Proteomic Profile of Endometrial Cancer: A Scoping Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Review Question
2.2. Literature Search
2.3. Studies Selection
2.4. Data Extraction
2.5. Analysis of Potential Biomarkers
3. Endometrial Cancer Proteome
3.1. Endometrial Tissue
Ref. | Sample Number | Age | Normal Samples | Pathological Samples | Methodology | Upregulated Proteins | Downregulated Proteins | Validation |
---|---|---|---|---|---|---|---|---|
[20] | 44 | ND | Normal endometrium (containing atrophic, proliferative, secretory, and menstrual, benign endometrial polyp and disordered proliferative n = 23) | Endometrial cancer (endometrioid, mucinous, and serous adenocarcinomas, and malignant mixed Mullerian tumors n = 21) | SELDI-TOF-MS | HSP10 | NA | WB and IHC |
[28] | 16 | ND | Normal endometrium (secretory n = 4, proliferative n = 4) | Endometrial cancer (endometrioid n = 8) | MALDI-TOF-MS | HSP10, S100A | NA | ND |
[27] | 39 | 36–63 years | Normal endometrium (n = 20) | Endometrial cancer (Grade 1–3, Stage I–III; n = 20) | SELDI-TOF-MS | EC1 | EC2 | ND |
[29] | 8 | ND | Normal endometrium (secretory n = 1, proliferative n = 2) | Endometrial cancer (n = 5) | iTRAQ, cICAT, LC-MS/MS | PKM1, PKM2 | NA | ND |
[31] | 39 | ND | Normal endometrium (secretory n = 10, proliferative n = 10) | Endometrial cancer (type I n = 10, type II n = 9) | iTRAQ and MS/MS | WFDC2, CLU, MUC5B | NA | Dot-blot and IHC |
[22] | 91 | ND | ND | Endometrial cancer (endometrioid n = 79, serous n = 12; Grade 1–3, Stage IA, IB, IC) | LC-MS/MS | ANXA1, ANXA2, PRDX3, RDX4, PRDX5, PRDX6, COX2 | NA | TMA and WB |
[33] | 20 | ND | Normal endometrium (proliferative n = 10) | Endometrial cancer (Type I n = 10) | SCX separation and RP LC-MS/MS and iTRAQ | CTSB, CALU, CACYBP, LDHA, HNRNPA1 | NA | WB and IHC |
[41] | 18 | 36–92 years | Normal endometrium (n = 4) | Endometrial hyperplasia (n = 14) | 2D-DIGE and MALDI-TOF/TOF | NFκB, ERK1/2, P38MAPK | NA | LC-MS/MS |
[24] | 40 | ND | Normal endometrium (n = 8), Squamous epithelium (n = 4) | Endometrial cancer (endometrioid n = 15, serous n = 13) | 2D-DIGE and MALDI-TOF-MS | EIF4A1, CLIC1, PRDX6 | CLIC4, ENO1, ANXA4, EMD | IHC |
[46] | 1 | ND | NA | EC FIGO stage IB (n = 1), brain metastasis (n = 1) | LC-MS/MS | TPI1, TPI-1, TAGLN2 | NA | WB and IHC |
[42] | 3 | ND | NA | Endometrial cancer (endometrioid stage IA type I n = 3) | 2D-GE and MALDI- TOF-MS | ATF2, JUN, TAF1, HNF4A, ATF7IP | NA | IHC |
[43] | 15 | 50–77 years | Normal endometrium (n = 5) | Endometrial cancer (high-risk n = 5, low-risk n = 5) | 2D-GE and LC-ESI- MS/MS | PKM2, HSPA5 | NA | IHC |
[34] | 10 | ND | Adjacent normal tissue (n = 10) | Endometrial cancer (stage I n = 10) | iTRAQ and LC- MS/MS | HSPA8 | NA | WB |
[47] | 10 | ND | NA | Endometrial cancer (n = 10) | LC-ESI-MS/MS and MALDI-MSI | ANXA2, ERBB2, EGFR | ACTN4, ANXA1 | TMA and IHC |
[49] | 20 | ND | NA | Endometrial cancer (obese n = 20) | LC-MS/MS | JPT1 | NA | IHC |
[25] | 30 | ND | Benign endometrial (n = 7) | Endometrial cancer (Complex atypical endometrial hyperplasia, n = 2; endometrioid type adenocarcinoma (stage IA n = 5, stage IB n = 5, Stage II n = 3, stage III n = 5)) | 2D-DIGE and MALDI-TOF/TOF | CALR, RPSA, ACTB, KRT8, UAP56 (DDX39R), PSME1, PDIA3, ANXA1, IDH1, PPIA | SOD1, CAH1, PPIB | NA |
[36] | 95 | ND | NA | Endometrial cancer (endometrioid n = 83 and serous n = 12) | LC-MS/MS | NA | MLH1, EPM2AIP1 | NA |
[48] | 36 | ND | Normal endometrium (n = 16) | Endometrial cancer (endometrioid n = 17, serous n = 3) | MIB-MS and nano-LC-MS/MS | SRPK1 | NA | IHC |
[44] | 45 | ND | Normal endometrium (n = 11) | Endometrial cancer (grade I n = 20, grade II n = 8, grade III n = 6) | LC-MS/MS | CAPS, PRTN3, HMGA2, PKM, AZU1, ANXA2, CTSB, SFN, S100A8, LTF, CTSD, STMN1 | CNN1, CDH13, CALD1, DES, TAGLN | NA |
[21] | 6 | ND | Normal endometrium (n = 3) | Endometrial cancer (clear cell or type 2 carcinoma n = 2, and carcinosarcoma n = 1) | LC-MS/MS | IFIT3, PARP9, SLC34A2, CYB5R1, PTPN1 | DPT, SLP1 | RT-qPCR and WB |
[23] | 32 | 66.5–78 years | Normal endometrium (n = 16) | Endometrial cancer (n = 16) | TMT-Labelling and LC-MS/MS | Wnt pathway, L1CAM, β-catenin, HMGB3, SLIT/ROBO pathway | NA | Cohort and RT-qPCR and TMA and IHC and Immunofluorescence |
[40] | 87 | ND | Normal endometrium (hysteromyoma, cyst, endometrial polyps and cervix diseases n = 43) | Endometrial cancer (type I grade 1–2 n = 44) | LC-MS/MS | NAAG2, GCPII, NAAG, NAA, GSSG, GSR, DBH, BCAT1, PK, AK2, AMPD3, IMP | GSSG, CDA | NA |
[45] | 46 | 61.2 years | NA | Endometrial cancer (African American n = 12, Whites n = 12, Native American n = 12 and Asian n = 10) | TMT-Labelling and LC-MS/MS | PFAS, EIF4A2, MAPK3, CKB, HK2, PTPN2 | ASS1, OXSR1 | NA |
[26] | 36 | 46–75 years, age-matched | Normal endometrium (adenomyosis, fibroids, hormone imbalance n = 12) | Endometrial cancer (n = 12) and hyperplasia (n = 12) | 2D-DIGE and MALDI-TOF/TOF | ALDOA, ENO2, KRT8 | DES, PPIA, ZNF844 | LC-MS/MS and MRM Transitions |
[50] | 63 | 43–84 years | NA | Endometrial cancer (endometrioid n = 18, serous n = 2) | SWATH-MS and LC MS/MS | EWSR1 | NA | NA |
[37] | 158 | 64 years | Normal endometrium (n = 20) | Endometrial cancer (endometrioid n = 119, serous n = 13, clear cell n = 3) | LC-MS/MS | PBK, KIF2C | NA | IHC |
[39] | 8 | 55–88 years | Normal atrophic endometrium (n = 4) | Endometrial cancer (endometrioid n = 2, serous n = 2) | LC-MS/MS | APP, CNYP4, GOLIM4, HEX4, JPT2, QARS1, SCARB2, SIAE, WARS1 | NA | NA |
[35] | 26 | 59–74 years | Normal endometrium (n = 13) | Endometrial cancer (n = 13) | 2D-DIGE and LC-MS/MS | HBB, HPSB1 LDHB | CKB | WB |
[51] | 42 | >50 years | Normal endometrium (n = 20) | Endometrial cancer (n = 22) | LC-PRM | NA | NA | NA |
[52] | 116 | ND | Normal endometrium (n = 47) | Endometrial cancer (endometrioid n = 49 and serous n = 20) | LC-PRM | LDHA, PKM1/M2, MMP9, NAMPT SPIT1 | NA | ELISA |
