The Low Survivability of Transplanted Gonadal Grafts: The Impact of Cryopreservation and Transplantation Conditions on Mitochondrial Function
Abstract
:Simple Summary
Abstract
1. Fertility Preservation in Oncological Patients
2. Cryopreservation: Principles of Cryopreservation and Known Limitations
2.1. Cryodamage: Mitochondrial Dysfunction and Oxidative Stress
2.2. Freezing Conditions and the Mitochondrial Health of Reproductive Tissues
3. The Transplantation of Cryopreserved Gonadal Tissues: The Effects of Ischemia/Reperfusion (I/R) on Reproductive Cells, Mitochondrial Function, and Tissue Integrity
4. Prevention against Cryodamage
5. Prevention against Ischemic Damage in Transplanted Gonadal Grafts
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonigo, C.; Beau, I.; Binart, N.; Grynberg, M. The Impact of Chemotherapy on the Ovaries: Molecular Aspects and the Prevention of Ovarian Damage. Int. J. Mol. Sci. 2019, 20, 5342. [Google Scholar] [CrossRef] [PubMed]
- Pai, H.D.; Baid, R.; Palshetkar, N.P.; Pai, A.; Pai, R.D.; Palshetkar, R. Oocyte Cryopreservation—Current Scenario and Future Perspectives: A Narrative Review. J. Hum. Reprod. Sci. 2021, 14, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Himpe, J.; Lammerant, S.; Van den Bergh, L.; Lapeire, L.; De Roo, C. The Impact of Systemic Oncological Treatments on the Fertility of Adolescents and Young Adults-A Systematic Review. Life 2023, 13, 1209. [Google Scholar] [CrossRef] [PubMed]
- Howell, S.J.; Shalet, S.M. Testicular function following chemotherapy. Hum. Reprod. Update 2001, 7, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Keros, V.; Rosenlund, B.; Hultenby, K.; Aghajanova, L.; Levkov, L.; Hovatta, O. Optimizing cryopreservation of human testicular tissue: Comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants. Hum. Reprod. 2005, 20, 1676–1687. [Google Scholar] [CrossRef] [PubMed]
- Biedka, M.; Kuźba-Kryszak, T.; Nowikiewicz, T.; Żyromska, A. Fertility impairment in radiotherapy. Contemp. Oncol. 2016, 20, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Karavani, G.; Rottenstreich, A.; Schachter-Safrai, N.; Cohen, A.; Weintraub, M.; Imbar, T.; Revel, A. Chemotherapy-based gonadotoxicity risk evaluation as a predictor of reproductive outcomes in post-pubertal patients following ovarian tissue cryopreservation. BMC Women’s Health 2021, 21, 201. [Google Scholar] [CrossRef] [PubMed]
- Assi, J.; Santos, J.; Bonetti, T.; Serafini, P.C.; Motta, E.L.A.; Chehin, M.B. Psychosocial benefits of fertility preservation for young cancer patients. J. Assist. Reprod. Genet. 2018, 35, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Takae, S.; Iwahata, Y.; Sugishita, Y.; Iwahata, H.; Kanamori, R.; Shiraishi, E.; Ito, K.; Suzuki, Y.; Yamaya, Y.; Tanaka, K.; et al. Survey of understanding and awareness of fertility preservation in pediatric patients: Is conversation about fertility preservation unpleasant for pediatric patients? Front. Endocrinol. 2023, 13, 1074603. [Google Scholar] [CrossRef] [PubMed]
- Oktay, K.; Harvey, B.E.; Partridge, A.H.; Quinn, G.P.; Reinecke, J.; Taylor, H.S.; Wallace, W.H.; Wang, E.T.; Loren, A.W. Fertility Preservation in Patients With Cancer: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1994–2001. [Google Scholar] [CrossRef]
- Valli-Pulaski, H.; Peters, K.A.; Gassei, K.; Steimer, S.R.; Sukhwani, M.; Hermann, B.P.; Dwomor, L.; David, S.; Fayomi, A.P.; Munyoki, S.K.; et al. Testicular tissue cryopreservation: 8 years of experience from a coordinated network of academic centers. Hum. Reprod. 2019, 34, 966–977. [Google Scholar] [CrossRef]
- Goossens, E.; Jahnukainen, K.; Mitchell, R.T.; van Pelt, A.; Pennings, G.; Rives, N.; Poels, J.; Wyns, C.; Lane, S.; Rodriguez-Wallberg, K.A.; et al. Fertility preservation in boys: Recent developments and new insights. Hum. Reprod. Open 2020, 2020, hoaa016. [Google Scholar] [CrossRef]
- Fayomi, A.P.; Peters, K.; Sukhwani, M.; Valli-Pulaski, H.; Shetty, G.; Meistrich, M.L.; Houser, L.; Robertson, N.; Roberts, V.; Ramsey, C.; et al. Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. Science 2019, 363, 1314–1319. [Google Scholar] [CrossRef]
- European IVF Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE); Smeenk, J.; Wyns, C.; De Geyter, C.; Kupka, M.; Bergh, C.; Cuevas Saiz, I.; De Neubourg, D.; Rezabek, K.; Tandler-Schneider, A.; et al. ART in Europe, 2019: Results generated from European registries by ESHRE. Hum. Reprod. 2023, 38, 2321–2338. [Google Scholar] [CrossRef]
- Jahnukainen, K.; Ehmcke, J.; Nurmio, M.; Schlatt, S. Autologous ectopic grafting of cryopreserved testicular tissue preserves the fertility of prepubescent monkeys that receive sterilizing cytotoxic therapy. Cancer Res. 2012, 72, 5174–5178. [Google Scholar] [CrossRef]
- Grynberg, M.; Poulain, M.; Sebag-Peyrelevade, S.; le Parco, S.; Fanchin, R.; Frydman, N. Ovarian tissue and follicle transplantation as an option for fertility preservation. Fertil. Steril. 2012, 97, 1260–1268. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Electronic address: [email protected] Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: A committee opinion. Fertil. Steril. 2019, 112, 1022–1033. [Google Scholar] [CrossRef]
