A Comparison of Pollination Efficiency Between Wild Bumble Bees and Introduced Honey Bees on Polygonatum cyrtonema
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species and Site
2.2. Measurement of Flower’s Traits and Bees’ Body Traits
2.3. Pollination Observation Experiments
2.4. Pollination Efficiency of Bumble Bees and Honey Bees
2.5. Data Analysis
3. Results
3.1. Flower’s Traits and Bees’ Body Traits
3.2. Pollination Observations
3.3. Pollination Efficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greenleaf, S.S.; Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. USA 2006, 103, 13890–13895. [Google Scholar] [CrossRef] [PubMed]
- Winfree, R.; Williams, N.M.; Dushoff, J.; Kremen, C. Native bees provide insurance against ongoing honey bee losses. Ecol. Lett. 2007, 10, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Brunet, J.; Fragoso, F.P. What are the main reasons for the worldwide decline in pollinator populations? CABI Rev. 2024, 19, 1. [Google Scholar] [CrossRef]
- Mallinger, R.E.; Bradshaw, J.; Varenhorst, A.J.; Prasifka, J.R. Native solitary bees provide economically significant pollination services to confection sunflowers (Helianthus annuus L.) (Asterales: Asteraceae) grown across the northern Great Plains. J. Econ. Entomol. 2018, 112, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Makinson, J.C.; Gilpin, A.M.; Spooner-Hart, R.N.; Cook, J.M. Wild native insects are efficient pollinators of mangoes in the Northern Territory of Australia. Agric. Ecosyst. Environ. 2024, 374, 199161. [Google Scholar] [CrossRef]
- Aizen, M.A.; Morales, C.L.; Vázquez, D.P.; Garibaldi, L.A.; Sáez, A.; Harder, L.D. When mutualism goes bad: Density-dependent impacts of introduced bees on plant reproduction. New Phytol. 2014, 204, 322–328. [Google Scholar] [CrossRef]
- Kenta, T.; Inari, N.; Nagamitsu, T.; Goka, K.; Hiura, T. Commercialized European bumblebee can cause pollination disturbance: An experiment on seven native plant species in Japan. Biol. Conserv. 2007, 134, 298–309. [Google Scholar] [CrossRef]
- Memmott, J.; Waser, N.M. Integration of alien plants into a native flower-pollinator visitation web. Proc. Biol. Sci. 2002, 269, 2395–2399. [Google Scholar] [CrossRef]
- Arceo-Gómez, G.; Barker, D.; Stanley, A.M.; Watson, T.; Daniels, J. Plant-pollinator network structural properties differentially affect pollen transfer dynamics and pollination success. Oecologia 2020, 192, 1037–1045. [Google Scholar] [CrossRef]
- Wujisguleng, W.; Liu, Y.; Long, C. Ethnobotanical review of food uses of Polygonatum (Convallariaceae) in China. Acta Soc. Bot. Pol. 2012, 81, 239–244. [Google Scholar] [CrossRef]
- Hu, Y.; Yin, M.; Bai, Y.; Chu, S.; Zhang, L.; Yang, M.; Zheng, X.; Yang, Z.; Liu, J.; Li, L.; et al. An Evaluation of Traits, Nutritional, and Medicinal Component Quality of Polygonatum cyrtonema Hua and P. sibiricum Red. Front. Plant Sci. 2022, 13, 891775. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cheng, H.; Xu, J.; Hu, J.; Zhao, C.; Xing, L.; Wang, M.; Wu, Z.; Peng, D.; Yu, N.; et al. Genetic diversity and population structure of Polygonatum cyrtonema Hua in China using SSR markers. PLoS ONE 2023, 18, e0290605. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, W.X.; Zhu, X.; Hai, M. Study on floral dynamics and pollination of Polygonatum cyrtonema. Seed 2017, 36, 41–45. [Google Scholar]
