The Presence of Bacterial and Protozoan Pathogens in Wild Fallow Deer (Dama dama) from a Protected Area in Central Italy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Molecular Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silaghi, C.; Fröhlich, J.; Reindl, H.; Hamel, D.; Rehbein, S. Anaplasma phagocytophilum and Babesia Species of Sympatric Roe Deer (Capreolus capreolus), Fallow Deer (Dama dama), Sika Deer (Cervus nippon) and Red Deer (Cervus elaphus) in Germany. Pathogens 2020, 9, 968. [Google Scholar] [CrossRef]
- Wijburg, S.R.; Fonville, M.; de Bruin, A.; van Rijn, P.A.; Montizaan, M.G.E.; van den Broek, J.; Sprong, H.; Rijks, J.M. Prevalence and predictors of vector-borne pathogens in Dutch roe deer. Parasites Vectors 2022, 15, 76. [Google Scholar] [CrossRef] [PubMed]
- Middlebrook, E.A.; Romero, A.T.; Bett, B.; Nthiwa, D.; Oyola, S.O.; Fair, J.M.; Bartlow, A.W. Identification and distribution of pathogens coinfecting with Brucella spp., Coxiella burnetii and Rift Valley fever virus in humans, livestock and wildlife. Zoonoses Public Health 2022, 69, 175–194. [Google Scholar] [CrossRef] [PubMed]
- Dashti, A.; Köster, P.C.; Bailo, B.; de Las Matas, A.S.; Habela, M.Á.; Rivero-Juarez, A.; Vicente, J.; Serrano, E.; Arnal, M.C.; de Luco, D.F.; et al. Occurrence and limited zoonotic potential of Cryptosporidium spp., Giardia duodenalis, and Balantioides coli infections in free-ranging and farmed wild ungulates in Spain. Res. Vet. Sci. 2023, 159, 189–197. [Google Scholar] [CrossRef]
- Ciuti, S.; Apollonio, M. Ecological sexual segregation in fallow deer (Dama dama): A multisptial and multiptemporal approach. Behav. Ecol. Sociobiol. 2008, 62, 1747–1759. [Google Scholar]
- Brogi, R.; Bongi, P.; Del Frate, M.; Sieni, S.; Cavallera, A.; Apollonio, M. Intra-guild competition and ecosystem services of mammal scavengers in a new colonized wolf landscape. Behav. Ecol. Sociobiol. 2025, 79, 20. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Keesing, F. The function of biodiversity in the ecology of vector-borne zoonotic diseases. Can. J. Zool. 2000, 78, 2061–2078. [Google Scholar]
- LoGuidice, K.; Ostfeld, R.S.; Schmidt, K.A.; Keesing, F. The ecology of infectious disease: Effect of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA 2003, 100, 567–571. [Google Scholar]
- Böhm, M.; White, P.C.L.; Chambers, J.; Smith, L.; Hurchings, M.R. Wild deer as a source of infection for livestock and humans in the UK. Vet. J. 2007, 174, 270–276. [Google Scholar]
- Galuppi, R.; Aureli, S.; Bonoli, C.; Caffara, M.; Tampieri, M.P. Detection and molecular characterization of Theileria sp. in fallow deer (Dama dama) and ticks from an Italian natural preserve. Res. Vet. Sci. 2011, 91, 110–115. [Google Scholar] [CrossRef]