- ESHRE Guideline Group on Female Fertility Preservation; Anderson, R.A.; Amant, F.; Braat, D.; D’Angelo, A.; Chuva de Sousa Lopes, S.M.; Demeestere, I.; Dwek, S.; Frith, L.; Lambertini, M.; et al. ESHRE guideline: Female fertility preservation. Hum. Reprod. Open 2020, 2020, hoaa052. [Google Scholar] [CrossRef]
- Donnez, J.; Dolmans, M.M.; Demylle, D.; Jadoul, P.; Pirard, C.; Squifflet, J.; Martinez-Madrid, B.; van Langendonckt, A. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 2004, 364, 1405–1410. [Google Scholar] [CrossRef]
- Khattak, H.; Malhas, R.; Craciunas, L.; Afifi, Y.; Amorim, C.A.; Fishel, S.; Silber, S.; Gook, D.; Demeestere, I.; Bystrova, O.; et al. Fresh and cryopreserved ovarian tissue transplantation for preserving reproductive and endocrine function: A systematic review and individual patient data meta-analysis. Hum. Reprod. Update 2022, 28, 400–416. [Google Scholar] [CrossRef]
- Fabbri, R.; Vicenti, R.; Macciocca, M.; Martino, N.A.; Dell’Aquila, M.E.; Pasquinelli, G.; Morselli-Labate, A.M.; Seracchioli, R.; Paradisi, R. Morphological, ultrastructural and functional imaging of frozen/thawed and vitrified/warmed human ovarian tissue retrieved from oncological patients. Hum. Reprod. 2016, 31, 1838–1849. [Google Scholar] [CrossRef]
- Mazur, P. Cryobiology: The freezing of biological systems. Science 1970, 168, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Bakhach, J. The cryopreservation of composite tissues: Principles and recent advancement on cryopreservation of different type of tissues. Organogenesis 2009, 5, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Whaley, D.; Damyar, K.; Witek, R.P.; Mendoza, A.; Alexander, M.; Lakey, J.R. Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transplant. 2021, 30, 963689721999617. [Google Scholar] [CrossRef]
- Pegg, D.E. The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology 2010, 60 (Suppl. 3), S36–S44. [Google Scholar] [CrossRef] [PubMed]
- Towey, J.J.; Dougan, L. Structural examination of the impact of glycerol on water structure. J. Phys. Chem. B 2012, 116, 1633–1641. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.J.; Xiong, Y.; Ding, G.L.; Zhang, D.; Meng, Y.; Huang, H.F.; Sheng, J.Z. Cryoprotectants up-regulate expression of mouse oocyte AQP7, which facilitates water diffusion during cryopreservation. Fertil. Steril. 2013, 99, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.A.; Gibson, M.I. Post-Thaw Culture and Measurement of Total Cell Recovery Is Crucial in the Evaluation of New Macromolecular Cryoprotectants. Biomacromolecules 2020, 21, 2864–2873. [Google Scholar] [CrossRef] [PubMed]
- Lopes, É.P.F.; Tetaping, G.M.; Novaes, M.A.S.; Dos Santos, R.R.; Rodrigues, A.P.R. Systematic review and meta-analysis on patented and non-patented vitrification processes to ovarian tissue reported between 2000 and 2021. Anim. Reprod. 2023, 20, e20230065. [Google Scholar] [CrossRef] [PubMed]
- Unni, S.; Kasiviswanathan, S.; D’Souza, S.; Khavale, S.; Mukherjee, S.; Patwardhan, S.; Bhartiya, D. Efficient cryopreservation of testicular tissue: Effect of age, sample state, and concentration of cryoprotectant. Fertil. Steril. 2012, 97, 200–208.e1. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Hu, Y.; Chen, X.; Tan, S. Cryopreservation of tissues and organs: Present, bottlenecks, and future. Front. Vet. Sci. 2023, 10, 1201794. [Google Scholar] [CrossRef]
- Newton, H.; Fisher, J.; Arnold, J.R.; Pegg, D.E.; Faddy, M.J.; Gosden, R.G. Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum. Reprod. 1998, 13, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Best, B.P. Cryoprotectant Toxicity: Facts, Issues, and Questions. Rejuvenation Res. 2015, 18, 422–436. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Laouar, L.; Dong, R.; Elliott, J.A.W.; Jomha, N.M. Evaluation of five additives to mitigate toxicity of cryoprotective agents on porcine chondrocytes. Cryobiology 2019, 88, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Crisol, M.; Yong, K.W.; Wu, K.; Laouar, L.; Elliott, J.A.W.; Jomha, N.M. Effectiveness of Clinical-Grade Chondroitin Sulfate and Ascorbic Acid in Mitigating Cryoprotectant Toxicity in Porcine Articular Cartilage. Biopreservation Biobanking 2022, 20, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Holmström, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Shadel, G.S.; Horvath, T.L. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015, 163, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Salahudeen, A.K.; Huang, H.; Joshi, M.; Moore, N.A.; Jenkins, J.K. Involvement of the mitochondrial pathway in cold storage and rewarming-associated apoptosis of human renal proximal tubular cells. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2003, 3, 273–280. [Google Scholar] [CrossRef]