[53] | 16 | ND | Normal endometrium (n = 6) | Endometrial cancer (n = 10) | 2D-GE and MALDI-TOF/TOF | FGB, ENO1, ANXA3, PRDX2, GAPDH, PSMB6, GSS, ASRGL1, PGK1, CORO1A, PSME1, PDIA3, IDH1, LDHB | NA | WB |
[38] | 5 | ND | Normal endometrium (n = 5) | Endometrial cancer (endometrioid Grade 1–2, n = 5) | 2D-DIGE and LC-MS/MS | ANXA2, CAPG, PARK7 | CALR, UCHL1 | IHC |
[54] | 36 | N—44–70 years, EC—59–74 years | Endometrium (nodes n = 3, tissue n = 6) | Endometrial cancer (nodes n = 16, tissue n = 16) | LC-MS/MS | PRSS3, ASS1, PTX3, ANXA1 | NA | IHC |
[32] | 24 | NA | Normal endometrium (n = 14) | Endometrial cancer (n = 10) | SCX, nano-LC-MS, MRM transition | ACT, TUB, PK-M1/M2, 14-3-3-n, PIGR | NA | NA |
3.2. Sentinel Lymph Node Tissue
3.3. Serum and Plasma
3.4. Cervicovaginal Fluid
3.5. Urine
3.6. Endometrial Cancer Cell Lines
3.7. Analysis of Potential Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Kalampokas, E.; Giannis, G.; Kalampokas, T.; Papathanasiou, A.A.; Mitsopoulou, D.; Tsironi, E.; Triantafyllidou, O.; Gurumurthy, M.; Parkin, D.E.; Cairns, M.; et al. Current Approaches to the Management of Patients with Endometrial Cancer. Cancers 2022, 14, 4500. [Google Scholar] [CrossRef] [PubMed]
- Corr, B.; Cosgrove, C.; Spinosa, D.; Guntupalli, S. Endometrial Cancer: Molecular Classification and Future Treatments. BMJ Med. 2022, 1, e000152. [Google Scholar] [CrossRef] [PubMed]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP Guidelines for the Management of Patients with Endometrial Carcinoma. Int. J. Gynecol. Cancer 2021, 31, 12–39. [Google Scholar] [CrossRef] [PubMed]
- Hundarova, K.; Frutuoso, C.; Águas, F.; Andrade, C. Hundarova, 2023. Acta Obstet. Ginecol. Port 2023, 17, 196–203. [Google Scholar]
- Prasetyanti, P.R.; Medema, J.P. Intra-Tumor Heterogeneity from a Cancer Stem Cell Perspective. Mol. Cancer 2017, 16, 41. [Google Scholar] [CrossRef] [PubMed]
- Gatius, S.; Cuevas, D.; Fernández, C.; Roman-Canal, B.; Adamoli, V.; Piulats, J.M.; Eritja, N.; Martin-Satue, M.; Moreno-Bueno, G.; Matias-Guiu, X. Tumor Heterogeneity in Endometrial Carcinoma: Practical Consequences. Pathobiology 2018, 85, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.F.; Zhao, L.J.; Ji, X.Y.; Duan, N.; Wang, Y.K.; Zhou, J.Y.; Wei, L.H.; He, X.J.; Wang, J.L.; Li, X.P. Intra-Tumor Heterogeneity for Endometrial Cancer and Its Clinical Significance. Chin. Med. J. 2019, 132, 1550–1562. [Google Scholar] [CrossRef] [PubMed]
- Naz, F.; Shi, M.; Sajid, S.; Yang, Z.; Yu, C. Cancer Stem Cells: A Major Culprit of Intra-Tumor Heterogeneity. Am. J. Cancer Res. 2021, 11, 5782–5811. [Google Scholar]
- Carvalho, M.J.; Laranjo, M.; Abrantes, A.M.; Torgal, I.; Botelho, M.F.; Oliveira, C.F. Clinical Translation for Endometrial Cancer Stem Cells Hypothesis. Cancer Metastasis Rev. 2015, 34, 401–416. [Google Scholar] [CrossRef]
- Serambeque, B.; Mestre, C.; Correia-Barros, G.; Teixo, R.; Marto, C.M.; Gonçalves, A.C.; Caramelo, F.; Silva, I.; Paiva, A.; Beck, H.C.; et al. Influence of Aldehyde Dehydrogenase Inhibition on Stemness of Endometrial Cancer Stem Cells. Cancers 2024, 16, 2031. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.W.; Jo, H.S.; Bae, S.; Seo, Y.; Song, P.; Song, M.; Yoon, J.H. Application of Proteomics in Cancer: Recent Trends and Approaches for Biomarkers Discovery. Front. Med. 2021, 8, 747333. [Google Scholar] [CrossRef] [PubMed]
- Sallam, R.M. Proteomics in Cancer Biomarkers Discovery: Challenges and Applications. Dis. Markers 2015, 2015, 321370. [Google Scholar] [CrossRef]
- Birhanu, A.G. Mass Spectrometry-Based Proteomics as an Emerging Tool in Clinical Laboratories. Clin. Proteom. 2023, 20, 32. [Google Scholar] [CrossRef]
- Thomas, S.N.; Zhang, H. Targeted Proteomic Assays for the Verification of Global Proteomics Insights. Expert. Rev. Proteom. 2016, 13, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Arksey, H.; O’Malley, L. Scoping Studies: Towards a Methodological Framework. Int. J. Soc. Res. Methodol. Theory Pract. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Aromataris, E.; Munn, Z.; Joanna Briggs Institute. JBI Manual for Evidence Synthesis; Joanna Briggs Institute: Adelaide, Australia, 2020; ISBN 9780648848806. [Google Scholar]
- Terzic, M.M.; Aimagambetova, G.; Terzic, S.; Norton, M.; Bapayeva, G.; Garzon, S. Current Role of Pipelle Endometrial Sampling in Early Diagnosis of Endometrial Cancer. Transl. Cancer Res. 2020, 9, 7716–7724. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.C.C.; Guo, J.; Diehl, G.; DeSouza, L.; Rodrigues, M.J.; Romaschin, A.D.; Colgan, T.J.; Siu, K.W.M. Protein Expression Profiling of Endometrial Malignancies Reveals a New Tumor Marker: Chaperonin 10. J. Proteome Res. 2004, 3, 636–643. [Google Scholar] [CrossRef]
- Huang, H.; Hao, Z.; Long, L.; Yin, Z.; Wu, C.; Zhou, X.; Zhang, B. Dermatopontin as a Potential Pathogenic Factor in Endometrial Cancer. Oncol. Lett. 2021, 21, 408. [Google Scholar] [CrossRef]
- Maxwell, G.L.; Hood, B.L.; Day, R.; Chandran, U.; Kirchner, D.; Kolli, V.S.K.; Bateman, N.W.; Allard, J.; Miller, C.; Sun, M.; et al. Proteomic Analysis of Stage i Endometrial Cancer Tissue: Identification of Proteins Associated with Oxidative Processes and Inflammation. Gynecol. Oncol. 2011, 121, 586–594. [Google Scholar] [CrossRef] [PubMed]
- López-Janeiro, Á.; Ruz-Caracuel, I.; Ramón-Patino, J.L.; Ríos, V.D.L.; Esparza, M.V.; Berjón, A.; Yébenes, L.; Hernández, A.; Masetto, I.; Kadioglu, E.; et al. Proteomic Analysis of Low-Grade, Early-Stage Endometrial Carcinoma Reveals New Dysregulated Pathways Associated with Cell Death and Cell Signaling. Cancers 2021, 13, 794. [Google Scholar] [CrossRef] [PubMed]
- Lomnytska, M.I.; Becker, S.; Gemoll, T.; Lundgren, C.; Habermann, J.; Olsson, A.; Bodin, I.; Engström, U.; Hellman, U.; Hellman, K.; et al. Impact of Genomic Stability on Protein Expression in Endometrioid Endometrial Cancer. Br. J. Cancer 2012, 106, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, Y.; Akpınar, G.; Doger, E.; Kasap, M.; Guzel, N.; Karaosmanoglu, K.; Kopuk, S.Y.; Yucesoy, I. Proteomic Analysis in Endometrial Cancer and Endometrial Hyperplasia Tissues by 2D-DIGE Technique. J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101652. [Google Scholar] [CrossRef] [PubMed]
