Management of Root Rot (Rhizoctonia solani Kühn) of Common Bean Using Host Resistance and Consortia of Chemicals and Biocontrol Agents
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Plant Material, Biocontrol Agents, and Fungicides
2.1.1. Source of Common Bean Seeds
2.1.2. Source of the Pathogen Isolate and Inoculum Preparation
2.1.3. Isolation Technique for Rhizoctonia Root Rot and Identification of R. solani
2.1.4. Source of Biological Agents and Chemical Fungicides
2.1.5. Isolation and Identification of the Pathogen
2.2. Screenhouse and Field Experiments to Identify the Resistant Landraces and Genotype
2.3. Field Evaluation of Fungicides and Biocontrol Agents Against Rhizoctonia Root Rot
2.3.1. Preparation of Seed for Experiment
2.3.2. Artificial Inoculation Under Field Conditions
2.4. Data Recording and Disease Assessment
2.5. Statistical Analysis
3. Results
3.1. Response of Landraces and Genotype Against Root Rot
3.2. Evaluation of Different Chemical Fungicides and Biocontrol Agents Under Field Conditions
3.3. Grain Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broughton, W.J.; Hernandez, G.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans (Phaseolus spp.) model food legumes. Plant Soil 2003, 252, 55–128. [Google Scholar] [CrossRef]
- Graham, P.H.; Rosas, J.C.; De Jensen, C.E.; Peralta, E.; Tlusty, B.; Acosta-Gallegos, J.; Pereira, P.A.A. Addressing edaphic constraints to bean production: The bean/cowpea CRSP project in perspective. Field Crops Res. 2003, 82, 179–192. [Google Scholar] [CrossRef]
- Romero-Arenas, O.; Damián-Huato, M.A.; Rivera-Tapia, J.A.; Báez-Simón, A.; Huerta-Lara, M.; Cabrera-Huerta, E. The nutritional value of beans (Phaseolus vulgaris L.) and its importance for feeding of rural communities in Puebla, Mexico. Int. J. Biol. Sci. 2013, 2, 59–65. [Google Scholar]
- Subedi, S.; Gautam, I.P.; Pradhan, N.G.; Ghimire, D.; Thapa, S. Evaluation of french bean (Phaseolus vulgaris L.) genotypes for spring season planting in mid hills of Nepal. Nepal Hortic. 2022, 16, 36–44. [Google Scholar] [CrossRef]
- Paudel, M.N. Patenting need of unique geographical indicator commodities and products to enhance livelihoods and resources conservation in Nepal. Agron. J. Nepal 2021, 5, 1–22. [Google Scholar] [CrossRef]
- Schwartz, H.F.; Steadman, J.R.; Hall, R.; Forster, R.L. Compendium of Bean Diseases, 3rd ed.; American Phytopathological Society (APS Press): St. Paul, MN, USA, 2005; pp. viii + 109. [Google Scholar]
- Schwartz, H.F.; Corrales, M.A.P. Bean Production Problems in the Tropics, 2nd ed.; International Center for Tropical Agriculture (CIAT): Cali, Colombia, 1989. [Google Scholar]
- Singh, S.P.; Schwartz, H.F. Breeding common bean for resistance to diseases. Crop Sci. 2010, 50, 2199–2223. [Google Scholar] [CrossRef]
- Darai, R.; Ojha, B.R.; Dhakal, K.H. Disease management of major grain legumes and breeding strategies in Nepal. Adv. Plants Agric. Res. 2017, 6, 1–7. [Google Scholar] [CrossRef]
- Meyer, K.M. Impact of Nitrogen Management Strategies on Yield, N-Use Efficiency, and Rhizoctonia Diseases of Irish Potato. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2002. [Google Scholar]
- Akter, S.; Kadir, J.; Juraimi, A.S.; Saud, H.M.; Elmahdi, S. Isolation and identification of antagonistic bacteria from phylloplane of rice as biocontrol agents for sheath blight. J. Environ. Biol. 2014, 35, 1095–1100. [Google Scholar] [PubMed]
- Asaka, O.; Shoda, M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 1996, 62, 4081–4085. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Gasco, M.M.; Jiménez-Díaz, R.M. Development of a specific polymerase chain reaction-based assay for the identification of Fusarium oxysporum f. sp. ciceris and its pathogenic races 0, 1A, 5, and 6. J. Phytopathol. 2003, 93, 200–209. [Google Scholar] [CrossRef]
- Montealegre, J.; Valderrama, L.; Sánchez, S.; Herrera, R.; Besoain, X.; Pérez, L.M. Biological control of Rhizoctonia solani in tomatoes with Trichoderma harzianum mutants. Electron. J. Biotechnol. 2010, 13, 1–11. [Google Scholar] [CrossRef]
- Agriculture Information and Communication Centre (AICC); Ministry of Agriculture and Livestock Development: Lalitpur, Nepal, 2021.