- Yard, B.; Beck, G.; Schnuelle, P.; Braun, C.; Schaub, M.; Bechtler, M.; Göttmann, U.; Xiao, Y.; Breedijk, A.; Wandschneider, S.; et al. Prevention of cold-preservation injury of cultured endothelial cells by catecholamines and related compounds. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2004, 4, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Kanitkar, M.; Bhonde, R.R. Curcumin treatment enhances islet recovery by induction of heat shock response proteins, Hsp70 and heme oxygenase-1, during cryopreservation. Life Sci. 2008, 82, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.; Wright-Paradis, C.; Gnaiger, E.; Helge, J.W.; Boushel, R. Cryopreservation of human skeletal muscle impairs mitochondrial function. Cryo Lett. 2012, 33, 170–176. [Google Scholar]
- Acin-Perez, R.; Benador, I.Y.; Petcherski, A.; Veliova, M.; Benavides, G.A.; Lagarrigue, S.; Caudal, A.; Vergnes, L.; Murphy, A.N.; Karamanlidis, G.; et al. A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J. 2020, 39, e104073. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cowley, S.; Flaim, C.J.; James, W.; Seymour, L.; Cui, Z. The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol. Prog. 2010, 26, 827–837. [Google Scholar] [CrossRef]
- Bilodeau, J.F.; Chatterjee, S.; Sirard, M.A.; Gagnon, C. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol. Reprod. Dev. 2000, 55, 282–288. [Google Scholar] [CrossRef]
- Martín-Cano, F.E.; Gaitskell-Phillips, G.; Ortiz-Rodríguez, J.M.; Silva-Rodríguez, A.; Román, Á.; Rojo-Domínguez, P.; Alonso-Rodríguez, E.; Tapia, J.A.; Gil, M.C.; Ortega-Ferrusola, C.; et al. Proteomic profiling of stallion spermatozoa suggests changes in sperm metabolism and compromised redox regulation after cryopreservation. J. Proteom. 2020, 221, 103765. [Google Scholar] [CrossRef] [PubMed]
- Roness, H.; Meirow, D. FERTILITY PRESERVATION: Follicle reserve loss in ovarian tissue transplantation. Reproduction 2019, 158, F35–F44. [Google Scholar] [CrossRef] [PubMed]
- Nottola, S.A.; Camboni, A.; Van Langendonckt, A.; Demylle, D.; Macchiarelli, G.; Dolmans, M.M.; Martinez-Madrid, B.; Correr, S.; Donnez, J. Cryopreservation and xenotransplantation of human ovarian tissue: An ultrastructural study. Fertil. Steril. 2008, 90, 23–32. [Google Scholar] [CrossRef]
- Ting, A.Y.; Yeoman, R.R.; Lawson, M.S.; Zelinski, M.B. In vitro development of secondary follicles from cryopreserved rhesus macaque ovarian tissue after slow-rate freeze or vitrification. Hum. Reprod. 2011, 26, 2461–2472. [Google Scholar] [CrossRef]
- Newton, H.; Aubard, Y.; Rutherford, A.; Sharma, V.; Gosden, R. Low temperature storage and grafting of human ovarian tissue. Hum. Reprod. 1996, 11, 1487–1491. [Google Scholar] [CrossRef] [PubMed]
- Donnez, J.; Silber, S.; Andersen, C.Y.; Demeestere, I.; Piver, P.; Meirow, D.; Pellicer, A.; Dolmans, M.M. Children born after autotransplantation of cryopreserved ovarian tissue. a review of 13 live births. Ann. Med. 2011, 43, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Silber, S.; Kagawa, N.; Kuwayama, M.; Gosden, R. Duration of fertility after fresh and frozen ovary transplantation. Fertil. Steril. 2010, 94, 2191–2196. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, R.; Pasquinelli, G.; Keane, D.; Magnani, V.; Paradisi, R.; Venturoli, S. Optimization of protocols for human ovarian tissue cryopreservation with sucrose, 1,2-propanediol and human serum. Reprod. Biomed. Online 2010, 21, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Celik, S.; Ozkavukcu, S.; Celik-Ozenci, C. Altered expression of activator proteins that control follicle reserve after ovarian tissue cryopreservation/transplantation and primordial follicle loss prevention by rapamycin. J. Assist. Reprod. Genet. 2020, 37, 2119–2136. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Zhao, G.; Han, D.; Zhu, K.; Chen, D.; Zhang, Z.; Wei, Z.; Cao, Y.; Zhou, P. Effects of vitrification cryopreservation on follicular morphology and stress relaxation behaviors of human ovarian tissues: Sucrose versus trehalose as the non-permeable protective agent. Hum. Reprod. 2015, 30, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Mathias, F.J.; D’Souza, F.; Uppangala, S.; Salian, S.R.; Kalthur, G.; Adiga, S.K. Ovarian tissue vitrification is more efficient than slow freezing in protecting oocyte and granulosa cell DNA integrity. Syst. Biol. Reprod. Med. 2014, 60, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Amorim, C.A.; David, A.; Van Langendonckt, A.; Dolmans, M.M.; Donnez, J. Vitrification of human ovarian tissue: Effect of different solutions and procedures. Fertil. Steril. 2011, 95, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Yoshioka, N.; Takae, S.; Sugishita, Y.; Tamura, M.; Hashimoto, S.; Morimoto, Y.; Kawamura, K. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum. Reprod. 2015, 30, 608–615. [Google Scholar] [CrossRef]
- Borges, E.N.; Silva, R.C.; Futino, D.O.; Rocha-Junior, C.M.; Amorim, C.A.; Báo, S.N.; Lucci, C.M. Cryopreservation of swine ovarian tissue: Effect of different cryoprotectants on the structural preservation of preantral follicle oocytes. Cryobiology 2009, 59, 195–200. [Google Scholar] [CrossRef]
