Effects of Prenatal Herbal Methionine Supplementation on Growth Indices, Onset of Puberty, Blood Metabolites, and Fertility of Alpine Doelings †
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Maternal and Kids’ Diet
2.3. Newborn Management and Growth
2.4. Plasma Progesterone and Puberty
2.5. Reproductive Performance
2.6. Serological Analysis
2.7. Metabolites and Metabolic Hormones
2.8. Statistical Analysis
3. Results
3.1. G1 Birth Weight and Postnatal Growth
3.2. G1 Age and Live Weight at Puberty
3.3. G1 Age and Live Weight at Breeding and Conception
3.4. Reproductive Efficiency
3.5. Plasma Metabolites and Metabolic Hormones
4. Discussion
4.1. G1 Postweaning Growth Pattern
4.2. G1 Doelings’s Onset of Puberty
4.3. G1 Doeling’s Reproductive Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teixeira, I.A.M.A.; Härter, C.J.; Vargas, J.A.C.; Souza, A.P.; Fernandes, M.H.M.R. Review: Update of nutritional requirements of goats for growth and pregnancy in hot environments. Animal 2024, 18, 101219. [Google Scholar] [CrossRef] [PubMed]
- Ochoa Cordero, M.; Meza Herrera, C.A.; Vázquez García, J.M.; Stewart, C.A.; Rosales Nieto, C.A.; Ochoa Alfaro, A.E.; Purvis, I.W.; Cuevas Reyes, V.; Lee Rangel, H.A.; Martin, G.B. Pregnancy and Litter Size, But Not Lamb Sex, Affect Feed Intake and Wool Production by Merino-Type Ewes. Animals 2019, 9, 214. [Google Scholar] [CrossRef] [PubMed]
- Khanal, P.; Nielsen, M.O. Impacts of prenatal nutrition on animal production and performance: A focus on growth and metabolic and endocrine function in sheep. J. Anim. Sci. Biotechnol 2017, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- Marshall, N.E.; Abrams, B.; Barbour, L.A.; Catalano, P.; Christian, P.; Friedman, J.E.; Hay, W.W., Jr.; Hernandez, T.L.; Krebs, N.F.; Oken, E.; et al. The importance of nutrition in pregnancy and lactation: Lifelong consequences. Am. J. Obstet. Gynecol. 2022, 226, 607–632. [Google Scholar] [CrossRef]
- Roca Fraga, F.J.; Lagisz, M.; Nakagawa, S.; Lopez-Villalobos, N.; Blair, H.T.; Kenyon, P.R. Meta-analysis of lamb birth weight as influenced by pregnancy nutrition of multiparous ewes. J. Anim. Sci. 2018, 96, 1962–1977. [Google Scholar] [CrossRef]
- Sartori, E.D.; Sessim, A.G.; Brutti, D.D.; Lopes, J.F.; McManus, C.M.; Barcellos, J.O.J. Fetal programming in sheep: Effects on pre- and postnatal development in lambs. J. Anim. Sci. 2020, 98, skaa294. [Google Scholar] [CrossRef]
- Fowden, A.L.; Sferruzzi-Perri, A.N.; Coan, P.M.; Constancia, M.; Burton, G.J. Placental efficiency and adaptation: Endocrine regulation. J. Physiol. 2009, 587, 3459–3472. [Google Scholar] [CrossRef]
- Sferruzzi-Perri, A.N.; Vaughan, O.R.; Forhead, A.J.; Fowden, A.L. Hormonal and nutritional drivers of intrauterine growth. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 298–309. [Google Scholar] [CrossRef]
- Muhlhausler, B.S.; Duffield, J.A.; Ozanne, S.E.; Pilgrim, C.; Turner, N.; Morrison, J.L.; McMillen, I.C. The transition from fetal growth restriction to accelerated postnatal growth: A potential role for insulin signalling in skeletal muscle. J. Physiol. 2009, 587, 4199–4211. [Google Scholar] [CrossRef]