- Veronesi, F.; Galuppi, R.; Tampieri, M.P.; Bonoli, C.; Mammoli, R.; Piergili Fioretti, D. Prevalence of Anaplasma phagocytophilum in fallow deer (Dama dama) and feeding ticks from an Italy preserve. Res. Vet. Sci. 2011, 90, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Menandro, M.L.; Martini, M.; Dotto, G.; Mondin, A.; Ziron, G.; Pasotto, D. Tick-borne zoonotic bacteria in fallow deer (Dama dama) in Euganean Hills Regional Park of Italy. Int. J. Infect. Dis. 2016, 53 (Suppl. S61), 19.086. [Google Scholar] [CrossRef]
- Ebani, V.V.; Rocchigiani, G.; Bertelloni, F.; Nardoni, S.; Leoni, A.; Nicoloso, S.; Mancianti, F. Molecular survey on the presence of zoonotic arthropod-borne pathogens in wild red deer (Cervus elaphus). Comp. Immunol. Microbiol. Infect. Dis. 2016, 47, 77–80. [Google Scholar] [CrossRef]
- Cafiso, A.; Bazzocchi, C.; Cavagna, M.; Di Lorenzo, E.; Serra, V.; Rossi, R.; Comazzi, S. Molecular Survey of Babesia spp. and Anaplasma phagocytophilum in Roe Deer from a Wildlife Rescue Center in Italy. Animals 2021, 11, 3335. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Trebino, C.; Guardone, L.; Bertelloni, F.; Cagnoli, G.; Altomonte, I.; Vignola, P.; Bongi, P.; Mancianti, F. Retrospective Molecular Survey on Bacterial and Protozoan Abortive Agents in Roe Deer (Capreolus capreolus) from Central Italy. Animals 2022, 12, 3202. [Google Scholar] [CrossRef]
- Ebani, V.V.; Guardone, L.; Rocchigiani, G.; Bascherini, A.; Cagnoli, G.; Bertelloni, F.; Bongi, P.; Russo, C.; Riccioli, F.; Mancianti, F. Molecular survey on the presence of arthropod-borne bacteria and protozoans in roe deer (Capreolus capreolus) and ticks from Central Italy. Acta Trop. 2022, 233, 106586. [Google Scholar] [CrossRef]
- Floris, I.; Vannuccini, A.; Ligotti, C.; Musolino, N.; Romano, A.; Viani, A.; Bianchi, D.M.; Robetto, S.; Decastelli, L. Detection and Characterization of Zoonotic Pathogens in Game Meat Hunted in Northwestern Italy. Animals 2024, 14, 562. [Google Scholar] [CrossRef]
- Franceschi, S.; Bongi, P.; Del Frate, M.; Fattorini, L.; Apollonio, M. A sampling strategy for habitat selection, mapping, and abundance estimation of deer by pellet counts. J. Wildl. Manag. 2023, 87, e22345. [Google Scholar] [CrossRef]
- Gorreri, L.; Somoncini, Y. Nesting Birds in Migliarino—San Rossore—Massaciuccoli Regional Park; Cambi Editore: Siena, Italy, 2010; ISBN 888848213X. (In Italian) [Google Scholar]
- Massung, R.F.; Slater, K.; Owens, J.H.; Nicholson, W.L.; Mather, T.N.; Solberg, V.B.; Olson, J.G. Nested PCR assay for detection of granulocytic Ehrlichiae. J. Clin. Microbiol. 1998, 36, 1090–1095. [Google Scholar] [CrossRef]
- Chang, Y.F.; Novosol, V.; McDonough, S.P.; Chang, C.F.; Jacobson, R.H.; Divers, T.; Quimby, F.W.; Shin, S.; Lein, D.H. Experimental infection of ponies with Borrelia burgdorferi by exposure to Ixodid ticks. Vet. Pathol. 2000, 37, 68–76. [Google Scholar] [CrossRef]