- Fabbri, R.; Vicenti, R.; Martino, N.A.; Dell’Aquila, M.E.; Pasquinelli, G.; Macciocca, M.; Magnani, V.; Paradisi, R.; Venturoli, S. Confocal laser scanning microscopy analysis of bioenergetic potential and oxidative stress in fresh and frozen-thawed human ovarian tissue from oncologic patients. Fertil. Steril. 2014, 101, 795–804. [Google Scholar] [CrossRef]
- Leonel, E.C.R.; Corral, A.; Risco, R.; Camboni, A.; Taboga, S.R.; Kilbride, P.; Vazquez, M.; Morris, J.; Dolmans, M.M.; Amorim, C.A. Stepped vitrification technique for human ovarian tissue cryopreservation. Sci. Rep. 2019, 9, 20008. [Google Scholar] [CrossRef]
- Wu, Q.; Ru, G.; Xiao, W.; Wang, Q.; Li, Z. Adverse effects of ovarian cryopreservation and auto-transplantation on ovarian grafts and quality of produced oocytes in a mouse model. Clin. Sci. 2023, 137, 1577–1591. [Google Scholar] [CrossRef]
- Rodrigues, A.Q.; Picolo, V.L.; Goulart, J.T.; Silva, I.M.G.; Ribeiro, R.B.; Aguiar, B.A.; Ferreira, Y.B.; Oliveira, D.M.; Lucci, C.M.; de Bem, A.F.; et al. Metabolic activity in cryopreserved and grafted ovarian tissue using high-resolution respirometry. Sci. Rep. 2021, 11, 21517. [Google Scholar] [CrossRef]
- Keros, V.; Hultenby, K.; Borgström, B.; Fridström, M.; Jahnukainen, K.; Hovatta, O. Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum. Reprod. 2007, 22, 1384–1395. [Google Scholar] [CrossRef]
- Poels, J.; Van Langendonckt, A.; Many, M.C.; Wese, F.X.; Wyns, C. Vitrification preserves proliferation capacity in human spermatogonia. Hum. Reprod. 2013, 28, 578–589. [Google Scholar] [CrossRef]
- Picton, H.M.; Wyns, C.; Anderson, R.A.; Goossens, E.; Jahnukainen, K.; Kliesch, S.; Mitchell, R.T.; Pennings, G.; Rives, N.; Tournaye, H.; et al. ESHRE Task Force on Fertility Preservation in Severe Diseases a European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys. Hum. Reprod. 2015, 30, 2463–2475. [Google Scholar] [CrossRef]
- Kvist, K.; Thorup, J.; Byskov, A.G.; Høyer, P.E.; Møllgård, K.; Yding Andersen, C. Cryopreservation of intact testicular tissue from boys with cryptorchidism. Hum. Reprod. 2006, 21, 484–491. [Google Scholar] [CrossRef]
- Curaba, M.; Poels, J.; van Langendonckt, A.; Donnez, J.; Wyns, C. Can prepubertal human testicular tissue be cryopreserved by vitrification? Fertil. Steril. 2011, 95, 2123-e9. [Google Scholar] [CrossRef]
- Hajiaghalou, S.; Ebrahimi, B.; Shahverdi, A.; Sharbatoghli, M.; Beigi Boroujeni, N. Comparison of apoptosis pathway following the use of two protocols for vitrification of immature mouse testicular tissue. Theriogenology 2016, 86, 2073–2082. [Google Scholar] [CrossRef]
- Lucio, C.F.; Regazzi, F.M.; Silva, L.C.G.; Angrimani, D.S.R.; Nichi, M.; Vannucchi, C.I. Oxidative stress at different stages of two-step semen cryopreservation procedures in dogs. Theriogenology 2016, 85, 1568–1575. [Google Scholar] [CrossRef]
- Moubasher, A.E.; Taha, E.A.; Younis, A.; Fakhry, M.E.; Morsy, H. Testicular tissue oxidative stress in azoospermic patients: Effect of cryopreservation. Andrologia 2020, 52, e13817. [Google Scholar] [CrossRef]
- Pukazhenthi, B.S.; Nagashima, J.; Travis, A.J.; Costa, G.M.; Escobar, E.N.; França, L.R.; Wildt, D.E. Slow freezing, but not vitrification supports complete spermatogenesis in cryopreserved, neonatal sheep testicular xenografts. PLoS ONE 2015, 10, e0123957. [Google Scholar] [CrossRef]
- Zhang, X.G.; Wang, Y.H.; Han, C.; Hu, S.; Wang, L.Q.; Hu, J.H. Effects of trehalose supplementation on cell viability and oxidative stress variables in frozen-thawed bovine calf testicular tissue. Cryobiology 2015, 70, 246–252. [Google Scholar] [CrossRef]
- Lima, D.B.C.; Silva, L.D.M.D.; Comizzoli, P. Influence of warming and reanimation conditions on seminiferous tubule morphology, mitochondrial activity, and cell composition of vitrified testicular tissues in the domestic cat model. PLoS ONE 2018, 13, e0207317. [Google Scholar] [CrossRef]
- Farias, J.G.; Puebla, M.; Acevedo, A.; Tapia, P.J.; Gutierrez, E.; Zepeda, A.; Calaf, G.; Juantok, C.; Reyes, J.G. Oxidative stress in rat testis and epididymis under intermittent hypobaric hypoxia: Protective role of ascorbate supplementation. J. Androl. 2010, 31, 314–321. [Google Scholar] [CrossRef]
- Lee, J.; Kong, H.S.; Kim, E.J.; Youm, H.W.; Lee, J.R.; Suh, C.S.; Kim, S.H. Ovarian injury during cryopreservation and transplantation in mice: A comparative study between cryoinjury and ischemic injury. Hum. Reprod. 2016, 31, 1827–1837. [Google Scholar] [CrossRef]
- Prag, H.; Kula-Alwar, D.; Beach, T.; Gruszczyk, A.; Burger, N.; Murphy, P. Mitochondrial ROS production during ischemia-reperfusion injury. In Oxidative Stress Eustress and Distress; Sies, H., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 513–538. [Google Scholar]
- Kirmizi, D.A.; Baser, E.; Okan, A.; Kara, M.; Yalvac, E.S.; Doganyigit, Z. The effect of a natural molecule in ovary ischemia reperfusion damage: Does lycopene protect ovary? Exp. Anim. 2021, 70, 37–44. [Google Scholar] [CrossRef]