- Sferruzzi-Perri, A.N.; Sandovici, I.; Constancia, M.; Fowden, A.L. Placental phenotype and the insulin-like growth factors: Resource allocation to fetal growth. J. Physiol. 2017, 595, 5057–5093. [Google Scholar] [CrossRef]
- Kaur, H.; Muhlhausler, B.S.; Roberts, C.T.; Gatford, K.L. The growth hormone–insulin-like growth factor axis in pregnancy. J. Endocrinol. 2021, 251, R23–R39. [Google Scholar] [CrossRef] [PubMed]
- Khanal, P.; Pandey, D.; Binti Ahmad, S.; Safayi, S.; Kadarmideen, H.N.; Olaf Nielsen, M. Differential impacts of late gestational over–and undernutrition on adipose tissue traits and associated visceral obesity risk upon exposure to a postnatal high-fat diet in adolescent sheep. Physiol. Rep. 2020, 8, e14359. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, P.A.S.; Suárez-Vega, A.; Pelayo, R.; Marina, H.; Alonso-García, M.; Gutiérrez-Gil, B.; Arranz, J.-J. Intergenerational impact of dietary protein restriction in dairy ewes on epigenetic marks in the perirenal fat of their suckling lambs. Sci. Rep. 2023, 13, 4351. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, L.P.; Diniz, W.J.S.; Crouse, M.S.; Caton, J.S.; Dahlen, C.R.; Borowicz, P.P.; Ward, A.K. Maternal nutrition and developmental programming of offspring. Reprod. Fertil. Dev. 2023, 35, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Daftary, S.S.; Gore, A.C. The Hypothalamic Insulin-Like Growth Factor-1 Receptor and Its Relationship to Gonadotropin-Releasing Hormones Neurones During Postnatal Development. J. Neuroendocrinol. 2004, 16, 160–169. [Google Scholar] [CrossRef]
- Hiney, J.K.; Srivastava, V.; Nyberg, C.L.; Ojeda, S.R.; Dees, W.L. Insulin-like growth factor I of peripheral origin acts centrally to accelerate the initiation of female puberty. Endocrinology 1996, 137, 3717–3728. [Google Scholar] [CrossRef]
- Backholer, K.; Smith, J.T.; Rao, A.; Pereira, A.; Iqbal, J.; Ogawa, S.; Li, Q.; Clarke, I.J. Kisspeptin Cells in the Ewe Brain Respond to Leptin and Communicate with Neuropeptide Y and Proopiomelanocortin Cells. Endocrinology 2010, 151, 2233–2243. [Google Scholar] [CrossRef]
- Rosales Nieto, C.A.; Thompson, A.N.; Macleay, C.A.; Briegel, J.R.; Hedger, M.P.; Ferguson, M.B.; Martin, G.B. Relationships among body composition, circulating concentrations of leptin and follistatin, and the onset of puberty and fertility in young female sheep. Anim. Reprod. Sci. 2014, 151, 148–156. [Google Scholar] [CrossRef]
- Duittoz, A.H.; Kenny, D.A. Review: Early and late determinants of puberty in ruminants and the role of nutrition. Animal 2023, 17, 100812. [Google Scholar] [CrossRef]
- Fantuz, F.; Fatica, A.; Salimei, E.; Marcantoni, F.; Todini, L. Nutrition, Growth, and Age at Puberty in Heifers. Animals 2024, 14, 2801. [Google Scholar] [CrossRef]
- Friend, D.W. Influence of Dietary Amino Acids on the Age at Puberty of Yorkshire Gilts. J. Anim. Sci. 1973, 37, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Cushman, R.; Hauxwell, K.; Snider, A.P.; Freetly, H.; Oliver, W.T.; Amat, S.; Neville, B.W.; Thorson, J.; Lindholm-Perry, A.; Miles, J.R.; et al. PSII-12 Influence of Dietary Methionine and Guanidinoacetic Acid on Estrous Cycles and Early Pregnancy in Beef Heifers. J. Anim. Sci. 2023, 101, 580–581. [Google Scholar] [CrossRef]