- Akkour, K.; Alanazi, I.O.; Alfadda, A.A.; Alhalal, H.; Masood, A.; Musambil, M.; Abdel Rahman, A.M.; Alwehaibi, M.A.; Arafah, M.; Bassi, A.; et al. Tissue-Based Proteomic Profiling in Patients with Hyperplasia and Endometrial Cancer. Cells 2022, 11, 2119. [Google Scholar] [CrossRef] [PubMed]
- Yoshizaki, T.; Enomoto, T.; Nakashima, R.; Ueda, Y.; Kanao, H.; Yoshino, K.; Fukumoto, M.; Yoneda, Y.; Buzard, G.S.; Murata, Y. Altered Protein Expression in Endometrial Carcinogenesis. Cancer Lett. 2005, 226, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Colgan, T.J.; DeSouza, L.V.; Rodrigues, M.J.; Romaschin, A.D.; Siu, K.W.M. Direct Analysis of Laser Capture Microdissected Endometrial Carcinoma and Epithelium by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 2762–2766. [Google Scholar] [CrossRef] [PubMed]
- DeSouza, L.; Diehl, G.; Rodrigues, M.J.; Guo, J.; Romaschin, A.D.; Colgan, T.J.; Siu, K.W.M. Search for Cancer Markers from Endometrial Tissues Using Differentially Labeled Tags ITRAQ and CICAT with Multidimensional Liquid Chromatography and Tandem Mass Spectrometry. J. Proteome Res. 2005, 4, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Dubé, V.; Grigull, J.; DeSouza, L.V.; Ghanny, S.; Colgan, T.J.; Romaschin, A.D.; Michael Siu, K.W. Verification of Endometrial Tissue Biomarkers Previously Discovered Using Mass Spectrometry-Based Proteomics by Means of Immunohistochemistry in a Tissue Microarray Format. J. Proteome Res. 2007, 6, 2648–2655. [Google Scholar] [CrossRef]
- DeSouza, L.V.; Grigull, J.; Ghanny, S.; Dubé, V.; Romaschin, A.D.; Colgan, T.J.; Siu, K.W.M. Endometrial Carcinoma Biomarker Discovery and Verification Using Differentially Tagged Clinical Samples with Multidimensional Liquid Chromatography and Tandem Mass Spectrometry. Mol. Cell. Proteom. 2007, 6, 1170–1182. [Google Scholar] [CrossRef]
- DeSouza, L.V.; Krakovska, O.; Darfler, M.M.; Krizman, D.B.; Romaschin, A.D.; Colgan, T.J.; Siu, K.W.M. MTRAQ-Based Quantification of Potential Endometrial Carcinoma Biomarkers from Archived Formalin-Fixed Paraffin-Embedded Tissues. Proteomics 2010, 10, 3108–3116. [Google Scholar] [CrossRef] [PubMed]
- Voisin, S.N.; Krakovska, O.; Matta, A.; DeSouza, L.V.; Romaschin, A.D.; Colgan, T.J.; Michael Siu, K.W. Identification of Novel Molecular Targets for Endometrial Cancer Using a Drill-down LC-MS/MS Approach with ITRAQ. PLoS ONE 2011, 6, e16352. [Google Scholar] [CrossRef]
- Shan, N.; Zhou, W.; Zhang, S.; Zhang, Y. Identification of HSPA8 as a Candidate Biomarker for Endometrial Carcinoma by Using ITRAQ-Based Proteomic Analysis. Onco Targets Ther. 2016, 9, 2169–2179. [Google Scholar] [CrossRef] [PubMed]
- Capaci, V.; Arrigoni, G.; Monasta, L.; Aloisio, M.; Rocca, G.; Di Lorenzo, G.; Licastro, D.; Romano, F.; Ricci, G.; Ura, B. Phospho-DIGE Identified Phosphoproteins Involved in Pathways Related to Tumour Growth in Endometrial Cancer. Int. J. Mol. Sci. 2023, 24, 11987. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Kawaler, E.A.; Cui Zhou, D.; Gritsenko, M.A.; Huang, C.; Blumenberg, L.; Karpova, A.; Petyuk, V.A.; Savage, S.R.; Satpathy, S.; et al. Proteogenomic Characterization of Endometrial Carcinoma. Cell 2020, 180, 729–748.e26. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Katsnelson, L.; Gritsenko, M.A.; Hu, Y.; Reva, B.; Hong, R.; Wang, Y.T.; Kolodziejczak, I.; Lu, R.J.H.; Tsai, C.F.; et al. Proteogenomic Insights Suggest Druggable Pathways in Endometrial Carcinoma. Cancer Cell 2023, 41, 1586–1605.e15. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.; Scumaci, D.; Di Cello, A.; Venturella, R.; Donato, G.; Faniello, M.C.; Quaresima, B.; Cuda, G.; Zullo, F.; Costanzo, F. DJ-1 in Endometrial Cancer a Possible Biomarker to Improve Differential Diagnosis between Subtypes. Int. J. Gynecol. Cancer 2014, 24, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.H.; Konje, J.C.; Ayakannu, T. Identification of Potentially Novel Molecular Targets of Endometrial Cancer Using a Non-Biased Proteomic Approach. Cancers 2023, 15, 4665. [Google Scholar] [CrossRef] [PubMed]
- Yi, R.; Xie, L.; Wang, X.; Shen, C.; Chen, X.; Qiao, L. Multi-Omic Profiling of Multi-Biosamples Reveals the Role of Amino Acid and Nucleotide Metabolism in Endometrial Cancer. Front. Oncol. 2022, 12, 861142. [Google Scholar] [CrossRef]
- Gemoll, T.; Habermann, J.K.; Lahmann, J.; Szymczak, S.; Lundgren, C.; Bündgen, N.K.; Jungbluth, T.; Nordström, B.; Becker, S.; Lomnytska, M.I.; et al. Protein Profiling of Genomic Instability in Endometrial Cancer. Cell. Mol. Life Sci. 2012, 69, 325–333. [Google Scholar] [CrossRef]
- Attarha, S.; Andersson, S.; Mints, M.; Souchelnytskyi, S. Individualised Proteome Profiling of Human Endometrial Tumours Improves Detection of New Prognostic Markers. Br. J. Cancer 2013, 109, 704–713. [Google Scholar] [CrossRef]
- Teng, Y.; Ai, Z.; Wang, Y.; Wang, J.; Luo, L. Proteomic Identification of PKM2 and HSPA5 as Potential Biomarkers for Predicting High-Risk Endometrial Carcinoma. J. Obstet. Gynaecol. Res. 2013, 39, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Janacova, L.; Faktor, J.; Capkova, L.; Paralova, V.; Pospisilova, A.; Podhorec, J.; Ebhardt, H.A.; Hrstka, R.; Nenutil, R.; Aebersold, R.; et al. SWATH-MS Analysis of FFPE Tissues Identifies Stathmin as a Potential Marker of Endometrial Cancer in Patients Exposed to Tamoxifen. J. Proteome Res. 2020, 19, 2617–2630. [Google Scholar] [CrossRef] [PubMed]