- Kim, S.S.; Yang, H.W.; Kang, H.G.; Lee, H.H.; Lee, H.C.; Ko, D.S.; Gosden, R.G. Quantitative assessment of ischemic tissue damage in ovarian cortical tissue with or without antioxidant (ascorbic acid) treatment. Fertil. Steril. 2004, 82, 679–685. [Google Scholar] [CrossRef]
- Della Rocca, Y.; Fonticoli, L.; Rajan, T.S.; Trubiani, O.; Caputi, S.; Diomede, F.; Pizzicannella, J.; Marconi, G.D. Hypoxia: Molecular pathophysiological mechanisms in human diseases. J. Physiol. Biochem. 2022, 78, 739–752. [Google Scholar] [CrossRef]
- Akdemir, A.; Erbas, O.; Gode, F.; Ergenoglu, M.; Yeniel, O.; Oltulu, F.; Yavasoglu, A.; Taskiran, D. Protective effect of oxytocin on ovarian ischemia-reperfusion injury in rats. Peptides 2014, 55, 126–130. [Google Scholar] [CrossRef]
- Aksak Karamese, S.; Toktay, E.; Unal, D.; Selli, J.; Karamese, M.; Malkoc, I. The protective effects of beta-carotene against ischemia/reperfusion injury in rat ovarian tissue. Acta Histochem. 2015, 117, 790–797. [Google Scholar] [CrossRef]
- Murphy, M.P.; Hartley, R.C. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov. 2018, 17, 865–886. [Google Scholar] [CrossRef]
- Wu, M.Y.; Yiang, G.T.; Liao, W.T.; Tsai, A.P.; Cheng, Y.L.; Cheng, P.W.; Li, C.Y.; Li, C.J. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2018, 46, 1650–1667. [Google Scholar] [CrossRef]
- Tabet, F.; Touyz, R. Reactive Oxygen Species, Oxidative Stress, and Vascular Biology in Hypertension. In Comprehensive Hypertension; Lip, G.Y.H., Hall, J.E., Eds.; Mosby: London, UK, 2007; pp. 337–347. [Google Scholar] [CrossRef]
- Ozkisacik, S.; Yazici, M.; Gursoy, H.; Culhaci, N. Does gradual detorsion protect the ovary against ischemia-reperfusion injury in rats? Pediatr. Surg. Int. 2014, 30, 437–440. [Google Scholar] [CrossRef]
- Han, C.; Zeng, Q.; He, L.; Luan, Z.; Liu, R.; Zhang, G.; Liu, W. Advances in the mechanisms related to follicle loss after frozen-thawed ovarian tissue transplantation. Transpl. Immunol. 2023, 81, 101935. [Google Scholar] [CrossRef]
- Gavish, Z.; Spector, I.; Peer, G.; Schlatt, S.; Wistuba, J.; Roness, H.; Meirow, D. Follicle activation is a significant and immediate cause of follicle loss after ovarian tissue transplantation. J. Assist. Reprod. Genet. 2018, 35, 61–69. [Google Scholar] [CrossRef]
- Gavish, Z.; Peer, G.; Roness, H.; Cohen, Y.; Meirow, D. Follicle activation and ‘burn-out’ contribute to post-transplantation follicle loss in ovarian tissue grafts: The effect of graft thickness. Hum. Reprod. 2014, 29, 989–996. [Google Scholar] [CrossRef]
- Arena, S.; Iacona, R.; Antonuccio, P.; Russo, T.; Salvo, V.; Gitto, E.; Impellizzeri, P.; Romeo, C. Medical perspective in testicular ischemia-reperfusion injury. Exp. Ther. Med. 2017, 13, 2115–2122. [Google Scholar] [CrossRef]
- Li, J.T.; Zhang, L.; Liu, J.J.; Lu, X.L.; Wang, H.X.; Zhang, J.M. Testicular damage during cryopreservation and transplantation. Andrologia 2021, 53, e14191. [Google Scholar] [CrossRef]
- Rasaeifar, K.; Zavareh, S.; Hajighasem-Kashani, M.; Nasiri, M. Effects of pulsed electromagnetic fields and N-acetylcysteine on transplantation of vitrified mouse ovarian tissue. Electromagn. Biol. Med. 2023, 42, 67–80. [Google Scholar] [CrossRef]
- Qin, Q.; Li, Z.; Liu, R.; Liu, S.; Guo, M.; Zhang, M.; Wu, H.; Huang, L. Effects of resveratrol on HIF-1α/VEGF pathway and apoptosis in vitrified duck ovary transplantation. Theriogenology 2023, 210, 84–93. [Google Scholar] [CrossRef]
- Wang, F.; Tian, Y.; Huang, L.; Qin, T.; Ma, W.; Pei, C.; Xu, B.; Han, H.; Liu, X.; Pan, P.; et al. Roles of follicle stimulating hormone and sphingosine 1-phosphate co-administered in the process in mouse ovarian vitrification and transplantation. J. Ovarian Res. 2023, 16, 173. [Google Scholar] [CrossRef]
- Kong, H.S.; Hong, Y.H.; Lee, J.; Youm, H.W.; Lee, J.R.; Suh, C.S.; Kim, S.H. Antifreeze Protein Supplementation During the Warming of Vitrified Bovine Ovarian Tissue Can Improve the Ovarian Tissue Quality After Xenotransplantation. Front. Endocrinol. 2021, 12, 672619. [Google Scholar] [CrossRef]
- Bedaiwy, M.A.; Hussein, M.R.; Biscotti, C.; Falcone, T. Cryopreservation of intact human ovary with its vascular pedicle. Hum. Reprod. 2006, 21, 3258–3269. [Google Scholar] [CrossRef]
- Westphal, J.R.; Gerritse, R.; Braat, D.D.M.; Beerendonk, C.C.M.; Peek, R. Complete protection against cryodamage of cryopreserved whole bovine and human ovaries using DMSO as a cryoprotectant. J. Assist. Reprod. Genet. 2017, 34, 1217–1229. [Google Scholar] [CrossRef]
- Lee, S.; Cho, H.W.; Kim, B.; Lee, J.K.; Kim, T. The Effectiveness of Anti-Apoptotic Agents to Preserve Primordial Follicles and Prevent Tissue Damage during Ovarian Tissue Cryopreservation and Xenotransplantation. Int. J. Mol. Sci. 2021, 22, 2534. [Google Scholar] [CrossRef]
- Terren, C.; Nisolle, M.; Munaut, C. Pharmacological inhibition of the PI3K/PTEN/Akt and mTOR signalling pathways limits follicle activation induced by ovarian cryopreservation and in vitro culture. J. Ovarian Res. 2021, 14, 95. [Google Scholar] [CrossRef]