- Rubayet, M.T.; Bhuiyan, M.K.A. Integrated management of stem rot of potato caused by Sclerotium rolfsii. Bangladesh J. Plant Pathol. 2016, 32, 7–14. [Google Scholar]
- Arefin, M.N.; Bhuiyan, M.K.A.; Rubayet, M.T. Integrated use of fungicide, plant extract and bio-agent for management of alternaria blight disease of radish (Raphanus sativus L.) and quality seed production. Res. Agric. Vet. Sci. 2019, 3, 10–21. [Google Scholar]
- Liton, M.J.A.; Bhuiyan, M.K.A.; Jannat, R.; Ahmed, J.U.; Rahman, M.T.; Rubayet, M.T. Efficacy of trichoderma-fortified compost in controlling soil-borne diseases of bush bean (Phaseolus vulgaris L.) and sustainable crop production. Adv. Agric. Sci. 2019, 7, 123–136. [Google Scholar]
- Ahmed, M.U.; Bhuiyan, M.K.A.; Hossain, M.M.; Rubayet, M.T.; Khaliq, Q.A. Efficacy of chitosan and bio-agent in controlling southern blight disease of carrot caused by Sclerotium rolfsii and improvement the crop production. Res. Agric. Vet. Sci. 2019, 3, 113–125. [Google Scholar]
- Singh, B.P.; Singh, G.; Kumar, K.; Nayak, S.C.; Srinivsas, N. Management of Fungal Pathogens in Pulses: Current Status and Future Challenges; Springer International: Cham, Switzerland, 2020. [Google Scholar]
- Valentín Torres, S.; Vargas, M.M.; Godoy-Lutz, G.; Porch, T.G.; Beaver, J.S. Isolates of Rhizoctonia solani can produce both web blight and root rot symptoms in common bean (Phaseolus vulgaris L.). Plant Dis. 2016, 100, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Barnett, H.L. Illustrated Genera of Imperfect Fungi; Record Number 19561100378; CABI Digital Library: Wallingford, UK, 1955; 281p. [Google Scholar]
- Watanabe, T. Pictorial Atlas of Soil and Seed Fungi, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- Sneh, B.; Burpee, L.; Ogoshi, A. Identification of Rhizoctonia Species; APS Press: St. Paul, MN, USA, 1991. [Google Scholar]
- Agarwal, D.K.; Rhizoctonia, D.C. Taxonomy, Ecology and Management. In Taxonomy and Ecology of Indian Fungi; Mukerji, K.G., Manoharachary, C., Eds.; I.K. International Publishing House Pvt. Ltd.: New Delhi, India, 2010; pp. 19–49. [Google Scholar]
- Gupta, M. Studies on Rhizoctonia solani Causing Root Rot of Soybean. Master’s Thesis, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, College of Agriculture, Gwalior, India, 2017. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984; 680p. [Google Scholar]
- Cubeta, M.A.; Vilgalys, R. Rhizoctonia. In Encyclopedia of Microbiology, 2nd ed.; Lederberg, J., Ed.; Academic Press: San Diego, CA, USA, 2000; Volume 4, pp. 109–116. [Google Scholar]
- Ogoshi, A. Ecology and pathogenicity of anastomosis and intraspecific group of Rhizoctonia solani Kuhn. Ann. Rev. Phytopathol. 1987, 25, 125–143. [Google Scholar] [CrossRef]
- Mulder, A.; Turkensteen, L.J.; Bouman, A. Perspectives of green-crop-harvesting to control soil-borne and storage diseases of seed potatoes. Neth. J. Plant Pathol. 1992, 98, 103–114. [Google Scholar] [CrossRef]
- Jager, G.; Velvis, H.; Lamers, J.G.; Mulder, A.; Roosjen, J. Control of Rhizoctonia solani in potato by biological, chemical and integrated measures. Potato Res. 1991, 34, 269–284. [Google Scholar] [CrossRef]
