome Assembly and Functional Adaptation. Microbiome 2021, 9, 187. [Google Scholar] [CrossRef] [PubMed]
- Aime, M.C.; Phillips-Mora, W. The Causal Agents of Witches’ Broom and Frosty Pod Rot of Cacao (Chocolate, Theobroma cacao) Form a New Lineage of Marasmiaceae. Mycologia 2005, 97, 1012–1022. [Google Scholar] [CrossRef]
- Meinhardt, L.W.; Rincones, J.; Bailey, B.A.; Aime, M.C.; Griffith, G.W.; Zhang, D.; Pereira, G.A.G. Moniliophthora perniciosa, the Causal Agent of Witches’ Broom Disease of Cacao: What’s New from This Old Foe? Mol. Plant Pathol. 2008, 9, 577–588. [Google Scholar] [CrossRef]
- Chen, J.Y.; Chen, J.Y.; Xu, X.D. Advances in Research of Longan Witches’ Broom Disease. In Proceedings of the Acta Horticulturae, International Society for Horticultural Science (ISHS), Leuven, Belgium, 30 August 2001; pp. 413–416. [Google Scholar]
- Bily, D.; Bush, E. Vascular Streak Dieback: An Emerging Problem on Woody Ornamentals in the United States. Available online: https://digitalscholarship.tnstate.edu/cgi/viewcontent.cgi?article=1180&context=extension(accessed on 8 November 2023).
- Beckerman, J. Vascular Streak Dieback of Redbud: What Plant Pathologists Know so Far. Available online: https://www.purduelandscapereport.org/article/vascular-streak-dieback-of-redbud-what-plant-pathologists-know-so-far/ (accessed on 8 November 2023).
Location | Stage/ Sample Type | Nested PCR 1 | ScaI Digestion 2 | Detection Rate | False Negative Rate | Classification 3 | Clone Name | Accession Numbers |
---|---|---|---|---|---|---|---|---|
Isabela | Pre-harvesting (7 months) Leaves | 8/19 (42%) | 2/8 (25%) | 2/19 (10.5%) | 17/19 (89.5%) | Ca. P. luffae 16SrVIII-A | CV-Phy4 CV-Phy6 | OR673513 OR673514 |
Bukidnon | Pre-harvesting (7 months) Leaves | 11/20 (55%) | 4/11 (36%) | 4/20 (20%) | 16/20 (80%) | Ca. P. luffae 16SrVIII-A | CV-Phy1 CV-Phy2 CV-Phy3 CV-Phy5 | OQ797687.1 OQ797688.1 OR673512 OR673511 |
Not phytoplasma (other bacteria) | CV-Ub10 CV-Ub11 | OQ797685.1 OQ797686.1 |
Symptomatic | Asymptomatic | |||||||
---|---|---|---|---|---|---|---|---|
Stage | 1-Month-Old 1 | 3-Month-Old 2 | ||||||
Classification | I-A | I-B | I-1 | I-2 | I-3 | H-1 | H-2 | H-3 |
Fungi | 40.8% | 10.6% | 85.3% | 81.8% | 82.9% | 11.7% | 4.6% | 7.0% |
Bacteria | 36.3% | 60.5% | 8.9% | 11.4% | 10.6% | 58.1% | 73.5% | 57.9% |
Viruses | 1.7% | 0.2% | 0.6% | 0.7% | 1.4% | 0.4% | 0.3% | 0.5% |
Archaea | 0.1% | 0.1% | 0.1% | 0.1% | 0.1% | 0.3% | 0.5% | 0.3% |
Others | 20.9% | 28.4% | 5.0% | 5.9% | 4.9% | 29.2% | 20.8% | 34% |
Unclassified | 0.4% | 0.2% | 0.1% | 0.1% | 0.1% | 0.4% | 0.3% | 0.3% |
Total classified | 99.6% | 99.8% | 99.9% | 99.9% | 99.9% | 99.6% | 99.7% | 99.7% |
Phytoplasma 16S rDNA | Ceratobasidium-Specific 28S | Co-Infection | |||
---|---|---|---|---|---|
Sample Type | PCR/ScaI Digestion 1 | Accession Numbers | PCR Result | Accession Numbers | PCR Result |
Symptomatic Pre-harvesting (7 months) | |||||
Leaves | 0/105 (0%) | OQ797681.1 2 OQ797682.1 2 OQ797683.1 2 OQ797684.1 2 | 81/105 (77%) | OR673508.1 OR673503.1 | 0/105 (0%) |
Harvesting (9 months) | |||||
Leaves | 0/23 (0%) | NT 3 | 23/23 (100%) | NT 3 | 0/23 (0%) |
Roots | 0/13 (0%) | NT 3 | 9/13 (69%) | OR673502.1 | 0/13 (0%) |
Stem | 2/97 (2.1%) | NT 3 | 91/97 (93.8%) | OR673504.1 OR673505.1 OR673506.1 OR673507.1 | 2/97 (2.1%) |
Asymptomatic (9 months) | |||||
Leaves | 0/50 (0%) | NT 3 | 0/50 (0%) | NT 3 | 0/50 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landicho, D.M.; Montañez, R.J.M.; Camagna, M.; Neang, S.; Bulasag, A.S.; Magdaraog, P.M.; Sato, I.; Takemoto, D.; Maejima, K.; Pinili, M.S.; et al. Status of Cassava Witches’ Broom Disease in the Philippines and Identification of Potential Pathogens by Metagenomic Analysis. Biology 2024, 13, 522. https://doi.org/10.3390/biology13070522
Landicho DM, Montañez RJM, Camagna M, Neang S, Bulasag AS, Magdaraog PM, Sato I, Takemoto D, Maejima K, Pinili MS, et al. Status of Cassava Witches’ Broom Disease in the Philippines and Identification of Potential Pathogens by Metagenomic Analysis. Biology. 2024; 13(7):522. https://doi.org/10.3390/biology13070522
Chicago/Turabian StyleLandicho, Darwin Magsino, Ray Jerome Mojica Montañez, Maurizio Camagna, Sokty Neang, Abriel Salaria Bulasag, Peter Magan Magdaraog, Ikuo Sato, Daigo Takemoto, Kensaku Maejima, Marita Sanfuego Pinili, and et al. 2024. "Status of Cassava Witches’ Broom Disease in the Philippines and Identification of Potential Pathogens by Metagenomic Analysis" Biology 13, no. 7: 522. https://doi.org/10.3390/biology13070522
APA StyleLandicho, D. M., Montañez, R. J. M., Camagna, M., Neang, S., Bulasag, A. S., Magdaraog, P. M., Sato, I., Takemoto, D., Maejima, K., Pinili, M. S., & Chiba, S. (2024). Status of Cassava Witches’ Broom Disease in the Philippines and Identification of Potential Pathogens by Metagenomic Analysis. Biology, 13(7), 522. https://doi.org/10.3390/biology13070522