- Xi, H.; Ren, F.; Zhang, X.; Li, Y.; Zhang, L.; Wen, F.; Feng, T.; Zhang, X.; Niu, T.; Hu, J.; et al. Trehalose protects testicular tissue of dairy goat upon cryopreservation. Reprod. Domest. Anim. = Zuchthyg. 2019, 54, 1552–1559. [Google Scholar] [CrossRef]
- Jung, S.E.; Ahn, J.S.; Kim, Y.H.; Kim, B.J.; Won, J.H.; Ryu, B.Y. Effective cryopreservation protocol for preservation of male primate (Macaca fascicularis) prepubertal fertility. Reprod. Biomed. Online 2020, 41, 1070–1083. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Cai, N.N.; Jiang, Y.; Yang, R.; Shi, J.Z.; Zhu, C.L.; Zhang, B.Y.; Tang, B.; Zhang, X.M. Survivable potential of germ cells after trehalose cryopreservation of bovine testicular tissues. Cryobiology 2021, 101, 105–114. [Google Scholar] [CrossRef]
- Dumont, L.; Oblette, A.; Rondanino, C.; Jumeau, F.; Bironneau, A.; Liot, D.; Duchesne, V.; Wils, J.; Rives, N. Vitamin A prevents round spermatid nuclear damage and promotes the production of motile sperm during in vitro maturation of vitrified pre-pubertal mouse testicular tissue. Mol. Hum. Reprod. 2016, 22, 819–832. [Google Scholar] [CrossRef]
- Rodrigues, A.Q.; Silva, I.M.; Goulart, J.T.; Araújo, L.O.; Ribeiro, R.B.; Aguiar, B.A.; Ferreira, Y.B.; Silva, J.K.O.; Bezerra, J.L.S.; Lucci, C.M.; et al. Effects of erythropoietin on ischaemia-reperfusion when administered before and after ovarian tissue transplantation in mice. Reprod. Biomed. Online 2023, 47, 103234. [Google Scholar] [CrossRef]
- Ahmadi, S.; Mehranjani, M.S. Taurine improves follicular survival and function of mice ovarian grafts through increasing CD31 and GDF9 expression and reducing oxidative stress and apoptosis. Eur. J. Pharmacol. 2021, 903, 174134. [Google Scholar] [CrossRef]
- Shiratsuki, S.; Hara, T.; Munakata, Y.; Shirasuna, K.; Kuwayama, T.; Iwata, H. Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells. Mol. Cell. Endocrinol. 2016, 437, 75–85. [Google Scholar] [CrossRef]
- He, Y.; Peng, X.; Wu, T.; Yang, W.; Liu, W.; Zhang, J.; Su, Y.; Kong, F.; Dou, X.; Li, J. Restricting the induction of NGF in ovarian stroma engenders selective follicular activation through the mTOR signaling pathway. Cell Death Dis. 2017, 8, e2817. [Google Scholar] [CrossRef]
- Celik, S.; Celikkan, F.T.; Ozkavukcu, S.; Can, A.; Celik-Ozenci, C. Expression of inhibitor proteins that control primordial follicle reserve decreases in cryopreserved ovaries after autotransplantation. J. Assist. Reprod. Genet. 2018, 35, 615–626. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Wang, L.; Liang, S.; Xu, B.; Ying, X.; Li, J. The protective effects of rapamycin pretreatment on ovarian damage during ovarian tissue cryopreservation and transplantation. Biochem. Biophys. Res. Commun. 2021, 534, 780–786. [Google Scholar] [CrossRef]
- Bindels, J.; Squatrito, M.; Bernet, L.; Nisolle, M.; Henry, L.; Munaut, C. The mTOR Inhibitor Rapamycin Counteracts Follicle Activation Induced by Ovarian Cryopreservation in Murine Transplantation Models. Medicina 2023, 59, 1474. [Google Scholar] [CrossRef]
- Olesen, H.Ø.; Pors, S.E.; Jensen, L.B.; Grønning, A.P.; Lemser, C.E.; Nguyen Heimbürger, M.T.H.; Mamsen, L.S.; Getreu, N.; Christensen, S.T.; Andersen, C.Y.; et al. N-acetylcysteine protects ovarian follicles from ischemia-reperfusion injury in xenotransplanted human ovarian tissue. Hum. Reprod. 2021, 36, 429–443. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Zavareh, S.; Nasiri, M. The Combination of Estradiol and N-Acetylcysteine Reduces Ischemia-Reperfusion Injuries of Mice Autografted Ovarian Tissue. Biopreservation Biobanking 2024, 22, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, Y.; Zhu, S.; Tuo, Y.; Cai, B.; Long, T.; Zhao, W.; Ye, X.; Lu, X.; Long, L. Protective Effects of Reduced Glutathione and Ulinastatin on Xeno-transplanted Human Ovarian Tissue Against Ischemia and Reperfusion Injury. Cell Transplant. 2021, 30, 963689721997151. [Google Scholar] [CrossRef] [PubMed]
- Eken, M.K.; Ersoy, G.S.; Kaygusuz, E.I.; Devranoğlu, B.; Takır, M.; Çilingir, Ö.T.; Çevik, Ö. Etanercept protects ovarian reserve against ischemia/reperfusion injury in a rat model. Arch. Med. Sci. AMS 2019, 15, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Sanamiri, K.; Soleimani Mehranjani, M.; Shahhoseini, M.; Shariatzadeh, M.A. L-Carnitine improves follicular survival and function in ovarian grafts in the mouse. Reprod. Fertil. Dev. 2022, 34, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Moniz, I.; Ramalho-Santos, J.; Branco, A.F. Differential Oxygen Exposure Modulates Mesenchymal Stem Cell Metabolism and Proliferation through mTOR Signaling. Int. J. Mol. Sci. 2022, 23, 3749. [Google Scholar] [CrossRef] [PubMed]
- Branco, A.; Moniz, I.; Ramalho-Santos, J. Mitochondria as biological targets for stem cell and organismal senescence. Eur. J. Cell Biol. 2023, 102, 151289. [Google Scholar] [CrossRef] [PubMed]