- Gilligan, C.A.; Bailey, D.J. Components of pathozone behaviour. New Phytol. 1997, 136, 343–358. [Google Scholar] [CrossRef]
- Panella, L.; Ruppel, E.G. Availability of germplasm for resistance against Rhizoctonia spp. In Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control; Sneh, B., Jabaji-Hare, S., Neate, S., Dijst, G., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 515–527. [Google Scholar] [CrossRef]
- Deakin, J.R.; Dukes, P.D. Breeding snap beans for resistance to diseases caused by Rhizoctonia solani Kuhn. Hortic. Sci. 1975, 10, 269–271. [Google Scholar]
- Aryal, K.; Poudel, S.; Chaudhary, P.; Chaudhary, R.P.; Ghimire, K.H.; Shrestha, D.S.; Joshi, B.K. Agro-morphological diversity of high-altitude bean landraces in the Kailash sacred landscape of Nepal. J. Nepal Agric. Res. Counc. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Naik, T.S.; Somasekhara, Y.M.; Manu, T.G.; Raja; Amaresh, Y.S.; Uma. Evaluation of french bean (Phaseolus vulgaris L.) germplasm against root rot caused by Rhizoctonia solani. Plant Arch. 2016, 16, 83–87. [Google Scholar]
- Sivakumar, V.; Celine, V.A.; Girija, V.K. Evaluation of yard long bean (Vigna unguiculata subsp. sesquipedalis) genotypes for collar rot and web blight. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 4238–4245. [Google Scholar] [CrossRef]
- Bal, S.S.; Kumar, S.; Mishra, I.; Panda, P.K.; Panigrahi, R.K.; Prusti, A.M. Evaluation of mungbean and urdbean genotypes against web blight disease under natural field condition. Int. J. Chem. Stud. 2019, 7, 3374–3377. [Google Scholar]
- Devan, S.R.; Rathod, V.; Hanchinamani, C.N.; Kantharaju, V.; Nishani, S.; Lakshmidevamma, T.N. Evaluation of yard long bean (Vigna unguiculata subsp. sesquipedalis) genotypes for web blight incidence under natural condition in northern dry zone (zone-3) of Karnataka. Pharma Innov. 2020, 9, 236–238. [Google Scholar]
- Fery, R.L.; Dukes, P.D., Sr. Southern blight (Sclerotium rolfsii Sacc.) of cowpea: Yield-loss estimates and sources of resistance. Crop Prot. 2002, 21, 403–408. [Google Scholar] [CrossRef]
- Sennoi, R.; Jogloy, S.; Saksirirat, W.; Kesmala, T.; Singkham, N.; Patanothai, A. Levels of Sclerotium rolfsii inoculum influence identification of resistant genotypes in Jerusalem artichoke. Afr. J. Microbiol. Res. 2012, 6, 6755–6760. [Google Scholar] [CrossRef]
- Wang, W. QTL Analysis and Candidate Genes Identification Associated with Fusarium Root Rot Resistance in Common Beans (Phaseolus vulgaris L.) Plant Breeding, Genetics and Biotechnology—Crop and Soil Sciences. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2016. [Google Scholar]
- Campion, C.; Chatot, C.; Perraton, B.; Andrivon, D. Anastomosis groups, pathogenicity and sensitivity to fungicides of Rhizoctonia solani isolates collected on potato crops in France. Eur. J. Plant Pathol. 2003, 109, 983–992. [Google Scholar] [CrossRef]
- Tsror, L. Biology, epidemiology and management of Rhizoctonia solani on potato. J. Phytopathol. 2010, 158, 649–658. [Google Scholar] [CrossRef]