- Javadian, P.; Xu, C.; Sjoelund, V.; Borden, L.E.; Garland, J.; Benbrook, D.M. Identification of Candidate Biomarker and Drug Targets for Improving Endometrial Cancer Racial Disparities. Int. J. Mol. Sci. 2022, 23, 7779. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Okamoto, N.; Tozawa-Ono, A.; Koizumi, H.; Kiguchi, K.; Ishizuka, B.; Kumai, T.; Suzuki, N. Proteomic Analysis of Differential Protein Expression by Brain Metastases of Gynecological Malignancies. Hum. Cell 2013, 26, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Mittal, P.; Klingler-Hoffmann, M.; Arentz, G.; Winderbaum, L.; Kaur, G.; Anderson, L.; Scurry, J.; Leung, Y.; Stewart, C.J.; Carter, J.; et al. Annexin A2 and Alpha Actinin 4 Expression Correlates with Metastatic Potential of Primary Endometrial Cancer. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Kurimchak, A.M.; Kumar, V.; Herrera-Montávez, C.; Johnson, K.J.; Srivastava, N.; Davarajan, K.; Peri, S.; Cai, K.Q.; Mantia-Smaldone, G.M.; Duncan, J.S. Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target. Mol. Cell. Proteom. 2020, 19, 2068–2089. [Google Scholar] [CrossRef] [PubMed]
- Bateman, N.W.; Teng, P.N.; Hope, E.; Hood, B.L.; Oliver, J.; Ao, W.; Zhou, M.; Wang, G.; Tommarello, D.; Wilson, K.; et al. Jupiter Microtubule-Associated Homolog 1 (JPT1): A Predictive and Pharmacodynamic Biomarker of Metformin Response in Endometrial Cancers. Cancer Med. 2020, 9, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Jamaluddin, M.F.B.; Ko, Y.A.; Ghosh, A.; Syed, S.M.; Ius, Y.; O’Sullivan, R.; Netherton, J.K.; Baker, M.A.; Nahar, P.; Jaaback, K.; et al. Proteomic and Functional Characterization of Intra-Tumor Heterogeneity in Human Endometrial Cancer. Cell Rep. Med. 2022, 3, 100738. [Google Scholar] [CrossRef]
- Martinez-Garcia, E.; Lesur, A.; Devis, L.; Campos, A.; Cabrera, S.; van Oostrum, J.; Matias-Guiu, X.; Gil-Moreno, A.; Reventos, J.; Colas, E.; et al. Development of a Sequential Workflow Based on LC-PRM for the Verification of Endometrial Cancer Protein Biomarkers in Uterine Aspirate Samples. Oncotarget 2016, 7, 53102–53115. [Google Scholar] [CrossRef]
- Martinez-Garcia, E.; Lesur, A.; Devis, L.; Cabrera, S.; Matias-Guiu, X.; Hirschfeld, M.; Asberger, J.; Van Oostrum, J.; Casares de Cal, M.D.L.A.; Gomez-Tato, A.; et al. Targeted Proteomics Identifies Proteomic Signatures in Liquid Biopsies of the Endometrium to Diagnose Endometrial Cancer and Assist in the Prediction of the Optimal Surgical Treatment. Clin. Cancer Res. 2017, 23, 6458–6467. [Google Scholar] [CrossRef] [PubMed]
- Ura, B.; Monasta, L.; Arrigoni, G.; Franchin, C.; Radillo, O.; Peterlunger, I.; Ricci, G.; Scrimin, F. A Proteomic Approach for the Identification of Biomarkers in Endometrial Cancer Uterine Aspirate. Oncotarget 2017, 8, 109536–109545. [Google Scholar] [CrossRef] [PubMed]
- Aboulouard, S.; Wisztorski, M.; Duhamel, M.; Saudemont, P.; Cardon, T.; Narducci, F.; Lemaire, A.S.; Kobeissy, F.; Leblanc, E.; Fournier, I.; et al. In-Depth Proteomics Analysis of Sentinel Lymph Nodes from Individuals with Endometrial Cancer. Cell Rep. Med. 2021, 2, 100318. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Rahman, P.S.; Lim, B.K.; Hashim, O.H. Expression of High-Abundance Proteins in Sera Patients with Endometrial and Cervical Cancers: Analysis Using 2-DE with Silver Staining and Lectin Detection Methods. Electrophoresis 2007, 28, 1989–1996. [Google Scholar] [CrossRef] [PubMed]
- Negishi, A.; Ono, M.; Handa, Y.; Kato, H.; Yamashita, K.; Honda, K.; Shitashige, M.; Satow, R.; Sakuma, T.; Kuwabara, H.; et al. Large-Scale Quantitative Clinical Proteomics by Label-Free Liquid Chromatography and Mass Spectrometry. Cancer Sci. 2009, 100, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Cao, R.; Jin, H.; Huang, Y.P.; Zhang, X.Y.; Cong, Q.; He, Y.F.; Xu, C.J. Altered Protein Expression in Serum from Endometrial Hyperplasia and Carcinoma Patients. J. Hematol. Oncol. 2011, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Ura, B.; Biffi, S.; Monasta, L.; Arrigoni, G.; Battisti, I.; Di Lorenzo, G.; Romano, F.; Aloisio, M.; Celsi, F.; Addobbati, R.; et al. Two Dimensional-Difference in Gel Electrophoresis (2d-Dige) Proteomic Approach for the Identification of Biomarkers in Endometrial Cancer Serum. Cancers 2021, 13, 3639. [Google Scholar] [CrossRef] [PubMed]
- Celsi, F.; Monasta, L.; Arrigoni, G.; Battisti, I.; Licastro, D.; Aloisio, M.; Di Lorenzo, G.; Romano, F.; Ricci, G.; Ura, B. Gel-Based Proteomic Identification of Suprabasin as a Potential New Candidate Biomarker in Endometrial Cancer. Int. J. Mol. Sci. 2022, 23, 2076. [Google Scholar] [CrossRef]
- Takano, M.; Kikuchi, Y.; Asakawa, T.; Goto, T.; Kita, T.; Kudoh, K.; Kigawa, J.; Sakuragi, N.; Sakamoto, M.; Sugiyama, T.; et al. Identification of Potential Serum Markers for Endometrial Cancer Using Protein Expression Profiling. J. Cancer Res. Clin. Oncol. 2010, 136, 475–481. [Google Scholar] [CrossRef]
- Uyar, D.S.; Huang, Y.W.; Chesnik, M.A.; Doan, N.B.; Mirza, S.P. Comprehensive Serum Proteomic Analysis in Early Endometrial Cancer. J. Proteom. 2021, 234, 104099. [Google Scholar] [CrossRef]
- Sommella, E.; Capaci, V.; Aloisio, M.; Salviati, E.; Campiglia, P.; Molinario, G.; Licastro, D.; Di Lorenzo, G.; Romano, F.; Ricci, G.; et al. A Label-Free Proteomic Approach for the Identification of Biomarkers in the Exosome of Endometrial Cancer Serum. Cancers 2022, 14, 6262. [Google Scholar] [CrossRef]
- Xu, J.; Min, W.; Liu, X.; Xie, C.; Tang, J.; Yi, T.; Li, Z.; Zhao, X. Identification of FRAS1 as a Human Endometrial Carcinoma-Derived Protein in Serum of Xenograft Model. Gynecol. Oncol. 2012, 127, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Ihata, Y.; Miyagi, E.; Numazaki, R.; Muramatsu, T.; Imaizumi, A.; Yamamoto, H.; Yamakado, M.; Okamoto, N.; Hirahara, F. Amino Acid Profile Index for Early Detection of Endometrial Cancer: Verification as a Novel Diagnostic Marker. Int. J. Clin. Oncol. 2014, 19, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Njoku, K.; Chiasserini, D.; Geary, B.; Pierce, A.; Jones, E.R.; Whetton, A.D.; Crosbie, E.J. Comprehensive Library Generation for Identification and Quantification of Endometrial Cancer Protein Biomarkers in Cervico-Vaginal Fluid. Cancers 2021, 13, 3804. [Google Scholar] [CrossRef]