- Li, X.J.; Sheng, Y.J.; Zhang, T.; Wu, Y.; Xie, M.K.; Xiong, W.J.; Liao, W.B.; Li, X.H. The pollen germination and pollination biology of Polygonatum cyrtonema. Acta Sci. Nat. Univ. Sunyatseni 2021, 60, 110–120. [Google Scholar]
- Li, L.G.; Zhang, Z.R.; Shi, Y.; Liu, J.J.; Qiu, Y.X.; Chen, D.H.; Si, J.P. Investigation on reproductive characteristics of Polygonatum cyrtonema. Zhongguo Zhong Yao Za Zhi 2021, 46, 1079–1083. [Google Scholar] [CrossRef]
- Fan, Z.W.; Ke, X.Y.; Chen, L.W.; Meng, Y.H. Advances in chemical constituents and pharmacological activities of Polygonatum cyrtonema Hua. Inf. Tradit. Chin. Med. 2020, 37, 119–126. [Google Scholar]
- Li, L.; Thakur, K.; Cao, Y.Y.; Liao, B.Y.; Zhang, J.G.; Wei, Z.J. Anticancerous potential of polysaccharides sequentially extracted from Polygonatum cyrtonema Hua in human cervical cancer Hela cells. Int. J. Biol. Macromol. 2020, 148, 843–850. [Google Scholar] [CrossRef]
- Mu, C.; Sheng, Y.; Wang, Q.; Amin, A.; Li, X.; Xie, Y. Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology: Viral and cancer signaling mechanisms. J. Funct. Foods 2021, 77, 104149. [Google Scholar] [CrossRef]
- He, P.Y.; Zhang, J.Y.; Zhao, Y.Y.; Wang, Y.X.; Gao, T.Y.; Peng, T.; Chen, H.L.; Tan, Y.Z.; Deng, Y. Advances of medicinal value and health food application of Polygonatum. Strait Pharm. J. 2021, 33, 31–35. [Google Scholar]
- Javorek, S.K.; Mackenzie, K.E.; Vander Kloet, S.P. Comparative pollination effectiveness among bees (Hymenoptera: Apoidea) on lowbush blueberry (Ericaceae: Vaccinium angustifolium). Ann. Entomol. Soc. Am. 2002, 95, 345–351. [Google Scholar] [CrossRef]
- Normandeau Bonneau, M.; Samson-Robert, O.; Fournier, V.; Chouinard, G. Commercial bumble bee (Bombus impatiens) hives under exclusion netting systems for apple pollination in orchards. Renew. Agric. Food Syst. 2021, 36, 234–244. [Google Scholar] [CrossRef]
- Editorial Committee of the Flora of China CAoS. Flora of China; Science Press: Beijing, China, 1978. [Google Scholar]
- Tan, K.; Yang, S.; Wang, Z.; Radloff, S.E.; Oldroyd, B.P. Differences in foraging and broodnest temperature in the honey bees Apis cerana and A. mellifera. Apidologie 2012, 43, 618–625. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botias, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.H.; Tang, Y.; Yao, J.; Cameron, S.A. The bumblebees of Sichuan (Hymenoptera: Apidae, Bombini). Syst. Biodivers. 2009, 7, 101–189. [Google Scholar] [CrossRef]
- Thomson, J.D.; Wilson, P.; Valenzuela, M.; Malzone, M. Pollen presentation and pollination syndromes, with special reference to Penstemon. Plant Species Biol. 2000, 15, 11–29. [Google Scholar] [CrossRef]
- Fleming, T.F.; Etcheverry, A.V. Comparing the efficiency of pollination mechanisms in Papilionoideae. Arthropod-Plant Interact. 2017, 11, 273–283. [Google Scholar] [CrossRef]
- Willmer, P. Pollination and Floral Ecology; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Fumero-Cabán, J.J.; Meléndez-Ackerman, E.J. Relative pollination effectiveness of floral visitors of Pitcairnia angustifolia (Bromeliaceae). Am. J. Bot. 2007, 94, 419–424. [Google Scholar] [CrossRef]