- Virgen-Calleros, G.; Olalde-Portugal, V.; Carling, D.E. Anastomosis groups of Rhizoctonia solani on potato in central México and potential for biological and chemical control. Am. J. Potato Res. 2000, 77, 219–224. [Google Scholar] [CrossRef]
- Subedi, S.; Neupane, S.; Shrestha, J.; Ghimire, T. Efficacy of botanicals, bio-control agents and fungicides against wilt/root rot complex of lentil. Agriways 2019, 7, 69–74. [Google Scholar]
- Karkee, A.; Mandal, D.L. Efficacy of fungicides against Rhizoctonia solani inciting rhizome rot diseases on large cardamom (Amomum subulatum Roxb.). Int. J. Appl. Sci. Biotechnol. 2020, 8, 61–64. [Google Scholar] [CrossRef]
- Dutta, U.; Kalha, C.S. In vitro evaluation of fungicides, botanicals and bioagents against Rhizoctonia solani causing sheath blight of rice and their integration for effective management of the disease under field conditions. Plant Dis. Res. 2011, 26, 14–19. [Google Scholar]
- Dubey, S.C. Integrated management of web blight of urd and mung bean. Indian Phytopathol. 2003, 56, 34–38. [Google Scholar]
- Rajasekar, N.; Jeyakumar, P. Differential response of trifloxystrobin in combination with tebuconazole on growth, nutrient uptake and yield of rice (Oryza sativa L.). Int. J. Agric. Environ. Biotechnol. 2014, 7, 87–93. [Google Scholar] [CrossRef]
- Bastakoti, S.; Belbase, S.; Manandhar, S.; Arjyal, C. Trichoderma species as biocontrol agent against soil borne fungal pathogens. Nepal J. Biotechnol. 2017, 5, 39–45. [Google Scholar] [CrossRef]
- Sagar, C.G.; Manandahar, H.K.; Shrestha, S.; Bhusal, K. In-vitro and greenhouse management of banded leaf and sheath blight (BLSB) of maize, at Rampur, Chitwan, Nepal. MOJ Ecol. Environ. Sci. 2020, 5, 238–242. [Google Scholar] [CrossRef]
- Wilson, P.S.; Ketola, E.O.; Ahvenniemi, P.M.; Lehtonen, M.J.; Valkonen, J.P.T. Dynamics of soilborne Rhizoctonia solani in the presence of Trichoderma harzianum: Effects on stem canker, black scurf and progeny tubers of potato. Plant Pathol. 2008, 57, 152–161. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, N.; Yong, X.; Yang, X.; Shen, Q. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol. Res. 2012, 167, 135–143. [Google Scholar] [CrossRef]
- Hussain, T.; Khan, A.A.; Khan, M.A. Biocontrol of soil borne pathogen of potato tuber caused by Rhizoctonia solani through biosurfactant based Bacillus strain. J. Nepal Agric. Res. Counc. 2021, 7, 54–66. [Google Scholar] [CrossRef]
- Pleban, S.; Ingel, F.; Chet, I. Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. Eur. J. Plant Pathol. 1995, 101, 665–672. [Google Scholar] [CrossRef]
- Khedher, S.B.; Kilani-Feki, O.; Dammak, M.; Jabnoun-Khiareddine, H.; Daami-Remadi, M.; Tounsi, S. Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Comptes Rend. Biol. 2015, 338, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, D.; Sivamani, P.; Panneerselvam, A.; Thajuddin, N.; Rajakumar, G.; Selvamani, S. Biological control of tomato seedling damping off with Streptomyces species. Plant Pathol. J. 2005, 4, 91–95. [Google Scholar] [CrossRef]