- Romero, C.; Gamazo, C.; Pardo, M.; Lopez-Goni, I. Specific detection of Brucella DNA by PCR. J. Clin. Microbiol. 1995, 33, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Berri, M.; Bernard, F.; Lecu, A.; Ollivet-Courtois, F.; Rodolakis, A. Molecular characterization and ovine live vaccine 1B evaluation toward a Chlamydophila abortus strain isolated from springbok antelope abortion. Vet. Microbiol. 2004, 103, 231–240. [Google Scholar] [CrossRef]
- Milutinovi’c, M.; Masuzawa, T.; Tomanovi’c, S.; Radulovi’c, Z.; Fukui, T.; Okamoto, Y. Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Francisella tularensis and their co-infections in host-seeking Ixodes ricinus ticks collected in Serbia. Exp. Appl. Acarol. 2008, 45, 171–183. [Google Scholar] [CrossRef]
- Stoddard, R.A.; Gee, J.E.; Wilkins, P.P.; McCaustland, K.; Hoffmaster, A.R. Detection of pathogenic Leptospira spp. Through TaqMan polymerase chain reactionn targeting the LipL32 gene. Diagn. Microbiol. Infect. Dis. 2009, 64, 247–255. [Google Scholar] [CrossRef]
- Beck, R.; Vojta, L.; Mrljak, V.; Marinculi’c, A.; Beck, A.; Zivicnjak, T.; Cacciò, S.M. Diversity of Babesia and Theileria species in symptomatic and asymptomatic dogs in Croatia. Int. J. Parasitol. 2009, 39, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Cacciò, S.M.; Antunovic, B.; Moretti, A.; Mangili, V.; Marinculic, A.; Baric, R.R.; Slemenda, S.B.; Pieniazek, N.J. Molecular characterisation of Babesia canis canis and Babesia canis vogeli from naturally infected European dogs. Vet. Parasitol. 2002, 106, 285–292. [Google Scholar] [CrossRef]
- Müller, N.; Zimmermann, V.; Hentrich, B.; Gottstein, B. Diagnosis of Neospora caninum and Toxoplasma gondii infection by PCR and DNA hybridization immunoassay. J. Clin. Microbiol. 1996, 34, 2850–2852. [Google Scholar] [CrossRef]
- Jones, C.D.; Okhravi, N.; Adamson, P.; Tasker, S.; Lightman, S. Comparison of PCR detection methods for B1, P30, and 18s rDNA genes of Toxoplasma gondii in aqueous humor. Investig. Ophthalmol. Vis. Sci. 2000, 41, 634–644. [Google Scholar]
- Bollettino Nazionale Epidemiologico Veterinario. Available online: https://www.izs.it/BENV_NEW/territori-indenni_en.html (accessed on 16 January 2025).
- Garin-Bastuji, B.; Hars, J.; Drapeau, A.; Cherfa, M.A.; Game, Y.; Le Horgne, J.M.; Rautureau, S.; Maucci, E.; Pasquier, J.J.; Jay, M.; et al. Reemergence of Brucella melitensis in wildlife, France. Emerg. Infect. Dis. 2014, 20, 157–1571. [Google Scholar] [CrossRef]
- Godfroid, J.; Cloeckaert, A.; Liautard, J.P.; Kohler, S.; Fretin, D.; Walravens, K.; Garín Bastuji, B.; Letesson, J.J. From the discovery of the Malta fever’s agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Vet. Res. 2005, 36, 313–326. [Google Scholar] [CrossRef]
- Conner, M.M.; Ebinger, M.R.; Blanchong, J.A.; Cross, P.C. Infectious disease in cervids of North America. Ann. N. Y. Acad. Sci. 2008, 1134, 146–172. [Google Scholar] [CrossRef] [PubMed]
- Pires, H.; Cardoso, L.; Lopes, A.P.; Fontes, M.D.C.; Santos-Silva, S.; Matos, M.; Pintado, C.; Roque, N.; Fonseca, L.F.; Morgado, I.; et al. Hunting for Answers: Assessing Brucella spp. Seroprevalence and Risks in Red Deer and Wild Boar in Central Portugal. Pathogens 2024, 13, 242. [Google Scholar] [CrossRef] [PubMed]