- Christie, J.D.; Edwards, L.B.; Kucheryavaya, A.Y.; Aurora, P.; Dobbels, F.; Kirk, R.; Rahmel, A.O.; Stehlik, J.; Hertz, M.I. The Registry of the International Society for Heart and Lung Transplantation: Twenty-seventh official adult lung and heart-lung transplant report—2010. J. Heart Lung Transplant. 2010, 29, 1104–1118. [Google Scholar] [CrossRef]
- Johnson, M.R.; Meyer, K.H.; Haft, J.; Kinder, D.; Webber, S.A.; Dyke, D.B. Heart Transplantation in the United States, 1999–2008. Am. J. Transplant. 2010, 10, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Young, J.B.; Hauptman, P.J.; Naftel, D.C.; Ewald, G.; Aaronson, K.; Dec, G.W.; Taylor, D.O.; Higgins, R.; Platt, L.; Kirklin, J. Determinants of early graft failure following cardiac transplantation, a 10-year, multi-institutional, multivariable analysis. J. Heart Lung Transplant. 2001, 20, 212. [Google Scholar] [CrossRef]
- Manavella, D.D.; Cacciottola, L.; Payen, V.L.; Amorim, C.A.; Donnez, J.; Dolmans, M.M. Adipose tissue-derived stem cells boost vascularization in grafted ovarian tissue by growth factor secretion and differentiation into endothelial cell lineages. Mol. Hum. Reprod. 2019, 25, 184–193. [Google Scholar] [CrossRef]
- White, Y.A.; Woods, D.C.; Takai, Y.; Ishihara, O.; Seki, H.; Tilly, J.L. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat. Med. 2012, 18, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Celik, S.; Ozkavukcu, S.; Celik-Ozenci, C. Recombinant anti-Mullerian hormone treatment attenuates primordial follicle loss after ovarian cryopreservation and transplantation. J. Assist. Reprod. Genet. 2023, 40, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Yu, L.; Ma, T.; Xu, W.; Qian, H.; Sun, Y.; Shi, H. Small extracellular vesicles isolation and separation: Current techniques, pending questions and clinical applications. Theranostics 2022, 12, 6548–6575. [Google Scholar] [CrossRef] [PubMed]
- Baglio, S.R.; Pegtel, D.M.; Baldini, N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front. Physiol. 2012, 3, 359. [Google Scholar] [CrossRef] [PubMed]
- Rampino, T.; Gregorini, M.; Germinario, G.; Pattonieri, E.F.; Erasmi, F.; Grignano, M.A.; Bruno, S.; Alomari, E.; Bettati, S.; Asti, A.; et al. Extracellular Vesicles Derived from Mesenchymal Stromal Cells Delivered during Hypothermic Oxygenated Machine Perfusion Repair Ischemic/Reperfusion Damage of Kidneys from Extended Criteria Donors. Biology 2022, 11, 350. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.L.; Zhao, Y.; Robert Smith, J.; Weiss, M.L.; Kron, I.L.; Laubach, V.E.; Sharma, A.K. Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death. Respir. Res. 2017, 18, 212. [Google Scholar] [CrossRef] [PubMed]
- Lonati, C.; Bassani, G.A.; Brambilla, D.; Leonardi, P.; Carlin, A.; Maggioni, M.; Zanella, A.; Dondossola, D.; Fonsato, V.; Grange, C.; et al. Mesenchymal stem cell-derived extracellular vesicles improve the molecular phenotype of isolated rat lungs during ischemia/reperfusion injury. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2019, 38, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
- Vasanthan, J.; Gurusamy, N.; Rajasingh, S.; Sigamani, V.; Kirankumar, S.; Thomas, E.L.; Rajasingh, J. Role of Human Mesenchymal Stem Cells in Regenerative Therapy. Cells 2020, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cheung, M.K.H.; Han, S.; Zhang, Z.; Chen, L.; Chen, J.; Zeng, H.; Qiu, J. Mesenchymal stem cells and their mitochondrial transfer: A double-edged sword. Biosci. Rep. 2019, 39, BSR20182417. [Google Scholar] [CrossRef]
- Medrano, J.V.; Vilanova-Pérez, T.; Fornés-Ferrer, V.; Navarro-Gomezlechon, A.; Martínez-Triguero, M.L.; García, S.; Gómez-Chacón, J.; Povo, I.; Pellicer, A.; Andrés, M.M.; et al. Influence of temperature, serum, and gonadotropin supplementation in short- and long-term organotypic culture of human immature testicular tissue. Fertil. Steril. 2018, 110, 1045–1057.e3. [Google Scholar] [CrossRef]
- Del Vento, F.; Poels, J.; Vermeulen, M.; Ucakar, B.; Giudice, M.G.; Kanbar, M.; des Rieux, A.; Wyns, C. Accelerated and Improved Vascular Maturity after Transplantation of Testicular Tissue in Hydrogels Supplemented with VEGF- and PDGF-Loaded Nanoparticles. Int. J. Mol. Sci. 2021, 22, 5779. [Google Scholar] [CrossRef] [PubMed]
Freezing Technique | CPA | Working Concentration | Reference |
---|---|---|---|
Slow-freezing | DMSO | 0.0015–1.5 M | [19,50,52,53] |
EG | 1.5 M | [32,52] | |
PROH | 1.26–1.5 M | [21,52,54,55] | |
Glycerol | 1.5 M | [32,52] | |
Sucrose | 0.1–0.175 M | [21,54] | |
Vitrification | DMSO | 2 M; 20% | [56,57] |
EG | 17–38% | [56,58,59,60] | |
Trehalose | 0.2–0.5 M | [57,59] | |
Sucrose | 0.175–1 M | [55,56,58,60] |
Freezing Technique | CPA | Working Concentration | Reference |
---|---|---|---|
Slow-freezing | DMSO | 0.7 M; 5% | [5,11,66,67] |
EG | 1.5 M | [68,69] | |
PROH | 1.5 M | [5] | |
HSA | 5%; 10 mg/mL | [11,66] | |
Glycerol | 6% | [5] | |
Sucrose | 0.1 M | [5,67,68,69] | |
Vitrification | DMSO | 2.8 M; 15% | [67,70] |
EG | 2.8 M; 15% | [67,70] | |
HSA | 25 mg/mL | [67,70] | |
Sucrose | 0.5 M | [67] |
Author, Date | Model | Treatment | Main Findings |