- Sagwe, R.N.; Peters, M.K.; Dubois, T.; Steffan-Dewenter, I.; Lattorff, H.M.G. Pollinator efficiency of avocado (Persea americana) flower insect visitors. Ecol. Solut. Evid. 2022, 3, e12178. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Herrera, C.M. Components of pollinator “quality”: Comparative analysis of a diverse insect assemblage. Oikos 1987, 50, 79–90. [Google Scholar] [CrossRef]
- Read, S.F.J.; Howlett, B.G.; Jesson, L.K.; Pattemore, D.E. Insect visitors to avocado flowers in the Bay of Plenty, New Zealand. N. Z. Plant Prot. 2017, 70, 38–44. [Google Scholar] [CrossRef]
- Bosch, J.; Osorio-Canadas, S.; Sgolastra, F.; Vicens, N. Use of a managed solitary bee to pollinate almonds: Population sustainability and increased fruit set. Insects 2021, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Vicens, N.; Bosch, J. Pollinating efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on ‘Red Delicious’ Apple. Environ. Entomol. 2000, 29, 235–240. [Google Scholar] [CrossRef]
- Eeraerts, M.; Vanderhaegen, R.; Smagghe, G.; Meeus, I. Pollination efficiency and foraging behaviour of honey bees and non-Apis bees to sweet cherry. Agric. For. Entomol. 2020, 22, 75–82. [Google Scholar] [CrossRef]
- Page, M.L.; Nicholson, C.C.; Brennan, R.M.; Britzman, A.T.; Greer, J.; Hemberger, J.; Kahl, H.; Müller, U.; Peng, Y.; Rosenberger, N.M.; et al. A meta-analysis of single visit pollination effectiveness comparing honey bees and other floral visitors. Am. J. Bot. 2021, 108, 2196–2207. [Google Scholar] [CrossRef]
- Mu, J.; Peng, Y.; Xi, X.; Wu, X.; Griffin, J.N.; Niklas, K.J.; Sun, S. Domesticated honey bees evolutionarily reduce flower nectar volume in a Tibetan lotus. Ecology 2014, 95, 3161–3172. [Google Scholar] [CrossRef]
- Su, R.; Dai, W.; Yang, Y.; Wang, X.; Gao, R.; He, M.; Zhao, C.; Mu, J. Introduced honey bees increase host plant abundance but decrease native bumble bee species richness and abundance. Ecosphere 2022, 13, e4085. [Google Scholar] [CrossRef]
- Herrera, C.M. Pollinator abundance, morphology, and visitation rate: Analysis of the “quantity” component in a plant-pollinator system. Oecologia 1989, 80, 241–248. [Google Scholar] [CrossRef]
- Ne’eman, G.; Jürgens, A.; Newstrom-Lloyd, L.; Potts, S.G.; Dafni, A. A framework for comparing pollinator performance: Effectiveness and efficiency. Biol. Rev. 2010, 85, 435–451. [Google Scholar] [CrossRef]
- King, C.; Ballantyne, G.; Willmer, P.G. Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol. Evol. 2013, 4, 811–818. [Google Scholar] [CrossRef]
- Alcaraz, M.L.; Hormaza, J.I. Fruit set in avocado: Pollen limitation, pollen load size, and selective fruit abortion. Agronomy 2021, 11, 1603. [Google Scholar] [CrossRef]
- Minnaar, C.; Anderson, B. Using quantum dots as pollen labels to track the fates of individual pollen grains. Methods Ecol. Evol. 2019, 10, 604–614. [Google Scholar] [CrossRef]
- Willmer, P.G.; Finlayson, K. Big bees do a better job: Intraspecific size variation influences pollination effectiveness. J. Pollinat. Ecol. 2014, 14, 244–254. [Google Scholar] [CrossRef]
- Tang, J.; Quan, Q.M.; Chen, J.Z.; Wu, T.; Huang, S.Q. Pollinator effectiveness and importance between female and male mining bee (Andrena). Biol. Lett. 2019, 15, 20190479. [Google Scholar] [CrossRef]