- Pascucci, I.; Di Domenico, M.; Dall’Acqua, F.; Sozio, G.; Cammà, C. Detection of Lyme disease and Q fever agents in wild rodents in central Italy. Vector Borne Zoonotic Dis. 2015, 15, 404–411. [Google Scholar]
- Ebani, V.V.; Nardoni, S.; Giani, M.; Rocchigiani, G.; Archin, T.; Altomonte, I.; Poli, A.; Mancianti, F. Molecular survey on the occurrence of avian haemosporidia, Coxiella burnetii and Francisella tularensis in waterfowl from central Italy. Int. J. Parasitol. Parasites Wildl. 2019, 10, 87–92. [Google Scholar] [CrossRef]
- Ebani, V.V.; Rocchigiani, G.; Nardoni, S.; Bertelloni, F.; Vasta, V.; Papini, R.A.; Verin, R.; Poli, A.; Mancianti, F. Molecular detection of tick-borne pathogens in wild red foxes (Vulpes vulpes) from Central Italy. Acta Trop. 2017, 172, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Ammam, I.; Brunet, C.D.; Boukenaoui-Ferrouk, N.; Peyroux, J.; Berthier, S.; Boutonnat, J.; Rahal, K.; Bitam, I.; Maurin, M. Francisella tularensis PCR detection in Cape hares (Lepus capensis) and wild rabbits (Oryctolagus cuniculus) in Algeria. Sci. Rep. 2022, 12, 21451. [Google Scholar] [CrossRef]
- Angelakis, E.; Raoult, D. Q Fever. Vet. Microbiol. 2010, 140, 297–309. [Google Scholar] [CrossRef]
- Celina, S.S.; Cerný, J. Coxiella burnetii in ticks, livestock, pets and wildlife: A mini-review. Front. Vet. Sci. 2022, 9, 1068129. [Google Scholar] [CrossRef]
- Giovannini, A.; Cancellotti, F.M.; Turilli, C.; Randi, E. Serological investigations for some bacterial and viral pathogens in fallow deer (Cervus dama) and wild boar (Sus. scrofa) of the San Rossore Preserve Tuscany, Italy. J. Wildl. Dis. 1988, 24, 127–132. [Google Scholar]
- Di Francesco, A.; Donati, M.; Nicoloso, S.; Orlandi, L.; Baldelli, R.; Salvatore, D.; Sarli, G.; Cevenini, R.; Morandi, F. Chlamydiosis: Seroepidemiologic survey in a red deer (Cervus elaphus) population in Italy. J. Wildl. Dis. 2012, 48, 488–491. [Google Scholar] [CrossRef]
- Wodeka, B. Significance of red deer (Cervus elaphus) in the ecology of Borrelia burgdorferi sensu lato. Wiad. Parazytol. 2007, 53, 231–237. [Google Scholar]
- Moyer, P.L.; Varela, A.S.; Luttrell, M.P.; Moore, V.A., 4th; Stallknecht, D.E.; Little, S.E. White-tailed deer (Odocoileus virginianus) develop spirochetemia following experimental infection with Borrelia lonestari. Vet. Microbiol. 2006, 115, 229–236. [Google Scholar] [CrossRef]
- Pearson, P.; Rich, C.; Feehan, M.J.R.; Ditchkoff, S.S.; Rich, S.M. White-Tailed Deer Serum Kills the Lyme Disease Spirochete, Borrelia burgdorferi. Vector Borne Zoonotic Dis. 2023, 23, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Lane, R.S.; Mun, J.; Parker, J.M.; White, M. Columbian black-tailed deer (Odocoileus hemionus columbianus) as hosts for Borrelia spp. in northern California. J. Wildl. Dis. 2005, 41, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Trout Fryxell, R.T.; Dayton Steelman, C.; Szalanski, A.L.; Kvamme, K.L.; Billingsley, P.M.; Williamson, P.C. Survey of Borreliae in ticks, canines, and white-tailed deer from Arkansas, USA. Parasites Vectors 2012, 5, 139. [Google Scholar] [CrossRef]