- Martinez-Garcia, E.; Coll-de la Rubia, E.; Lesur, A.; Dittmar, G.; Gil-Moreno, A.; Cabrera, S.; Colas, E. Cervical Fluids Are a Source of Protein Biomarkers for Early, Non-Invasive Endometrial Cancer Diagnosis. Cancers 2023, 15, 911. [Google Scholar] [CrossRef]
- Mu, A.K.W.; Lim, B.K.; Hashim, O.H.; Shuib, A.S. Detection of Differential Levels of Proteins in the Urine of Patients with Endometrial Cancer: Analysis Using Two-Dimensional Gel Electrophoresis and O-Glycan Binding Lectin. Int. J. Mol. Sci. 2012, 13, 9489–9501. [Google Scholar] [CrossRef] [PubMed]
- Kacírová, M.; Bober, P.; Alexovič, M.; Tomková, Z.; Tkáčiková, S.; Talian, I.; Mederová, L.; Bérešová, D.; Tóth, R.; Andrašina, I.; et al. Differential Urinary Proteomic Analysis of Endometrial Cancer. Physiol. Res. 2019, 68, S483–S490. [Google Scholar] [CrossRef]
- Njoku, K.; Pierce, A.; Geary, B.; Campbell, A.E.; Kelsall, J.; Reed, R.; Armit, A.; Da Sylva, R.; Zhang, L.; Agnew, H.; et al. Quantitative SWATH-Based Proteomic Profiling of Urine for the Identification of Endometrial Cancer Biomarkers in Symptomatic Women. Br. J. Cancer 2023, 128, 1723–1732. [Google Scholar] [CrossRef]
- Li, H.; DeSouza, L.V.; Ghanny, S.; Li, W.; Romaschin, A.D.; Colgan, T.J.; Siu, K.W.M. Identification of Candidate Biomarker Proteins Released by Human Endometrial and Cervical Cancer Cells Using Two-Dimensional Liquid Chromatography/Tandem Mass Spectrometry. J. Proteome Res. 2007, 6, 2615–2622. [Google Scholar] [CrossRef]
- Yokoyama, T.; Enomoto, T.; Serada, S.; Morimoto, A.; Matsuzaki, S.; Ueda, Y.; Yoshino, K.; Fujita, M.; Kyo, S.; Iwahori, K.; et al. Plasma Membrane Proteomics Identifies Bone Marrow Stromal Antigen 2 as a Potential Therapeutic Target in Endometrial Cancer. Int. J. Cancer 2013, 132, 472–484. [Google Scholar] [CrossRef]
- Cao, M.; Liu, Z.; You, D.; Pan, Y.; Zhang, Q. TMT-Based Quantitative Proteomic Analysis of Spheroid Cells of Endometrial Cancer Possessing Cancer Stem Cell Properties. Stem Cell Res. Ther. 2023, 14, 119. [Google Scholar] [CrossRef] [PubMed]
- Grun, B.; Benjamin, E.; Sinclair, J.; Timms, J.F.; Jacobs, I.J.; Gayther, S.A.; Dafou, D. Three-Dimensional in Vitro Cell Biology Models of Ovarian and Endometrial Cancer. Cell Prolif. 2009, 42, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Al-Juboori, A.A.A.; Ghosh, A.; Bin Jamaluddin, M.F.; Kumar, M.; Sahoo, S.S.; Syed, S.M.; Nahar, P.; Tanwar, P.S. Proteomic Analysis of Stromal and Epithelial Cell Communications in Human Endometrial Cancer Using a Unique 3D Co-Culture Model. Proteomics 2019, 19, e1800448. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.R.; O’Flynn, H.; Njoku, K.; Crosbie, E.J. Detecting Endometrial Cancer. Obstet. Gynaecol. 2021, 23, 103–112. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Guo, T.; Chen, G.; Liu, G.; Song, Q.; Li, G.; Xu, F.; Dong, X.; Yang, F.; et al. Annexin A Protein Family: Focusing on the Occurrence, Progression and Treatment of Cancer. Front. Cell Dev. Biol. 2023, 11, 1141331. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Lu, C.C.; Yang, L.Y.; Wang, J.J.; Wang, B.S.; Cai, H.Q.; Hao, J.J.; Xu, X.; Cai, Y.; Zhang, Y.; et al. ANXA2 Promotes Esophageal Cancer Progression by Activating MYC-HIF1A-VEGF Axis. J. Exp. Clin. Cancer Res. 2018, 37, 183. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Z.; Niu, R.; Wang, L. Crucial Role of Anxa2 in Cancer Progression: Highlights on Its Novel Regulatory Mechanism. Cancer Biol. Med. 2019, 16, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Abdelraouf, E.M.; Hussein, R.R.S.; Shaaban, A.H.; El-Sherief, H.A.M.; Embaby, A.S.; Abd El-Aleem, S.A. Annexin A2 (AnxA2) Association with the Clinicopathological Data in Different Breast Cancer Subtypes: A Possible Role for AnxA2 in Tumor Heterogeneity and Cancer Progression. Life Sci. 2022, 308, 120967. [Google Scholar] [CrossRef] [PubMed]
- Koh, M.; Lim, H.; Jin, H.; Kim, M.; Hong, Y.; Hwang, Y.K.; Woo, Y.; Kim, E.S.; Kim, S.Y.; Kim, K.M.; et al. ANXA2 (Annexin A2) Is Crucial to ATG7-Mediated Autophagy, Leading to Tumor Aggressiveness in Triple-Negative Breast Cancer Cells. Autophagy 2024, 20, 659–674. [Google Scholar] [CrossRef]
- Foo, S.L.; Yap, G.; Cui, J.; Lim, L.H.K. Annexin-A1—A Blessing or a Curse in Cancer? Trends Mol. Med. 2019, 25, 315–327. [Google Scholar] [CrossRef]
- Ganesan, T.; Sinniah, A.; Ibrahim, Z.A.; Chik, Z.; Alshawsh, M.A. Annexin A1: A Bane or a Boon in Cancer? A Systematic Review. Molecules 2020, 25, 3700. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Li, X.; Luo, S.; Zhao, L. An Overview of the Regulatory Role of Annexin A1 in the Tumor Microenvironment and Its Prospective Clinical Application (Review). Int. J. Oncol. 2024, 64, 51. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shao, G.; Hong, X.; Shi, Y.; Zheng, Y.; Yu, Y.; Fu, C. Targeting Annexin A1 as a Druggable Player to Enhance the Anti-Tumor Role of Honokiol in Colon Cancer through Autophagic Pathway. Pharmaceuticals 2023, 16, 70. [Google Scholar] [CrossRef]
- Huang, C.K.; Sun, Y.; Lv, L.; Ping, Y. ENO1 and Cancer. Mol. Ther. Oncolytics 2022, 24, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, W.; Wu, C.; Ma, X.; Li, H.; Zheng, J. Enolase 1 Correlated with Cancer Progression and Immune-Infiltrating in Multiple Cancer Types: A Pan-Cancer Analysis. Front. Oncol. 2021, 10, 593706. [Google Scholar] [CrossRef]
- Li, H.J.; Ke, F.Y.; Lin, C.C.; Lu, M.Y.; Kuo, Y.H.; Wang, Y.P.; Liang, K.H.; Lin, S.C.; Chang, Y.H.; Chen, H.Y.; et al. ENO1 Promotes Lung Cancer Metastasis via HGFR and WNT Signaling–Driven Epithelial-to-Mesenchymal Transition. Cancer Res. 2021, 81, 4094–4109. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yan, Y.; Wang, T.; Wang, Z.; Cai, J.; Cao, X.; Yang, C.; Zhang, F.; Wu, G.; Shen, B. Identification of ENO1 as a Prognostic Biomarker and Molecular Target among ENOs in Bladder Cancer. J. Transl. Med. 2022, 20, 315. [Google Scholar] [CrossRef] [PubMed]