- Waterland, R.A. Assessing the Effects of High Methionine Intake on DNA Methylation12. J. Nutr. 2006, 136, 1706S–1710S. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. Anim. Nutr. 2018, 4, 11–16. [Google Scholar] [CrossRef]
- Rees, W.D.; Hay, S.M.; Buchan, V.; Antipatis, C.; Palmer, R.M. The effects of maternal protein restriction on the growth of the rat fetus and its amino acid supply. Br. J. Nutr. 2007, 81, 243–250. [Google Scholar] [CrossRef]
- Zhang, N. Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim. Nutr. 2015, 1, 144–151. [Google Scholar] [CrossRef]
- Breton-Larrivee, M.; Elder, E.; McGraw, S. DNA methylation, environmental exposures and early embryo development. Anim. Reprod. 2019, 16, 465–474. [Google Scholar] [CrossRef]
- Waterland, R.A.; Jirtle, R.L. Transposable Elements: Targets for Early Nutritional Effects on Epigenetic Gene Regulation. Mol. Cell. Biol. 2003, 23, 5293–5300. [Google Scholar] [CrossRef]
- Rolland, M.; Dalsgaard, J.; Holm, J.; Gómez-Requeni, P.; Skov, P.V. Dietary methionine level affects growth performance and hepatic gene expression of GH–IGF system and protein turnover regulators in rainbow trout (Oncorhynchus mykiss) fed plant protein-based diets. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2015, 181, 33–41. [Google Scholar] [CrossRef]
- Oster, M.; Nuchchanart, W.; Trakooljul, N.; Muráni, E.; Zeyner, A.; Wirthgen, E.; Hoeflich, A.; Ponsuksili, S.; Wimmers, K. Methylating micronutrient supplementation during pregnancy influences foetal hepatic gene expression and IGF signalling and increases foetal weight. Eur. J. Nutr. 2016, 55, 1717–1727. [Google Scholar] [CrossRef]
- Castillo-Gutierrez, D.; Hernández-Arteaga, L.E.S.; Flores-Najera, M.J.; Cuevas-Reyes, V.; Vázquez-García, J.M.; Loredo-Osti, C.; Beltrán-López, S.; Ballesteros-Rodea, G.; Gonzalez-Bulnes, A.; Meza-Herrera, C.A.; et al. Methionine Supplementation during Pregnancy of Goats Improves Kids’ Birth Weight, Body Mass Index, and Postnatal Growth Pattern. Biology 2022, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, G.F.; Rodning, S.P.; Moisá, S.J. Fetal programming effect of rumen-protected methionine on primiparous Angus × Simmental offspring’s performance and skeletal muscle gene expression. J. Anim. Sci. 2024, 102, skae006. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wang, Z.; Lu, J.; Zhang, X.; Chen, Z.; Wan, Z.; Cai, Y.; Wang, F.; Zhang, Y. Effects of maternal rumen-protected methionine supplementation on ewe colostrum composition, lamb growth performance, rumen development and microbiome. Anim. Feed Sci. Technol. 2024, 318, 116131. [Google Scholar] [CrossRef]
- Rosales Nieto, C.A.; Thompson, A.N.; Martin, G.B. A new perspective on managing the onset of puberty and early reproductive performance in ewe lambs: A review. Anim. Prod. Sci. 2018, 58, 1967–1975. [Google Scholar] [CrossRef]