- Ebani, V.V.; Cerri, D.; Fratini, F.; Ampola, M.; Andreani, E. Anaplasma phagocytophilum infection in a fallow deer (Dama dama) population in a preserve of central Italy. New Microbiol. 2007, 30, 161–165. [Google Scholar] [PubMed]
- El Hamiani Khatat, S.; Daminet, S.; Duchateau, L.; Elhachimi, L.; Kachani, M.; Sahibi, H. Epidemiological and Clinicopathological Features of Anaplasma phagocytophilum Infection in Dogs: A Systematic Review. Front. Vet. Sci. 2021, 8, 686644. [Google Scholar] [CrossRef]
- Schäfer, I.; Silaghi, C.; Fischer, S.; Marsboom, C.; Hendrickx, G.; Gehlen, H.; Müller, E. Detection of Anaplasma phagocytophilum in horses from Germany by molecular and serological testing (2008–2021). Vet. Parasitol. 2022, 312, 109840. [Google Scholar] [CrossRef]
- Kauffmann, M.; Rehbein, S.; Hamel, D.; Lutz, W.; Heddergott, M.; Pfister, K.; Silaghi, C. Anaplasma phagocytophilum and Babesia spp. in roe deer (Capreolus capreolus), fallow deer (Dama dama) and mouflon (Ovis musimon) in Germany. Mol. Cell. Probes 2017, 31, 46–54. [Google Scholar] [CrossRef]
- Hornok, S.; Sug’ar, L.; Fern’andez de Mera, I.G.; de la Fuente, J.; Horv’ath, G.; Kov’acs, T.; Micsutka, A.; Gönczi, E.; Flaisz, B.; Tak’acs, N.; et al. Tick- and fly-borne bacteria in ungulates: The prevalence of Anaplasma phagocytophilum, haemoplasmas and rickettsiae in water buffalo and deer species in central Europe. Hungary. BMC Vet. Res. 2018, 14, 98. [Google Scholar] [CrossRef]
- Razanske, I.; Rosef, O.; Radzijevskaja, J.; Bratchikov, M.; Griciuviene, L.; Paulauskas, A. Prevalence and co-infection with tick-borne Anaplasma phagocytophilum and Babesia spp. in red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in Southern Norway. Int. J. Parasitol. Parasites Wildl. 2019, 8, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Grassi, L.; Franzo, G.; Martini, M.; Mondin, A.; Cassini, R.; Drigo, M.; Pasotto, D.; Vidorin, E.; Menandro, M.L. Ecotyping of Anaplasma phagocytophilum from wild ungulates and ticks shows circulation of zoonotic strains in Northeastern Italy. Animals 2021, 11, 310. [Google Scholar] [CrossRef] [PubMed]
- Myczka, A.W.; Steiner-Bogdaszewska, Ż.; Oloś, G.; Bajer, A.; Laskowski, Z. Diversity of Anaplasma phagocytophilum Strains from Roe Deer (Capreolus capreolus) and Red Deer (Cervus elaphus) in Poland. Animals 2024, 14, 637. [Google Scholar] [CrossRef]
- De La Torre, J.R.; Bautista-Piña, C.; Alfonso Ortega, S.J.; Cantu-Covarruvias, A.; Genoveva Alvarez-Ojeda, M.; Romero-Salas, D.; Henke, S.E.; Hilton, C.D.; Hewitt, D.G.; De Young, R.W.; et al. Neospora caninum in Axis Deer (Axis axis) and Fallow Deer (Dama dama) in Northern Mexico. J. Wildl. Dis. 2017, 53, 186–187. [Google Scholar] [CrossRef] [PubMed]