- Almaguel, F.A.; Sanchez, T.W.; Ortiz-Hernandez, G.L.; Casiano, C.A. Alpha-Enolase: Emerging Tumor-Associated Antigen, Cancer Biomarker, and Oncotherapeutic Target. Front. Genet. 2021, 11, 614726. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; You, L.; He, Y.; Chen, J.; Zhang, G.; Liu, Z. Multi-Omics Reveals the Role of ENO1 in Bladder Cancer and Constructs an Epithelial-Related Prognostic Model to Predict Prognosis and Efficacy. Sci. Rep. 2024, 14, 2189. [Google Scholar] [CrossRef]
- Wang, Q.; Ke, S.; Liu, Z.; Shao, H.; He, M.; Guo, J. HSPA5 Promotes the Proliferation, Metastasis and Regulates Ferroptosis of Bladder Cancer. Int. J. Mol. Sci. 2023, 24, 5144. [Google Scholar] [CrossRef]
- Li, T.; Fu, J.; Cheng, J.; Elfiky, A.A.; Wei, C.; Fu, J. New Progresses on Cell Surface Protein HSPA5/BiP/GRP78 in Cancers and COVID-19. Front. Immunol. 2023, 14, 1166680. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Feng, Y.; Liu, P.; Yang, S.; Zhao, W.; Li, H. Identification and Prognostic Analysis of Ferroptosis-related Gene HSPA5 to Predict the Progression of Lung Squamous Cell Carcinoma. Oncol. Lett. 2024, 27, 186. [Google Scholar] [CrossRef] [PubMed]
- Ying, B.; Xu, W.; Nie, Y.; Li, Y. HSPA8 Is a New Biomarker of Triple Negative Breast Cancer Related to Prognosis and Immune Infiltration. Dis. Markers 2022, 2022, 8446857. [Google Scholar] [CrossRef]
- Li, J.; Ge, Z. High HSPA8 Expression Predicts Adverse Outcomes of Acute Myeloid Leukemia. BMC Cancer 2021, 21, 475. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xu, C.; Liu, Z. S100 Protein Family in Human Cancer. Am. J. Cancer Res. 2014, 4, 89–115. [Google Scholar]
- Allgöwer, C.; Kretz, A.L.; von Karstedt, S.; Wittau, M.; Henne-Bruns, D.; Lemke, J. Friend or Foe: S100 Proteins in Cancer. Cancers 2020, 12, 2037. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Z.; Liu, W.; Lei, R.; Shan, J.; Li, L.; Wang, X. Distinct Prognostic Values of S100 MRNA Expression in Breast Cancer. Sci. Rep. 2017, 7, 39786. [Google Scholar] [CrossRef]
- Bai, Y.; Li, L.D.; Li, J.; Lu, X. Prognostic Values of S100 Family Members in Ovarian Cancer Patients. BMC Cancer 2018, 18, 1256. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Zhang, H.; Jia, J.; Chen, S.; Sun, Y.; Zhu, X. Roles of S100 Family Members in Drug Resistance in Tumors: Status and Prospects. Biomed. Pharmacother. 2020, 127, 110156. [Google Scholar] [CrossRef]
- Taniguchi, K.; Sakai, M.; Sugito, N.; Kuranaga, Y.; Kumazaki, M.; Shinohara, H.; Ueda, H.; Futamura, M.; Yoshida, K.; Uchiyama, K.; et al. PKM1 Is Involved in Resistance to Anti-Cancer Drugs. Biochem. Biophys. Res. Commun. 2016, 473, 174–180. [Google Scholar] [CrossRef]
- Chhipa, A.S.; Patel, S. Targeting Pyruvate Kinase Muscle Isoform 2 (PKM2) in Cancer: What Do We Know so Far? Life Sci. 2021, 280, 119694. [Google Scholar] [CrossRef] [PubMed]
- Zahra, K.; Dey, T.; Ashish; Mishra, S.P.; Pandey, U. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Front. Oncol. 2020, 10, 159. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, J.L. The Role of Metabolic Syndrome in Endometrial Cancer: A Review. Front. Oncol. 2019, 9, 744. [Google Scholar] [CrossRef] [PubMed]
- Navab, M.; Yu, R.; Gharavi, N.; Huang, W.; Ezra, N.; Lotfizadeh, A.; Anantharamaiah, G.M.; Alipour, N.; Van Lenten, B.J.; Reddy, S.T.; et al. High-Density Lipoprotein: Antioxidant and Anti-Inflammatory Properties. Curr. Atheroscler. Rep. 2007, 9, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.E.; Fung, E.T.; McGuire, M.; Rabkin, C.C.; Molinaro, A.; Wang, Z.; Zhang, F.; Wang, J.; Yip, C.; Meng, X.Y.; et al. Evaluation of Apolipoprotein A1 and Posttranslationally Modified Forms of Transthyretin as Biomarkers for Ovarian Cancer Detection in an Independent Study Population. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1641–1646. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.J.; Hou, M.F.; Tsai, S.M.; Wu, S.H.; Ann Hou, L.; Ma, H.; Shann, T.Y.; Wu, S.H.; Tsai, L.Y. The Association between Lipid Profiles and Breast Cancer among Taiwanese Women. Clin. Chem. Lab. Med. 2007, 45, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Ehmann, M.; Felix, K.; Hartmann, D.; Schnölzer, M.; Nees, M.; Vorderwülbecke, S.; Bogumil, R.; Büchler, M.W.; Friess, H. Identification of Potential Markers for the Detection of Pancreatic Cancer Through Comparative Serum Protein Expression Profiling. Pancreas 2007, 34, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Bharali, D.; Banerjee, B.D.; Bharadwaj, M.; Husain, S.A.; Kar, P. Expression Analysis of Apolipoproteins Ai & Aiv in Hepatocellular Carcinoma: A Protein-Based Hepatocellular Carcinoma-Associated Study. Indian J. Med. Res. 2018, 147, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yang, H.; Duan, X.; Li, L.; Sun, L.; Li, Q.; Zhang, J. Apolipoproteins as Differentiating and Predictive Markers for Assessing Clinical Outcomes in Patients with Small Cell Lung Cancer. Yonsei Med. J. 2016, 57, 549–556. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Zhang, T.; Li, J.; Liu, L.; Chang, J. Discovery of Apo-A1 as a Potential Bladder Cancer Biomarker by Urine Proteomics and Analysis. Biochem. Biophys. Res. Commun. 2014, 446, 1047–1052. [Google Scholar] [CrossRef]
- Lin, H.Y.; Tan, G.Q.; Liu, Y.; Lin, S.Q. The Prognostic Value of Serum Amyloid A in Solid Tumors: A Meta-Analysis. Cancer Cell Int. 2019, 19, 62. [Google Scholar] [CrossRef] [PubMed]
- Cedó, L.; Reddy, S.T.; Mato, E.; Blanco-Vaca, F.; Escolà-Gil, J.C. HDL and LDL: Potential New Players in Breast Cancer Development. J. Clin. Med. 2019, 8, 853. [Google Scholar] [CrossRef]
- Ren, L.; Yi, J.; Li, W.; Zheng, X.; Liu, J.; Wang, J.; Du, G. Apolipoproteins and Cancer. Cancer Med. 2019, 8, 7032–7043. [Google Scholar] [CrossRef] [PubMed]
- Darwish, N.M.; Al-Hail, M.K.; Mohamed, Y.; Al Saady, R.; Mohsen, S.; Zar, A.; Al-Mansoori, L.; Pedersen, S. The Role of Apolipoproteins in the Commonest Cancers: A Review. Cancers 2023, 15, 5565. [Google Scholar] [CrossRef] [PubMed]