- FASS. Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching, 3rd ed.; Federation Animal Science Society: Champaing, IL, USA, 2010; p. 177. [Google Scholar]
- NAM—National Academy of Medicine. Guide for the Care and Use of Laboratory Animals. Co-Produced by the National Academy of Medicine–Mexico and the Association for Assessment and Accreditation of Laboratory Animal Care International, 1st ed.; Harlan: Mexico City, Mexico, 2010. [Google Scholar]
- Mellado, M. Dietary selection by goats and the implications for range management in the Chihuahuan Desert: A review. Rangel. J. 2016, 38, 331–341. [Google Scholar] [CrossRef]
- García-Monjaras, S.; Santos-Díaz, R.E.; Flores-Najera, M.J.; Cuevas-Reyes, V.; Meza-Herrera, C.A.; Mellado, M.; Chay-Canul, A.J.; Rosales-Nieto, C.A. Diet selected by goats on xerophytic shrubland with different milk yield potential. J. Arid Environ. 2021, 186, 104429. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids; The National Academies Press: Washington, DC, USA, 2007; p. 292. [Google Scholar]
- Zarazaga, L.A.; Guzmán, J.L.; Domínguez, C.; Pérez, M.C.; Prieto, R.; Sánchez, J. Nutrition level and season of birth do not modify puberty of Payoya goat kids. Animal 2009, 3, 79–86. [Google Scholar] [CrossRef]
- Espinoza-Flores, L.A.; Andrade-Esparza, J.D.; Hernández, H.; Zarazaga, L.A.; Abecia, J.A.; Chemineau, P.; Keller, M.; Delgadillo, J.A. Male effect using photostimulated bucks and nutritional supplementation advance puberty in goats under semi-extensive management. Theriogenology 2020, 143, 82–87. [Google Scholar] [CrossRef]
- Rosales-Nieto, C.A.; Thompson, A.N.; Cuevas-Reyes, V.; Hérnandez-Arteaga, L.E.S.; Greeff, J.C.; Ehrhardt, R.; Veiga-Lopez, A.; Martin, G.B. Utilising male stimulus to improve the reproductive efficiency of 8-month-old nulliparous ewes and adult parous ewes. Theriogenology 2024, 217, 143–150. [Google Scholar] [CrossRef]
- Mellado, M.; Amaro, J.L.; GarcÍA, J.E.; Lara, L.M. Factors affecting gestation length in goats and the effect of gestation period on kid survival. J. Agric. Sci. 2000, 135, 85–89. [Google Scholar] [CrossRef]
- SAS Institute. SAS/Stat User’s Guide, Version 9.3; SAS Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Jacometo, C.B.; Alharthi, A.S.; Zhou, Z.; Luchini, D.; Loor, J.J. Maternal supply of methionine during late pregnancy is associated with changes in immune function and abundance of microRNA and mRNA in Holstein calf polymorphonuclear leukocytes. J. Dairy Sci. 2018, 101, 8146–8158. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, F.; Castoldi, A.; Nicastro, R.; Reghellin, V.; Lombardi, L.; Airoldi, C.; Falletta, E.; Maffioli, E.; Scarcia, P.; Palmieri, L.; et al. Methionine supplementation stimulates mitochondrial respiration. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2018, 1865, 1901–1913. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wu, J.; Zhuo, Y.; Feng, B.; Fang, Z.; Xu, S.; Li, J.; Zhao, H.; Wu, D.; Hua, L.; et al. Effects of maternal methyl donor intake during pregnancy on ileum methylation and function in an intrauterine growth restriction pig model. J. Anim. Sci. Biotechnol. 2024, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Kalhan, S.C.; Marczewski, S.E. Methionine, homocysteine, one carbon metabolism and fetal growth. Rev. Endocr. Metab. Disord. 2012, 13, 109–119. [Google Scholar] [CrossRef]