- Bień, J.; Moskwa, B.; Bogdaszewski, M.; Cabaj, W. Detection of specific antibodies anti-Neospora caninum in the fallow deer (Dama dama). Res. Vet. Sci. 2012, 92, 96–98. [Google Scholar] [CrossRef]
- Bartova, E.; Sedlak, K.; Pavlik, I.; Literak, I. Prevalence of Neospora caninum and Toxoplasma gondii antibodies in wild ruminants from the countryside or captivity in the Czech Republic. J. Parasitol. 2007, 93, 1216–1218. [Google Scholar] [CrossRef]
- De Craeye, S.; Speybroeck, N.; Ajzenberg, D.; Dardé, M.L.; Collinet, F.; Tavernier, P.; Van Gucht, S.; Dorny, P.; Dierick, K. Toxoplasma gondii and Neospora caninum in wildlife: Common parasites in Belgian foxes and Cervidae? Vet. Parasitol. 2011, 178, 64–69. [Google Scholar] [CrossRef]
- Huaman, J.L.; Pacioni, C.; Doyle, M.; Forsyth, D.M.; Helbig, K.J.; Carvalho, T.G. Evidence of Australian wild deer exposure to N. caninum infection and potential implications for the maintenance of N. caninum sylvatic cycle. BMC Vet. Res. 2023, 19, 153. [Google Scholar] [CrossRef]
- Almería, S.; Vidal, D.; Ferrer, D.; Pabón, M.; Fernández-de-Mera, M.I.; Ruiz-Fons, F.; Alzaga, V.; Marco, I.; Calvete, C.; Lavin, S.; et al. Seroprevalence of Neospora caninum in non-carnivorous wildlife from Spain. Vet. Parasitol. 2007, 143, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Soldati, S.; Kiupel, M.; Wise, A.; Maes, R.; Botteron, C.; Robert, N. Meningoencephalomyelitis caused by Neospora caninum in a juvenile fallow deer (Dama dama). J. Vet. Med. A Physiol. Pathol. Clin. Med. 2004, 51, 280–283. [Google Scholar] [CrossRef]
- Stollberg, K.C.; Schares, G.; Mayer-Scholl, A.; Hrushetska, I.; Diescher, S.; Johne, A.; Richter, M.H.; Bier, N.S. Comparison of Direct and Indirect Toxoplasma gondii Detection and Genotyping in Game: Relationship and Challenges. Microorganisms 2021, 9, 1663. [Google Scholar] [CrossRef]
- Castro-Scholten, S.; Cano-Terriza, D.; Jiménez-Ruiz, S.; Almería, S.; Risalde, M.A.; Vicente, J.; Acevedo, P.; Arnal, M.C.; Balseiro, A.; Gómez-Guillamón, F.; et al. Seroepidemiology of Toxoplasma gondii in wild ruminants in Spain. Zoonoses Public Health 2021, 68, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Barroso, P.; García-Bocanegra, I.; Acevedo, P.; Palencia, P.; Carro, F.; Jiménez-Ruiz, S.; Almería, S.; Dubey, J.P.; Cano-Terriza, D.; Vicente, J. Long-Term Determinants of the Seroprevalence of Toxoplasma gondii in a Wild Ungulate Community. Animals 2020, 10, 2349. [Google Scholar] [CrossRef]
- Rocchigiani, G.; Nardoni, S.; D’Ascenzi, C.; Nicoloso, S.; Picciolli, F.; Papini, R.A.; Mancianti, F. Seroprevalence of Toxoplasma gondii and Neospora caninum in red deer from Central Italy. Ann. Agric. Environ. Med. 2016, 23, 699–701. [Google Scholar] [CrossRef]