Trade Name | Chemical Name | Manfacturer/Source |
---|---|---|
SAAFTM | carbendazim 12% + mancozeb 63% | United Phosphorous Limited Khar, Mumbai, India E-mail: [email protected] |
Vitavax® | carboxin 37.5% + thiram 37.5% | Dhanuka Agritech Limited Gurugram, Haryana, India E-mail: [email protected] |
Nativo® | tebuconazole 50% + trifloxystrobin 25% w/w WG (75 WG) | Agriplex Bengaluru, Karnataka, India E-mail: [email protected] |
Bacillus subtilis | Bacillus subtilis spores content: 1 × 108 cfu/mL | Nepal Plant Disease and Agro Associates (NPDA), Nepal Balaju, Kathmandu, Nepal E-mail: [email protected] |
Trichoderma viride | Trichoderma viride spores content: 1 × 109 cfu/mL | Agricare Nepal Bharatpur, Chitwan, Nepal E-mail: [email protected] |
Pseudomonas fluorescens | Pseudomonas fluorescens spores content: 109 cfu/mL | Agricare Nepal Bharatpur, Chitwan, Nepal E-mail: [email protected] |
Treatment ID | Treatment Details |
---|---|
T1 | Seed treatment (ST) with Pseudomonas fluorescens formulation (109 cfu/mL) at the rate of 10 g per kg of vermicompost slurry + soil treatment (SoT) with Pseudomonas fluorescens formulation (109 cfu/mL) at the rate of 10 kg per ha with 50 kg vermicompost |
T2 | Seed treatment (ST) with Pseudomonas fluorescens formulation (109 cfu/mL) at the rate of 10 g per kg of farm yard manure (FYM) slurry + soil treatment (SoT) with Pseudomonas fluorescens formulation (109 cfu/mL) at the rate of 10 kg per ha with 50 kg of farmyard manure (FYM) |
T3 | Seed treatment (ST) with Pseudomonas fluorescens formulation (109 cfu/mL) at the rate of 10 g per kg of vermicompost slurry + soil treatment (SoT) with Pseudomonas fluorescens formulation (109 cfu/mL) at the rate of 10 kg per ha with 50 kg of spent mushroom substrate (SMS) |
T4 | Seed treatment (ST) with Bacillus subtilis (108 cfu/mL) at the rate of 10 g per kg of vermicompost slurry + soil treatment (SoT) with Bacillus subtilis (108 cfu/mL) at the rate of 10 kg per ha with 50 kg vermicompost |
T5 | Seed treatment (ST) with Bacillus subtilis (108 cfu/mL) at the rate of 10 g per kg of farm yard manure (FYM) slurry + soil treatment (SoT) with Bacillus subtilis (108 cfu/mL) at the rate of 10 kg per ha with 50 kg of farm yard manure (FYM) |
T6 | Seed treatment (ST) with Bacillus subtilis (108 cfu/mL) at the rate of 10 g per kg of farm yard manure (FYM) slurry + soil treatment (SoT) with Bacillus subtilis (108 cfu/mL) at the rate of 10 kg per ha with 50 kg spent mushroom substrate (SMS) |
T7 | Seed treatment (ST) with Trichoderma viride formulation (109 cfu/mL) at the rate of 10 g per kg of vermicompost slurry + soil treatment (SoT) with Trichoderma viride formulation (109 cfu/mL) at the rate of 10 kg per ha with 50 kg vermicompost |
T8 | Seed treatment (ST) with Trichoderma viride formulation (109 cfu/mL) at the rate of 10 g per kg of vermicompost slurry + soil treatment (SoT) with Trichoderma viride formulation (109 cfu/mL) at the rate of 10 kg per ha with 50 kg of farm yard manure (FYM) |