- Dieplinger, H.; Ankerst, D.P.; Burges, A.; Lenhard, M.; Lingenhel, A.; Fineder, L.; Buchner, H.; Stieber, P. Afamin and Apolipoprotein A-IV: Novel Protein Markers for Ovarian Cancer. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Abulaizi, M.; Tomonaga, T.; Satoh, M.; Sogawa, K.; Matsushita, K.; Kodera, Y.; Obul, J.; Takano, S.; Yoshitomi, H.; Miyazaki, M.; et al. The Application of a Three-Step Proteome Analysis for Identification of New Biomarkers of Pancreatic Cancer. Int. J. Proteomics 2011, 2011, 628787. [Google Scholar] [CrossRef]
- Chang, S.C.; Lin, W.L.; Chang, Y.F.; Lee, C.T.; Wu, J.S.; Hsu, P.H.; Chang, C.F. Glycoproteomic Identification of Novel Plasma Biomarkers for Oral Cancer. J. Food Drug Anal. 2019, 27, 483–493. [Google Scholar] [CrossRef]
- Nicoll, J.A.R.; Zunarelli, E.; Rampling, R.; Murray, L.S.; Papanastassiou, V.; Stewart, J. Involvement of Apolipoprotein E in Glioblastoma: Immunohistochemistry and Clinical Outcome. NeuroReport 2003, 14, 1923–1926. [Google Scholar] [CrossRef]
- Venanzoni, M.C.; Giunta, S.; Battista Muraro, G.; Storari, L.; Crescini, C.; Mazzucchelli, R.; Montironi, R.; Seth, A. Apolipoprotein E Expression in Localized Prostate Cancers. Int. J. Oncol. 2003, 22, 779–786. [Google Scholar] [CrossRef]
- Oue, N.; Hamai, Y.; Mitani, Y.; Matsumura, S.; Oshimo, Y.; Aung, P.; Kuraoka, K.; Nakayama, H.; Yasui, W. Gene Expression Profile of Gastric Carcinoma: Identification of Genes and Tags Potentially Involved in Invasion, Metastasis, and Carcinogenesis by Serial Analysis of Gene Expression. Cancer Res. 2004, 64, 2397–2405. [Google Scholar] [CrossRef]
- Ito, Y.; Takano, T.; Miyauchi, A. Apolipoprotein E Expression in Anaplastic Thyroid Carcinoma. Oncology 2007, 71, 388–393. [Google Scholar] [CrossRef]
- Huvila, J.; Brandt, A.; Rojas, C.R.; Pasanen, S.; Talve, L.; Hirsimäki, P.; Fey, V.; Kytömäki, L.; Saukko, P.; Carpén, O.; et al. Gene Expression Profiling of Endometrial Adenocarcinomas Reveals Increased Apolipoprotein e Expression in Poorly Differentiated Tumors. Int. J. Gynecol. Cancer 2009, 19, 1226–1231. [Google Scholar] [CrossRef]
- Su, W.P.; Chen, Y.T.; Lai, W.W.; Lin, C.C.; Yan, J.J.; Su, W.C. Apolipoprotein E Expression Promotes Lung Adenocarcinoma Proliferation and Migration and as a Potential Survival Marker in Lung Cancer. Lung Cancer 2011, 71, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Luo, L.; Dong, D.; Yu, Q.; Zhao, K. Clusterin Plays an Important Role in Clear Renal Cell Cancer Metastasis. Urol. Int. 2014, 92, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Deng, J.; Zhou, S.; Tao, T.; Su, Q.; Yang, X.; Yang, X. The Role of Clusterin in Cancer Metastasis. Cancer Manag. Res. 2019, 11, 2405–2414. [Google Scholar] [CrossRef] [PubMed]
- Zellweger, T.; Chi, K.; Miyake, H.; Adomat, H.; Kiyama, S.; Skov, K.; Gleave, M.E. Enhanced Radiation Sensitivity in Prostate Cancer by Inhibition of the Cell Survival Protein Clusterin. Clin. Cancer Res. 2002, 8, 3276–3284. [Google Scholar] [PubMed]
- Li, X.; Li, B.; Li, B.; Guo, T.; Sun, Z.; Li, X.; Chen, L.; Chen, W.; Chen, P.; Mao, Y.; et al. ITIH4: Effective Serum Marker, Early Warning and Diagnosis, Hepatocellular Carcinoma. Pathol. Oncol. Res. 2018, 24, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Jin, J.; Jing, H.; Lu, Y.; Zhu, Q.; Shu, C.; Zhang, Q.; Jing, D. ITIH4 Is a Novel Serum Biomarker for Early Gastric Cancer Diagnosis. Clin. Chim. Acta 2021, 523, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Awan, F.M.; Naz, A.; Obaid, A.; Ali, A.; Ahmad, J.; Anjum, S.; Janjua, H.A. Identification of Circulating Biomarker Candidates for Hepatocellular Carcinoma (HCC): An Integrated Prioritization Approach. PLoS ONE 2015, 10, e0138913. [Google Scholar] [CrossRef]
- Roy, S.; Josephson, S.A.; Fridlyand, J.; Karch, J.; Kadoch, C.; Karrim, J.; Damon, L.; Treseler, P.; Kunwar, S.; Shuman, M.A.; et al. Protein Biomarker Identification in the CSF of Patients with CNS Lymphoma. J. Clin. Oncol. 2008, 26, 96–105. [Google Scholar] [CrossRef]
- Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers 2021, 13, 2748. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Liu, L.; Tao, X.; Zhu, W. TET3-Mediated DNA Demethylation Modification Activates SHP2 Expression to Promote Endometrial Cancer Progression through the EGFR/ERK Pathway. J. Gynecol. Oncol. 2024, 35, e64. [Google Scholar] [CrossRef]
- Peluso, J.J.; Pru, J.K. Progesterone Receptor Membrane Component (Pgrmc)1 and Pgrmc2 and Their Roles in Ovarian and Endometrial Cancer. Cancers 2021, 13, 5953. [Google Scholar] [CrossRef] [PubMed]
- Tai, C.-J.; Hsu, C.-H.; Shen, S.-C.; Lee, W.-R.; Jiang, M.-C. Cellular Apoptosis Susceptibility (CSE1L/CAS) Protein in Cancer Metastasis and Chemotherapeutic Drug-Induced Apoptosis. J. Exp. Clin. Cancer Res. 2010, 29, 110. [Google Scholar] [CrossRef]
- Jiang, M.C. CAS (CSE1L) Signaling Pathway in Tumor Progression and Its Potential as a Biomarker and Target for Targeted Therapy. Tumor Biol. 2016, 37, 13077–13090. [Google Scholar] [CrossRef]
- Ebenhoch, R.; Akhdar, A.; Reboll, M.R.; Korf-Klingebiel, M.; Gupta, P.; Armstrong, J.; Huang, Y.; Frego, L.; Rybina, I.; Miglietta, J.; et al. Crystal Structure and Receptor-Interacting Residues of MYDGF—A Protein Mediating Ischemic Tissue Repair. Nat. Commun. 2019, 10, 5379. [Google Scholar] [CrossRef]
- Wang, X.; Mao, J.; Zhou, T.; Chen, X.; Tu, H.; Ma, J.; Li, Y.; Ding, Y.; Yang, Y.; Wu, H.; et al. Hypoxia-Induced Myeloid Derived Growth Factor Promotes Hepatocellular Carcinoma Progression through Remodeling Tumor Microenvironment. Theranostics 2020, 11, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Sim, R.; Yang, C.; Yang, Y.Y. Chemical Proteomics and Morphological Profiling Revealing MYDGF as a Target for Synthetic Anticancer Macromolecules. Biomacromolecules 2024, 25, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Liang, X.; Guo, H.; Li, S.; Yao, W.; Dong, C.; Wu, J.; Lu, Y.; Tang, J.; Zhang, H. STNM1 in Human Cancers: Role, Function and Potential Therapy Sensitizer. Cell. Signal. 2023, 109, 110775. [Google Scholar] [CrossRef]