- Wu, Y.; He, Z.; Zhang, L.; Jiang, H.; Zhang, W. Ontogeny of Immunoreactive Lh and Fsh Cells in Relation to Early Ovarian Differentiation and Development in Protogynous Hermaphroditic Ricefield Eel Monopterus albus1. Biol. Reprod. 2012, 86, 1–9. [Google Scholar] [CrossRef]
- Kota, S.K.; Gayatri, K.; Jammula, S.; Meher, L.K.; Kota, S.K.; Krishna, S.V.S.; Modi, K.D. Fetal endocrinology. Indian J. Endocrinol. Metab. 2013, 17, 568–579. [Google Scholar] [CrossRef]
- Bizzarri, C.; Cappa, M. Ontogeny of Hypothalamus-Pituitary Gonadal Axis and Minipuberty: An Ongoing Debate? Front. Endocrinol. 2020, 11, 187. [Google Scholar] [CrossRef]
- Menatian, S.; Nemati, M.; Rashnavadi, M.; Salimi, A.; Taheri, M.R.; Yasemi, F. Relationship between pre–pubertal nutrition plane with reproduction performance and milk quality in Kurdish female kids. Asian Pac. J. Reprod. 2017, 6, 172–175. [Google Scholar] [CrossRef]
- Sakurai, K.; Ohkura, S.; Matsuyama, S.; Katoh, K.; Obara, Y.; Okamura, H. Body Growth and Plasma Concentrations of Metabolites and Metabolic Hormones during the Pubertal Period in Female Shiba Goats. J. Reprod. Dev. 2004, 50, 197–205. [Google Scholar] [CrossRef]
- Meza-Herrera, C.A.; Torres-Moreno, M.; López-Medrano, J.I.; González-Bulnes, A.; Veliz, F.G.; Mellado, M.; Wurzinger, M.; Soto-Sanchez, M.J.; Calderón-Leyva, M.G. Glutamate supply positively affects serum release of triiodothyronine and insulin across time without increases of glucose during the onset of puberty in female goats. Anim. Reprod. Sci. 2011, 125, 74–80. [Google Scholar] [CrossRef]
- Gwynne, J.T.; Strauss, J.F., III. The Role of Lipoproteins in Steroidogenesis and Cholesterol Metabolism in Steroidogenic Glands. Endocr. Rev. 1982, 3, 299–329. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.R.; Dyson, M.T.; Stocco, D.M. Regulation of the steroidogenic acute regulatory protein gene expression: Present and future perspectives. Mol. Hum. Reprod. 2009, 15, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Hirche, F.; Schröder, A.; Knoth, B.; Stangl, G.I.; Eder, K. Effect of dietary methionine on plasma and liver cholesterol concentrations in rats and expression of hepatic genes involved in cholesterol metabolism. Br. J. Nutr. 2006, 95, 879–888. [Google Scholar] [CrossRef] [PubMed]
- El-Shahat, K.H.; Khaled, N.F.; El-Far, F.I. Influence of growth hormone on growth and onset of puberty of Rahmani ewe lamb. Asian Pac. J. Reprod. 2014, 3, 224–230. [Google Scholar] [CrossRef]
- Meza-Herrera, C.A.; Reyes-Avila, J.M.; Tena-Sempere, M.; Veliz-Deras, F.G.; Macias-Cruz, U.; Rodriguez-Martinez, R.; Arellano-Rodriguez, G. Long-term betacarotene supplementation positively affects serum triiodothyronine concentrations around puberty onset in female goats. Small Rumin. Res. 2014, 116, 176–182. [Google Scholar] [CrossRef]