T9 | Seed treatment (ST) with Trichoderma viride formulation at the rate of 10 g per kg of vermicompost slurry + soil treatment (SoT) with Trichoderma viride formulation at the rate of 10 kg per ha with 50 kg spent mushroom substrate (SMS) |
T10 | Seed treatment (ST) at the rate of 1.5 g per kg with Nativo® (tebuconazole 50% + trifloxystrobin 25% WG) + soil drenching (SD) with Nativo® (tebuconazole 50% + trifloxystrobin 25% WG) at the rate of 1.5 g per liter |
T11 | Seed treatment (ST) at ther rate of 1.5 g per kg with Nativo® (tebuconazole 50% + trifloxystrobin 25% WG) + foliar spray (FS) with Nativo® (tebuconazole 50% + trifloxystrobin 25% WG) at the rate of 1.5 g per liter |
T12 | Seed treatment (ST) with SAAF™ (carbendazim 12% + mancozeb 63% WP) at the rate of 2 g per kg + soil drenching (SD) with SAAF™ (carbendazim 12% + mancozeb 63% WP) at the rate of 2 g per liter) |
T13 | Seed treatment (ST) with Vitavax® (carboxin 37.5% + thiram 37.5% DS) at the rate of 2 g per kg + soil drenching (SD) with Vitavax® (carboxin 37.5% + thiram 37.5% DS) at the rate of 2 g per liter |
T14 | Control—untreated check |
Landraces | In the Field | In the Screenhouse | Disease Reaction | |
---|---|---|---|---|
Incidence of Collar Rot (%) ± SEM | Mean Lesion Length (cm) ± SEM | Incidence of Root Rot (%) | ||
Fusro Chhirke Simi | 100 a ± 0 | 1.77 bc ± 0.17 | 100 | HS |
Kalo Lamo Simi | 100 a ± 0 | 1.35 c ± 0.63 | 100 | HS |
Rato Male Simi | 100 a ± 0 | 3.02 a ± 0.58 | 100 | HS |
Kalo Sano Simi | 100 a ± 0 | 1.40 bc ± 0.42 | 100 | HS |
Khairo Sada Simi | 100 a ± 0 | 1.92 bc ± 0.26 | 100 | HS |
Rato Sano Chhirke Simi | 100 a ± 0 | 2.40 ab ± 0.32 | 100 | HS |
Rato Lamo Simi | 100 a ± 0 | 2.07 abc ± 0.35 | 100 | HS |
Pahelo Besare Simi | 100 a ± 0 | 1.90 bc ± 0.43 | 100 | HS |
Rato Sano Simi | 100 a ± 0 | 2.07 abc ± 0.35 | 100 | HS |
Rato Chhirke Simi | 96.10 b ± 2.42 | 1.80 bc ± 0.25 | 100 | HS |
LSD | 2.27 | 1.032 | ||
SEM (±) | 0.24 | 0.11 | ||
F-probability | * | * | ||
CV (%) | 1.33 | 36.09 |
Treatments | Pre-Emergence Damping off (%) ± SEM | Post-Emergence Damping off (%) ± SEM | Root Rot (%) ± SEM | Grain Yield (kg/ha) ± SEM |
---|---|---|---|---|
T1: Pseudomonas fluorescens: seed treatment at the rate of 10 g/kg of vermicompost slurry + soil treatment at the rate of 10 kg/ha with 50 kg vermicompost | 3.86 abc ± 0.57 | 3.86 bcdef ± 0.57 | 14.43 bc ± 2.94 | 2680.99 f ± 75.32 |
T2: Pseudomonas fluorescens: seed treatment at the rate of 10 g/kg FYM slurry + soil treatment at the rate of 10 kg/ha with 50 kg of FYM | 7.20 a ± 1.47 | 7.2 abcde ± 1.48 | 26.63 a ± 3.46 | 3364.07 cde ± 251.29 |
T3: Pseudomonas fluorescens: seed treatment at the rate of 10 g/kg vermicompost slurry + soil treatment at the rate of 10 kg/ha with 50 kg SMS | 4.96 abc ± 1.67 | 8.3 abc ± 0.99 | 15.86 bc ± 2.43 | 3080.99 cdef ± 399.52 |
T4: Bacillus subtilis: seed treatment at the rate of 10 g/kg vermicompost slurry + soil treatment at the rate of 10 kg/ha with 50 kg vermicompost | 7.73 a ± 0.57 | 11.06 a ± 5.32 | 15.53 bc ± 3.36 | 3169.20 cdef ± 393.42 |