---|---|---|---|
Bedaiwy et al., 2006 [98] | Human | Slow-freezing; intact ovary with vascular pedicle; DMSO | 75% and 78% primordial follicle viability |
Westphal et al., 2017 [99] | Bovine, human | Slow-freezing; perfusion and submersion in DMSO | 90–100% protection against cryodamage |
Lee et al., 2021 [100] | Human | Slow-freezing; Z-VAD-FMK | Improved follicle preservation Improved follicular cell proliferation Prevention against DNA damage |
Terren et al., 2021 [101] | Mouse | Slow-freezing; rapamycin and LY294002 | Preservation of primordial follicle reserve |
Kong et al., 2021 [97] | Bovine | Vitrification; anti-freezing protein (AFP) | ↑ OT quality after xenotransplant Prevention against OT damage and apoptosis Improvement in follicle morphology |
Rasaeifar et al., 2023 [94] | Mouse | Vitrification; NAC and PEMF | ↑ angiogenesis Protection against oxidative stress Protection against inflammation |
Wang et al., 2023 [96] | Mouse | Vitrification; FSH and S1P | Preservation of the primordial follicle pool ↓ follicular atresia Suppression of cell apoptosis |
Qin et al., 2023 [95] | Duck | Vitrification; resveratrol | ↑ VEGF, HIF-1α, Nrf2, CAT, and Bcl-2 mRNA expression ↓ TUNEL-positive cells |
Author, Date | Model | Treatment | Main Findings |
---|---|---|---|
Zhang et al., 2015 [75] | Bovine | Slow-freezing; trehalose | ↑ Viability ↑ Antioxidant enzyme activity (SOD and CAT) ↓ Oxidative damage |
Dumont et al., 2016 [105] | Mouse | Vitrification; vitamin A | ↑ Tissue development Improved differentiation of SSCs ↑ Cell division ↓ DNA damage ↓ Round spermatid nuclear alterations |
Xi et al., 2019 [102] | Goat | Slow-freezing; trehalose | ↓ Apoptosis Downregulation of BAX Upregulation of BCL-2, CREM, BOULE and HSP70-2 ↑ Testosterone production by Leydig cells |
Jung et al., 2020 [103] | Monkey | Slow-freezing; trehalose, hypotaurine, necrostatin-1, melatonin | ↑ Tissue viability ↓ Apoptosis |
Zhu et al., 2021 [104] | Bovine | Slow-freezing; trehalose and KSR; uncontrolled slow-freezing | ↓ Apoptosis ↑ Cell viability Preservation of structural integrity and seminiferous epithelial cohesion Maintenance of SSCs germline characteristics |
Author, Date | Model | Treatment | Main Findings |
---|---|---|---|
He et al., 2017 [109] | Mouse | K252a Rapamycin | ↓ Primordial follicle activation |
Eken et al., 2019 [116] | Rat | Etanercept | ↑ GSH and SOD levels ↓ Inflammation and apoptosis |
Manavella et al., 2019 [123] | Mouse | ASCs | ↑ Vessel density |
Celik et al., 2020 [56] | Rat | Rapamycin | ↓ Primordial follicle activation |
Liu et al., 2021 [111] | Mouse | Rapamycin | ↓ Primordial follicle activation ↑ Ovarian survival rate ↓ Apoptosis |
Olesen et al., 2021 [113] | Human | NAC | ↑ Expressions of SOD1, HMOX1, and CAT ↓ IRI ↓ Follicle apoptosis ↑ Follicle density ↓ Expression of VEGFA |
Li et al., 2021 [115] | Human | GSH, UTI, or GSH+UTI | ↑ Follicle survival ↑ Antioxidant enzyme activity ↑ Angiogenesis ↓ Oxidative stress ↓ Inflammation |
Ahmadi et al., 2021 [107] | Mouse | Taurine | Prevention against oxidative stress ↑ Angiogenesis ↓ Apoptosis ↑ Follicle survival and growth |
Sanamiri et al., 2022 [117] | Mouse | L-carnitine | ↑ Number of follicles ↑ Estradiol and progesterone production ↓IL-6, TNF-α and MDA levels |
Rodrigues et al., 2023 [106] | Mouse | Erythropoietin | ↑ Follicle viability ↓ Follicle degeneration ↑ Angiogenesis ↓ Fibrotic areas |
Bindels et al., 2023 [112] | Mouse | Rapamycin or LY294002 | ↓ Follicle proliferation Maintenance of primordial follicle reserve |
Celik et al., 2023 [125] | Mouse | Anti-Mullerian Hormone | ↓ Primordial follicle loss |
Ebrahimi & Nasiri, 2024 [114] | Mouse | Estradiol and NAC | ↑ Primordial, preantral, and antral follicle numbers ↓ Levels of TNF-α and FGF-2 ↑ Levels of IL-1β and IL-6 ↑ Levels of VEGF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moniz, I.; Soares, M.; Sousa, A.P.; Ramalho-Santos, J.; Branco, A. The Low Survivability of Transplanted Gonadal Grafts: The Impact of Cryopreservation and Transplantation Conditions on Mitochondrial Function. Biology 2024, 13, 542. https://doi.org/10.3390/biology13070542
Moniz I, Soares M, Sousa AP, Ramalho-Santos J, Branco A. The Low Survivability of Transplanted Gonadal Grafts: The Impact of Cryopreservation and Transplantation Conditions on Mitochondrial Function. Biology. 2024; 13(7):542. https://doi.org/10.3390/biology13070542
Chicago/Turabian StyleMoniz, Inês, Maria Soares, Ana Paula Sousa, João Ramalho-Santos, and Ana Branco. 2024. "The Low Survivability of Transplanted Gonadal Grafts: The Impact of Cryopreservation and Transplantation Conditions on Mitochondrial Function" Biology 13, no. 7: 542. https://doi.org/10.3390/biology13070542
APA StyleMoniz, I., Soares, M., Sousa, A. P., Ramalho-Santos, J., & Branco, A. (2024). The Low Survivability of Transplanted Gonadal Grafts: The Impact of Cryopreservation and Transplantation Conditions on Mitochondrial Function. Biology, 13(7), 542. https://doi.org/10.3390/biology13070542