- Delgadillo, J.A.; De Santiago-Miramontes, M.A.; Carrillo, E. Season of birth modifies puberty in female and male goats raised under subtropical conditions. Animal 2007, 1, 858–864. [Google Scholar] [CrossRef]
- Hernández-Arteaga, L.E.S.; Vázquez-García, J.M.; Flores-Najera, M.J.; Cuevas-Reyes, V.; Mellado, M.; Sims, R.; Bruner, B.; Cavazos-Galindo, J.M.; Rosales-Nieto, C.A. Evaluating reproductive outcomes in Saanen and Alpine doelings with suboptimal live weight and performance of their progeny. Span. J. Agric. Res. 2025, 23, 21200. [Google Scholar]
- Amoah, E.A.; Bryant, M.J. A note on the effect of contact with male goats on occurrence of puberty in female goat kids. Anim. Sci. 1984, 38, 141–144. [Google Scholar] [CrossRef]
- Papachristoforou, C.; Koumas, A.; Photiou, C. Initiation of the breeding season in ewe lambs and goat kids with melatonin implants. Small Rumin. Res. 2007, 73, 122–126. [Google Scholar] [CrossRef]
- Valasi, I.; Chadio, S.; Fthenakis, G.C.; Amiridis, G.S. Management of pre-pubertal small ruminants: Physiological basis and clinical approach. Anim. Reprod. Sci. 2012, 130, 126–134. [Google Scholar] [CrossRef]
- Haldar, A.; Pal, P.; Datta, M.; Paul, R.; Pal, S.K.; Majumdar, D.; Biswas, C.K.; Pan, S. Prolificacy and Its Relationship with Age, Body Weight, Parity, Previous Litter Size and Body Linear Type Traits in Meat-type Goats. Asian-Australas J. Anim. Sci. 2014, 27, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Panzuti, C.; Mandrile, G.; Duvaux-Ponter, C.; Dessauge, F. Early weaning and high feeding level in post-weaning period did not impact milk production in Alpine dairy goats. J. Dairy Res. 2018, 85, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Silanikove, N. The physiological basis of adaptation in goats to harsh environments. Small Rumin. Res. 2000, 35, 181–193. [Google Scholar] [CrossRef]
- Rosales-Nieto, C.A.; Gamez-Vazquez, H.G.; Gudino-Reyes, J.; Reyes-Ramirez, E.A.; Eaton, M.; Stanko, R.L.; Meza-Herrera, C.A.; Gonzalez-Bulnes, A. Nutritional and metabolic modulation of the male effect on the resumption of ovulatory activity in goats. Anim. Prod. Sci. 2011, 51, 115–122. [Google Scholar] [CrossRef]
- Gámez-Vázquez, H.G.; Rosales-Nieto, C.A.; Urrutia-Morales, J.; Mellado, M.; Meza-Herrera, C.A.; Vázquez-García, J.M.; Hernández-Arteaga, L.E.S.; Negrete-Sánchez, L.O.; Loredo-Osti, C.; Rivas-Jacobo, M.A.; et al. Effect of Replacing Sorghum Stubble with Tillandsia recurvata (L.) on Liveweight Change, Blood Metabolites, and Hematic Biometry of Goats. Biology 2022, 11, 517. [Google Scholar] [CrossRef]
- Mani, A.U.; McKelvey, W.A.C.; Watson, E.D. The effects of low level of feeding on response to synchronization of estrus, ovulation rate and embryo loss in goats. Theriogenology 1992, 38, 1013–1022. [Google Scholar] [CrossRef]
- Mellado, M.; Rodríguez, I.J.; Alvarado-Espino, A.; Véliz, F.G.; Mellado, J.; García, J.E. Short communication: Reproductive response to concentrate supplementation of mixed-breed goats on rangeland. Trop. Anim. Health Prod. 2020, 52, 2737–2741. [Google Scholar] [CrossRef]