T5: Bacillus subtilis: seed treatment at the rate of 10 g/kg FYM + soil treatment at the rate of 10 kg/ha with 50 kg FYM | 3.86 abc ± 2.41 | 4.96 bcdef ± 0.96 | 22.16 ab ± 5.81 | 2740.49 ef ± 260.85 |
T6: Bacillus subtilis: seed treatment at the rate of 10 g/kg FYM) slurry + soil treatment at the rate of 10 kg/ha with 50 kg SMS | 4.93 abc ± 3.33 | 6.06 abcdef ± 0.54 | 13.30 bcd ± 1.91 | 3485.10 bcd ± 194.00 |
T7: Trichoderma viride: seed treatment at the rate of 10 g/kg vermicompost slurry + soil treatment at the rate of 10 kg/ha with 50 kg vermicompost | 7.76 a ± 2.23 | 9.4 ab ± 1.10 | 14.43 bc ± 3.39 | 2992.79 def ± 273.38 |
T8: Trichoderma viride: seed treatment at the rate of 10 g/kg of vermicompost slurry + soil treatment at the rate of 10 kg/ha with 50 kg FYM | 6.66 ab ± 1.67 | 7.76 abcd ± 1.47 | 7.2 cd ± 1.47 | 3362.20 cde ± 101.52 |
T9: Trichoderma viride: seed treatment at the rate of 10 g/kg of vermicompost + soil treatment at the rate of 10 kg per ha with 50 kg SMS | 4.96 abc ± 1.67 | 7.16 abcde ± 0.57 | 7.16 cd ± 2.41 | 2631.77 f ± 447.08 |
T10: Nativo®: seed treatment at the rate of 1.5 g/kg + soil drenching at the rate of 1.5 g per liter | 0 c ± 0 | 2.76 cdef ± 1.47 | 4.96 d ± 0.95 | 3189.71 cdef ± 211.41 |
T11: Nativo®: seed treatment at the rate of 1.5 g/kg + foliar spray at the rate of 1.5 g per liter | 1.63 bc ± 0.95 | 2.2 def ± 1.48 | 7.2 cd ± 1.1 | 4125.09 a ± 238.61 |
T12: SAAF™: seed treatment at the rate of 2 g per kg + soil drenching at the rate of 2 g per liter | 0 c ± 0 | 0.53 f ± 0.54 | 4.96 d ± 1.67 | 4016.37 ab ± 129.78 |
T13: Vitavax®: seed treatment at the rate of 2 g per kg + soil drenching at the rate of 2 g per liter | 0 c ± 0 | 1.63 ef ± 0.96 | 7.73 cd ± 0.57 | 3694.32 abc ± 293.03 |
T14: Control | 8.3 a ± 2.54 | 11.06 a ± 0.54 | 15.53 bc ± 1.47 | 2949.72 def ± 98.55 |
LSD | 4.84 | 5.16 | 7.96 | 583.21 |
SEM (±) | 0.44 | 0.47 | 0.73 | 53.61 |
F-probability | ** | ** | *** | *** |
CV% | 65.29 | 51.31 | 37.49 | 10.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parajuli, P.; Yadav, R.K.; Manandhar, H.K.; Parajulee, M.N. Management of Root Rot (Rhizoctonia solani Kühn) of Common Bean Using Host Resistance and Consortia of Chemicals and Biocontrol Agents. Biology 2025, 14, 235. https://doi.org/10.3390/biology14030235
Parajuli P, Yadav RK, Manandhar HK, Parajulee MN. Management of Root Rot (Rhizoctonia solani Kühn) of Common Bean Using Host Resistance and Consortia of Chemicals and Biocontrol Agents. Biology. 2025; 14(3):235. https://doi.org/10.3390/biology14030235
Chicago/Turabian StyleParajuli, Pratikshya, Ritesh Kumar Yadav, Hira Kaji Manandhar, and Megha N. Parajulee. 2025. "Management of Root Rot (Rhizoctonia solani Kühn) of Common Bean Using Host Resistance and Consortia of Chemicals and Biocontrol Agents" Biology 14, no. 3: 235. https://doi.org/10.3390/biology14030235
APA StyleParajuli, P., Yadav, R. K., Manandhar, H. K., & Parajulee, M. N. (2025). Management of Root Rot (Rhizoctonia solani Kühn) of Common Bean Using Host Resistance and Consortia of Chemicals and Biocontrol Agents. Biology, 14(3), 235. https://doi.org/10.3390/biology14030235