- Földesi, R.; Howlett, B.G.; Grass, I.; Batáry, P. Larger pollinators deposit more pollen on stigmas across multiple plant species—A meta-analysis. J. Appl. Ecol. 2021, 58, 699–707. [Google Scholar] [CrossRef]
- Naghiloo, S.; Nikzat-Siahkolaee, S.; Esmaillou, Z. Size-matching as an important driver of plant-pollinator interactions. Plant Biol. 2021, 23, 583–591. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, B.; Liu, X.; Li, F.; Zhu, Z.; Quan, Q.; Li, Y. Do larger pollinators have higher pollination efficiency for the generalized pollination plant Hibiscus mutabilis? Biology 2024, 13, 1009. [Google Scholar] [CrossRef]
- Phillips, B.B.; Williams, A.; Osborne, J.L.; Shaw, R.F. Shared traits make flies and bees effective pollinators of oilseed rape (Brassica napus L.). Basic Appl. Ecol. 2018, 32, 66–76. [Google Scholar] [CrossRef]
- Bartomeus, I.; Cariveau, D.P.; Harrison, T.; Winfree, R. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 2018, 127, 306–315. [Google Scholar] [CrossRef]
- Harder, L.D.; Thomson, J.D. Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. Am. Nat. 1989, 133, 323–344. [Google Scholar] [CrossRef]
- Holmquist, K.G.; Mitchell, R.J.; Karron, J.D. Influence of pollinator grooming on pollen-mediated gene dispersal in Mimulus ringens (Phrymaceae). Plant Species Biol. 2011, 27, 77–85. [Google Scholar] [CrossRef]
Floral Traits | Mean ± S.E. |
---|---|
Floral length (mm) | 20.06 ± 0.18 |
Corolla opening (mm) | 8.66 ± 0.08 |
Floral diameter (mm) | 5.46 ± 0.05 |
Stamen length (mm) | 18.70 ± 0.17 |
Pistil length (mm) | 19.69 ± 0.20 |
Stigma–anther distance (mm) | 0.82 ± 0.03 |
Nectar volume (μL) | 13.96 ± 0.92 |
Nectar concentration (%) | 32.79 ± 0.75 |
(mm) | Head Length | Head Width | Proboscis Length | Mesosoma Length | Mesosoma Width | Metasoma Length | Metasoma Width | Body Length |
---|---|---|---|---|---|---|---|---|
Bumble bee (N = 12) | 5.60 ± 0.24 a | 4.48 ± 0.14 a | 9.38 ± 0.37 a | 6.01 ± 0.16 a | 5.81 ± 0.18 a | 8.09 ± 0.50 a | 6.82 ± 0.26 a | 16.57 ± 0.62 a |
Honey bee (N = 10) | 3.83 ± 0.05 b | 3.79 ± 0.03 b | 5.43 ± 0.21 b | 3.94 ± 0.07 b | 4.04 ± 0.06 b | 6.14 ± 0.12 b | 4.16 ± 0.07 b | 12.40 ± 0.15 b |
Wald χ2 | 44.758 | 19.809 | 76.391 | 115.645 | 76.47 | 12.188 | 80.491 | 35.506 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Ge, X.-X.; Xu, Y.-J.; Zhang, Y.; Shao, J.-W.; Li, X.-H. A Comparison of Pollination Efficiency Between Wild Bumble Bees and Introduced Honey Bees on Polygonatum cyrtonema. Biology 2025, 14, 276. https://doi.org/10.3390/biology14030276
Tang J, Ge X-X, Xu Y-J, Zhang Y, Shao J-W, Li X-H. A Comparison of Pollination Efficiency Between Wild Bumble Bees and Introduced Honey Bees on Polygonatum cyrtonema. Biology. 2025; 14(3):276. https://doi.org/10.3390/biology14030276
Chicago/Turabian StyleTang, Ju, Xiang-Xiang Ge, Yu-Jie Xu, Yu Zhang, Jian-Wen Shao, and Xiao-Hong Li. 2025. "A Comparison of Pollination Efficiency Between Wild Bumble Bees and Introduced Honey Bees on Polygonatum cyrtonema" Biology 14, no. 3: 276. https://doi.org/10.3390/biology14030276
APA StyleTang, J., Ge, X.-X., Xu, Y.-J., Zhang, Y., Shao, J.-W., & Li, X.-H. (2025). A Comparison of Pollination Efficiency Between Wild Bumble Bees and Introduced Honey Bees on Polygonatum cyrtonema. Biology, 14(3), 276. https://doi.org/10.3390/biology14030276