- Zamuner, F.; Leury, B.J.; DiGiacomo, K. Review: Feeding strategies for rearing replacement dairy goats—From birth to kidding. Animal 2023, 17, 100853. [Google Scholar] [CrossRef]
Ingredient Composition (% in Diet) | ||
Alfalfa hay | 70 | |
Oat hay | 10 | |
Maize silage | 20 | |
Diet Chemical Composition | ||
Nutrient requirements/live weight | 10 kg | 20 kg |
Dry matter intake (% live weight) | 3.42 | 3.52 |
Crude protein (g) | 38 | 57 |
Metabolizable energy (Mcal/d) | 0.82 | 1.28 |
Calcium (g/d) | 1.1 | 1.5 |
Phosphorus (g/d) | 0.7 | 1.1 |
Dry matter intake (kg/doe/d) | 0.26 | 0.54 |
Crude protein intake (g/doe/d) | 22 | 51 |
Metabolizable energy intake (Mcal/doe/d) | 0.57 | 0.96 |
Treatment | ||||
---|---|---|---|---|
H-MET-G1 | CTL-G1 | SEM | p-Value | |
n | 17 | 21 | ||
Birth weight (kg) | 3.4 | 3.0 | 0.06 | 0.004 |
Weaning Weight (kg) | 9.2 | 8.2 | 0.28 | 0.10 |
LWG1 (g/d) | 129 | 116 | 5.68 | 0.26 |
Age at puberty (d) | 216 | 229 | 6.7 | 0.31 |
Weight at puberty (kg) | 20.5 | 21 | 0.54 | 0.62 |
Age at breeding (d) | 280 | 281 | 0.58 | 0.48 |
Weight at breeding (kg) | 22.7 | 23.1 | 0.56 | 0.75 |
Age at conception (d) | 293 | 298 | 2.72 | 0.55 |
LWG2 (g/d) | 58 | 63 | 2.09 | 0.21 |
Weight at conception (kg) | 22.5 | 22.3 | 0.51 | 0.84 |
Days to conception after joining | 13 | 17 | 2.40 | 0.42 |
Treatment | |||
---|---|---|---|
H-MET-G1 | CTL-G1 | p-Value | |
n | 17 | 21 | |
Pregnancy (%) | 53 | 76 | 0.15 |
Prolificacy (%) | 11 | 0 | 0.97 |
Reproductive rate (%) | 59 | 76 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuevas-Reyes, V.; Flores-Sánchez, J.; Ramírez de la Cruz, E.; Vázquez-García, J.M.; Hernández-Arteaga, L.E.S.; Sims, R.; Cavazos-Galindo, J.M.; Mellado, M.; Rosales-Nieto, C.A. Effects of Prenatal Herbal Methionine Supplementation on Growth Indices, Onset of Puberty, Blood Metabolites, and Fertility of Alpine Doelings. Biology 2025, 14, 237. https://doi.org/10.3390/biology14030237
Cuevas-Reyes V, Flores-Sánchez J, Ramírez de la Cruz E, Vázquez-García JM, Hernández-Arteaga LES, Sims R, Cavazos-Galindo JM, Mellado M, Rosales-Nieto CA. Effects of Prenatal Herbal Methionine Supplementation on Growth Indices, Onset of Puberty, Blood Metabolites, and Fertility of Alpine Doelings. Biology. 2025; 14(3):237. https://doi.org/10.3390/biology14030237
Chicago/Turabian StyleCuevas-Reyes, Venancio, Jorge Flores-Sánchez, Esau Ramírez de la Cruz, Juan M. Vázquez-García, Luisa E. S. Hernández-Arteaga, Reagan Sims, Jaime M. Cavazos-Galindo, Miguel Mellado, and César A. Rosales-Nieto. 2025. "Effects of Prenatal Herbal Methionine Supplementation on Growth Indices, Onset of Puberty, Blood Metabolites, and Fertility of Alpine Doelings" Biology 14, no. 3: 237. https://doi.org/10.3390/biology14030237
APA StyleCuevas-Reyes, V., Flores-Sánchez, J., Ramírez de la Cruz, E., Vázquez-García, J. M., Hernández-Arteaga, L. E. S., Sims, R., Cavazos-Galindo, J. M., Mellado, M., & Rosales-Nieto, C. A. (2025). Effects of Prenatal Herbal Methionine Supplementation on Growth Indices, Onset of Puberty, Blood Metabolites, and Fertility of Alpine Doelings. Biology, 14(3), 237. https://doi.org/10.3390/biology14030237