- Almazán, C.; Scimeca, R.C.; Reichard, M.V.; Mosqueda, J. Babesiosis and Theileriosis in North America. Pathogens 2022, 11, 168. [Google Scholar] [CrossRef]
- Goddard, J.; Varela-Stokes, A.S. Role of the lone star tick, Amblyomma americanum (L.), in human and animal diseases. Vet. Parasitol. 2009, 160, 1–12. [Google Scholar] [CrossRef]
- Pavón-Rocha, A.J.; Cárdenas-Flores, A.; Rábago-Castro, J.L.; Barrón-Vargas, C.A.; Mosqueda, J. First molecular evidence of Theileria cervi infection in white-tailed deer (Odocoileus virginianus) in Mexico. Vet. Parasitol. Reg. Stud. Reports 2020, 22, 100482. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Ramos, J.L.; Sánchez-Montes, S.; Sánchez-Otero, M.G.; Ballados-Gonzalez, G.G.; Gamboa-Prieto, J.; Romero-Salas, D.; Olivares-Muñoz, A. Molecular detection of Theileria cervi in equids from México. Res. Vet. Sci. 2023, 164, 105017. [Google Scholar] [CrossRef]
- Da Silveira, J.A.; Rabelo, E.M.; Lacerda, A.C.; Borges, P.A.L.; Tomás, W.M.; Pellegrin, A.O.; Tomich, R.G.P.; Ribeiro, M.F.B. Molecular detection and identification of hemoparasites in pampas deer (Ozotoceros bezoarticus Linnaeus, 1758) from the Pantanal Brazil. Ticks Tick Borne Dis. 2013, 4, 341–345. [Google Scholar] [CrossRef]
- Sebastian, P.S.; Falzone, M.P.; Lois, M.F.; Sartori, R.; Zimmerman, J.; Tarragona, E.L.; Nava, S. Phylogenetic position of Theileria cervi detected in Blastocerus dichotomus (Artiodactyla: Cervidae) with clinical symptoms from Argentina. Emerg. Anim. Species 2022, 5, 100014. [Google Scholar] [CrossRef]
- Zanet, S.; Battisti, E.; Pepe, P.; Ciuca, L.; Colombo, L.; Trisciuoglio, A.; Ferroglio, E.; Cringoli, G.; Rinaldi, L.; Maurelli, M.P. Tick-borne pathogens in Ixodidae ticks collected from privately-owned dogs in Italy: A country-wide molecular survey. BMC Vet. Res. 2020, 16, 46. [Google Scholar] [CrossRef] [PubMed]
- Hofmeester, T.R.; Sprong, H.; Jansen, P.A.; Prins, H.H.T.; van Wieren, S.E. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasit. Vectors 2017, 10, 433. [Google Scholar] [CrossRef]
Pathogen | Target Gene | Primer Name | Primer Sequence (5′–3′) | Amplicons (bp) | Annealing Temperature (°C) | Ref. |
---|---|---|---|---|---|---|
Anaplasma phagocytophilum | 16S rRNA (first PCR) | GE3a GE10r | CACATGCAAGTCGAACGGATTATTC TTCCGTTAAGAAGGATCTAATCTCC | 932 | 55 | [20] |
16S rRNA (second PCR) | GE9f GE2 | AACGGATTATTCTTTATAGCTTGCT GGCAGTATTAAAAGCAGCTCCAGG | 546 | 55 | ||
Borrelia burgdorferi s.l. | 23S rRNA | JS1 JS2 | AGAAGTGCTGGAGTCGA TAGTGCTCTACCTCTATTAA | 261 | 39 | [21] |
Brucella spp. | bcsp31 | B4 B5 | TGGCTCGGTTGCCAATATCAA CGCGCTTGCCTTTCAAGGTCTG | 223 | 60 | [22] |
Chlamydia abortus | pmp90/91 | pmp-F pmp-R821 | CTCACCATTGTCTCAGGTGGA ACCGTAATGGGTAGGAGGGGT | 821 | 63 | [23] |
Coxiella burnetii | IS1111 | Trans-1 Trans-2 | TATGTATCCACCGTAGCCAGT CCCAACAACACCTCCTTATTC | 687 | 64 | [23] |
Francisella tularensis | TUL4 | TUL4-435 TUL4-863 | TCGAAGACGATCAGATACCGTCG TGCCTTAAACTTCCTTGCGAT | 400 | 60.5 | [24] |