- Yadav, P.; Yadav, R.; Jain, S.; Vaidya, A. Caspase-3: A Primary Target for Natural and Synthetic Compounds for Cancer Therapy. Chem. Biol. Drug Des. 2021, 98, 144–165. [Google Scholar] [CrossRef]
- Obermair, A.; Baxter, E.; Brennan, D.J.; Mcalpine, J.N.; Mueller, J.J.; Amant, F.; van Gent, M.D.J.M.; Coleman, R.L.; Westin, S.N.; Yates, M.S.; et al. Fertility-Sparing Treatment in Early Endometrial Cancer: Current State and Future Strategies. Obstet. Gynecol. Sci. 2020, 63, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Carr, C.; Yao, M.; Radeva, M.; Priyadarshini, A.; Marquard, J.; Michener, C.M.; Alhilli, M. Endometrial Cancer in Young Women: Prognostic Factors and Treatment Outcomes in Women Aged ≤40 Years. Int. J. Gynecol. Cancer 2020, 30, 631–639. [Google Scholar] [CrossRef] [PubMed]
Ref. | Sample Number | Age | Normal Samples | Pathological Samples | Methodology | Upregulated Proteins | Downregulated Proteins | Validation |
---|---|---|---|---|---|---|---|---|
[55] | 25 | 35–65 years | Normal Endometrium (n = 13) | Endometrial cancer (n = 12) | 2D-DIGE and MALDI-TOF | ABCG, ATR, CLU, LRG1 | SERPINA1, KNG1 | ELISA |
[56] | 70 | ND | Normal Endometrium (n = 30) | Endometrial cancer (n = 40) | 2DICAL and nano-LC-MS/MS | C4A, C3 | APOA4 | Immuno-blotting |
[57] | 27 | ND | Normal Endometrium (n = 7) | Endometrial hyperplasia (simple n = 6, complex n = 4), atypical (n = 4)) Endometrial carcinoma (n = 6) | iTRAQ and 2D LC-MS/MS | SAA1, SAA2, APOC2, APOE | APOA4, ITIH4, HRG | NA |
[58] | 30 | 36–48 years | Normal Endometrium (n = 15) | Endometrial cancer (n = 15) | 2D-DIGE and LC-MS/MS | CLU, SERPINC1, ITIH4, C1R, APOC3, DSC1 | APCS, C9, APOA1, ALB, ITIH2, APOA4, CFHR1, ACTB | WB |
[59] | 20 | ND | Normal Endometrium (n = 10) | Endometrial cancer (n = 10) | 2D-DIGE and LC-MS/MS | APOC3, APOC2, SERPINC1, C1R, SERPINA1, A2M, CLU | APOA1, APCS, APOE, CD5L, CFHR1, VTN, C9, C8A, ALB, C4BPA, IGHM, ITIH2, FLG2, SBSN, APOA4, CPS1 | WB |
[60] | 105 | ND | Normal Endometrium (n = 40) | Endometrial cancer (n = 65) | SELDI-TOF MS | APOC1 | APOA1 | Cohort |
[61] | 12 | 33–68 years | Normal Endometrium (n = 4) | Endometrial cancer (n = 8) | LC-MS/MS | FAM83D | NA | WB |
[62] | 72 | 48–88 years | Normal Endometrium (n = 36) | Endometrial cancer (n = 36) | LFQ-MS | APOA1, HBB, CAH1, HBD, LPA, SAA4, PF4V1, APOE | IGLV3–19, IGKV3–20 | WB |
[63] | 16 | 43–58 years | Normal Endometrium (n = 8) | Endometrial cancer (n = 8) | 1D-GE and nano-LC- MS/MS and Q-TOF-MS/MS and FT-ICR- MS/MS | FRAS1 | NA | WB |
[64] | 160 | 32–80 years | Normal Endometrium (n = 120) | Endometrial cancer (n = 40) | HPLC-ESI-MS | NA | NA | Cohort |
Ref. | Sample Number | Age | Normal Samples | Pathological Samples | Methodology | Upregulated Proteins | Downregulated Proteins | Validation |
---|---|---|---|---|---|---|---|---|
[65] | 19 | N—50–81 years EC—52–84 years AH—57–78 years | Normal Endometrium (n = 7) | Endometrial Cancer (n = 9), Atypical Hyperplasia (n = 3) | HPLC-MS/MS | HSP10, HSP60, HSP71, HSP75, S100A8, S100A9, SCP2, PK-M1/M2, PGAM1, ENO1, SERPINA1 | NA | Transcriptomics |
[66] | 45 | 23–93 years | Normal Endometrium (n = 21) | Endometrial Cancer (n = 24) | nano-UHPLC and Tims-TOF MS and LC-PRM | LDHA, ENOA, PKM, SERPHINH1, VIM, CSE1L, TAGLN, PPIA | NA | NA |
Ref. | Sample Number | Age | Normal Samples | Pathological Samples | Methodology | Upregulated Proteins | Downregulated Proteins | Validation |
---|---|---|---|---|---|---|---|---|
[67] | 18 | Age matched | Normal Endometrium (n = 11) | Endometrial Cancer (n = 7) | MALDI- TOF and LC-MS/MS | AZGP1, MPG | CD59 | NA |
[68] | 12 | 55 years | Normal Endometrium (n = 7) | Endometrial Cancer (n = 5) | HPLC-ESI-MS/MS | NA | HSPG2, VTN, CDH1 | NA |
[69] | 104 | 52–73 years | Normal Endometrium (n = 50) | Endometrial Cancer (n = 54) | SWATH- MS | SPRR1B, CRNN, CALML3, TXN, FABP5, C1RL, MMP9, ECML1, S100A7, CFI | NA | NA |
Ref. | Disease, Model | Methodology | Upregulated Proteins | Downregulated Proteins | Validation |
---|---|---|---|---|---|
[70] | Endometrial Cancer, KLE and HEC1 | 2D LC-MS/MS | CPN10, PK-M1/M2, S100A11, IGFBP2/3/4/6/7, PLK1, SERPINA1, MIF | NA | Cohort |
[71] | Endometrial Cancer, HEC1A and IK | iTRAQ, nano LC-MS/MS | BST2 | NA | IHC |
[72] | Endometrial Cancer, 2D vs. 3D, Human | TMT-HPLC and LC-MS/MS | HK2, PFKFB3, GPRC5A, HIF pathway | NA | PCR and WB |
[73] | Endometrial Cancer, 2D vs. 3D, Human | 2D-DIGE and MALDI- TOF-MS | VDAC1, ANXA4, PHB1 | HSP8, VIM, TUBB, ENO1, AHCY, PGK1, ALDOA, LDHB, PSME2, PRDX6, PRDX1 | WB |
[74] | Endometrial Cancer, Co-Culture, Human | LC-MS/MS and IPA Analysis | ARPC2, PPP1R12A, ARPC3, MSN, MAPK1, GRB2, EIF2AK2, EIF2S2 | NA | NA |
[65] | Endometrial Cancer, Human | HPLC- MS/MS | NA | NA | Cohort |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serambeque, B.; Mestre, C.; Hundarova, K.; Marto, C.M.; Oliveiros, B.; Gomes, A.R.; Teixo, R.; Carvalho, A.S.; Botelho, M.F.; Matthiesen, R.; et al. Proteomic Profile of Endometrial Cancer: A Scoping Review. Biology 2024, 13, 584. https://doi.org/10.3390/biology13080584
Serambeque B, Mestre C, Hundarova K, Marto CM, Oliveiros B, Gomes AR, Teixo R, Carvalho AS, Botelho MF, Matthiesen R, et al. Proteomic Profile of Endometrial Cancer: A Scoping Review. Biology. 2024; 13(8):584. https://doi.org/10.3390/biology13080584
Chicago/Turabian StyleSerambeque, Beatriz, Catarina Mestre, Kristina Hundarova, Carlos Miguel Marto, Bárbara Oliveiros, Ana Rita Gomes, Ricardo Teixo, Ana Sofia Carvalho, Maria Filomena Botelho, Rune Matthiesen, and et al. 2024. "Proteomic Profile of Endometrial Cancer: A Scoping Review" Biology 13, no. 8: 584. https://doi.org/10.3390/biology13080584
APA StyleSerambeque, B., Mestre, C., Hundarova, K., Marto, C. M., Oliveiros, B., Gomes, A. R., Teixo, R., Carvalho, A. S., Botelho, M. F., Matthiesen, R., Carvalho, M. J., & Laranjo, M. (2024). Proteomic Profile of Endometrial Cancer: A Scoping Review. Biology, 13(8), 584. https://doi.org/10.3390/biology13080584