Leptospira spp. | lipL32 [pathogenic leptospirae] | LipL32–45F LipL32–286R | AAGCATTACCGCTTGTGGTG GAACTCCCATTTCAGCGA TT | 242 | 58 | [25] |
Piroplasms | 18S rRNA | Mic 1 Mic 2 | GTCTTGTAATTGGAATGATGG CCAAAGACTTTGATTTCTCTC | 560 | 50 | [26] |
18S rRNA | Crypto F Crypto R | AACCTGGTTGATCCTGCCAGTAGTCAT GAATGATCCTTCCGCAGGTTCACCTAC | 1700 | 65 | [27] | |
Neospora caninum | Nc5 | NP21 NP6 | CTCGCCAGTCAACCTACGTCTTCT CCCAGTGCGTCCAATCCTGTAAC | 337 | 63 | [28] |
Toxoplasma gondii | B1 | B1outF B1outR | GGAACTGCATCCGTTCATGAG TCTTTAAAGCGTTCGTGGTC | 193 | 57 | [29] |
B1inF B1inR | TGCATAGGTTGCAGTCACTG GGCGACCAATCTGCGAATACACC | 96 | 62.5 |
Sex/Age Class | July | August | September | October | November | December | TOTAL |
---|---|---|---|---|---|---|---|
Buck | 5 | 0 | 11 (1 *, 1 **) | 2 (1 **) | 1 | 6 (1 **) | 25 |
Sore | 1 | 0 | 5 | 2 | 2 | 3 | 13 |
Pricket | 5 | 0 | 0 | 2 | 4 (1 **) | 0 | 11 |
Adult female | 3 | 0 | 7 | 16 (1 *, 2 **) | 17 (1 *, 1 **) | 15 (2 **) | 58 |
Fawn male | 0 | 2 | 3 | 5 (1 **) | 6 (1 *) | 13 | 29 |
Fawn female | 0 | 0 | 1 | 7 | 9 (1 **) | 12 (1 *, 1 **) | 29 |
TOTAL | 14 | 2 | 27 | 34 | 39 | 49 | 165 |
Sex/Age Class | July | August | September | October | November | December | TOTAL |
---|---|---|---|---|---|---|---|
Buck | 3 | 0 | 5 | 0 | 0 | 6 | 14 |
Sore | 1 | 0 | 5 | 2 | 1 | 2 | 11 |
Pricket | 5 | 0 | 0 | 0 | 2 | 4 | 11 |
Adult female | 3 | 0 | 0 | 4 | 4 | 6 | 17 |
Fawn male | 0 | 2 | 0 | 0 | 1 | 10 | 13 |
Fawn female | 0 | 0 | 0 | 0 | 1 | 11 | 12 |
TOTAL | 12 | 2 | 10 | 6 | 9 | 39 | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebani, V.V.; Bongi, P.; Trebino, C.; Bertelloni, F.; Cagnoli, G.; Bigliazzi, B.; Del Frate, M.; Apollonio, M.; Mancianti, F. The Presence of Bacterial and Protozoan Pathogens in Wild Fallow Deer (Dama dama) from a Protected Area in Central Italy. Biology 2025, 14, 342. https://doi.org/10.3390/biology14040342
Ebani VV, Bongi P, Trebino C, Bertelloni F, Cagnoli G, Bigliazzi B, Del Frate M, Apollonio M, Mancianti F. The Presence of Bacterial and Protozoan Pathogens in Wild Fallow Deer (Dama dama) from a Protected Area in Central Italy. Biology. 2025; 14(4):342. https://doi.org/10.3390/biology14040342
Chicago/Turabian StyleEbani, Valentina Virginia, Paolo Bongi, Chiara Trebino, Fabrizio Bertelloni, Giulia Cagnoli, Benedetta Bigliazzi, Marco Del Frate, Marco Apollonio, and Francesca Mancianti. 2025. "The Presence of Bacterial and Protozoan Pathogens in Wild Fallow Deer (Dama dama) from a Protected Area in Central Italy" Biology 14, no. 4: 342. https://doi.org/10.3390/biology14040342
APA StyleEbani, V. V., Bongi, P., Trebino, C., Bertelloni, F., Cagnoli, G., Bigliazzi, B., Del Frate, M., Apollonio, M., & Mancianti, F. (2025). The Presence of Bacterial and Protozoan Pathogens in Wild Fallow Deer (Dama dama) from a Protected Area in Central Italy. Biology, 14(4), 342. https://doi.org/10.3390/biology14040342