Feeding Habits of European Ground Squirrels in Anthropogenic Habitats in Central Macedonia, Greece
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Assessment of Plant-Based Food Availability
2.3. Behavioural Data Collection
2.4. Statistical Analysis
3. Results
3.1. Vegetation Dynamics and Structure
3.2. General Feeding Profile
3.3. Seasonal Variation in Dietary Patterns
3.4. Preference or Avoidance of Plant Taxa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Colbert, M.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Güneralp, B.; Haase, D.; Hamann, M.; et al. Research Gaps in Knowledge of the Impact of Urban Growth on Biodiversity. Nat. Sustain. 2020, 3, 16–24. [Google Scholar] [CrossRef]
- Birnie-Gauvin, K.; Peiman, K.S.; Gallagher, A.J.; de Bruijn, R.; Cooke, S.J. Sublethal Consequences of Urban Life for Wild Vertebrates. Environ. Rev. 2016, 24, 416–425. [Google Scholar] [CrossRef]
- Baldwin, R.L.; Bywater, A.C. Nutritional Energetics of Animals. Annu. Rev. Nutr. 1984, 4, 101–114. [Google Scholar] [PubMed]
- McNab, B.K. The Influence of Food Habits on the Energetics of Eutherian Mammals. Ecol. Monogr. 1986, 56, 1–19. [Google Scholar] [CrossRef]
- Perissinotti, P.P.; Antenucci, C.D.; Zenuto, R.; Luna, F. Effect of Diet Quality and Soil Hardness on Metabolic Rate in the Subterranean Rodent Ctenomys Talarum. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 154, 298–307. [Google Scholar] [CrossRef]
- Caraco, T.; Martindale, S.; Whittam, T.S. An Empirical Demonstration of Risk-Sensitive Foraging Preferences. Anim. Behav. 1980, 28, 820–830. [Google Scholar] [CrossRef]
- McNamara, J.M.; Houston, A.I. Risk-Sensitive Foraging: A Review of the Theory. Bull. Math. Biol. 1992, 54, 355–378. [Google Scholar] [CrossRef]
- Lima, S.L. Nonlethal Effects in the Ecology of Predator-Prey Interactions: What Are the Ecological Effects of Anti-Predator Decision-Making? BioScience 1998, 48, 25–34. [Google Scholar] [CrossRef]
- Ritchie, M.E. Individual Variation in the Ability of Columbian Ground Squirrels to Select an Optimal Diet. Evol. Ecol. 1988, 2, 232–252. [Google Scholar] [CrossRef]
- Lehmer, E.M.; Biggins, D.E.; Antolin, M.F. Forage Preferences in Two Species of Prairie Dog (Cynomys parvidens and Cynomus ludovicianus): Implications for Hibernation and Facultative Heterothermy. J. Zool. 2006, 269, 249–259. [Google Scholar] [CrossRef]
- Kenagy, G.J.; Sharbaugh, S.M.; Nagy, K.A. Annual Cycle of Energy and Time Expenditure in a Golden-Mantled Ground Squirrel Population. Oecologia 1989, 78, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, I.E.; Turrini, T.; Brenner, M. Do European Ground Squirrels in Austria Adjust Their Life History to Anthropogenic Influence? Lynx 2008, 39, 27–36. [Google Scholar]
- Brenner, M.; Turrini, T.; Hoffmann, I.E.; Millesi, E. Stress Load in European Ground Squirrels Living in Habitats with High and Low Human Impact. J. Wildl. Biodivers. 2017, 1, 94–109. [Google Scholar]
- Youlatos, D.; Boutsis, Y.; Pantis, J.D.; Hadjicharalambous, H. Activity Patterns of European Ground Squirrels (Spermophilus citellus) in a Cultivated Field in Northern Greece. Mammalia 2007, 71, 183–186. [Google Scholar] [CrossRef]
- Kompogianni, E.-F. Population status and activity patterns of the European Ground Squirrel Spermophilus citellus (Linnaeus, 1766) in North Greece. Master’s Thesis, Department of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2022. [Google Scholar]
- Rammou, D.-L.; Kavroudakis, D.; Youlatos, D. Distribution, Population Size, and Habitat Characteristics of the Endangered European Ground Squirrel (Spermophilus citellus, Rodentia, Mammalia) in Its Southernmost Range. Sustainability 2021, 13, 8411. [Google Scholar] [CrossRef]
- Rammou, D.-L.; Youlatos, D. Spermophilus citellus. The Greek Red List of Threatened Species. 2024. Available online: https://redlist.necca.gov.gr/en/assessment/?id=226377154 (accessed on 24 March 2025).
- Ćosić, N.; Ćirović, D.; Fülöp, T.; Gedeon, C.; Hoffmann, I.E.; Kepel, A.; Koshev, Y.; Matějů, J.; Nikolić Lugonja, T.; Rammou, D.-L.; et al. Spermophilus citellus. The IUCN Red List of Threatened Species 2024: E.T20472A221789466. Available online: https://www.iucnredlist.org/species/20472/221789466 (accessed on 21 March 2025).
- Dănilă, I. La Composition de La Nourriture de Nature Végétale Chez Le Spermophile (Citellus citellus L.) En Roumanie. Trav. Mus. D’Hist. Nat. Grigore Antipa 1984, 25, 347–360. [Google Scholar]
- Arok, M.; Nikolić, T.; Győri-Koósz, B.; Milinski, L.; Ćirović, D. Diet of the European Ground Squirrel (Spermophilus citellus) in the Southern Pannonian Plain. Arch. Biol. Sci. 2021, 73, 111–122. [Google Scholar] [CrossRef]
- Győri-Koósz, B. Diet Preference of the European Ground Squirrel [Spermophilus citellus (Linnaeus, 1766)] in Hungarian Natural and Seminatural Grassland Habitats Investigation by Floristic Composition and Microhistological Faeces Analysis. Ph.D. Thesis, University of West Hungary, Sopron, Hungary, 2015. [Google Scholar]
- Grulich, I. Sysel Obecný Citellus Citellus L. v ČSSR. Práce Brněn. Zákl. ČSAV 1960, 32, 473–563. [Google Scholar]
- Janák, M.; Marhoul, P.; Matějů, J. Action Plan for the Conservation of the European Ground Squirrel Spermophilus citellus in the European Union; European Commission: Brussels, Belgium, 2013; p. 10. [Google Scholar]
- Kachamakova, M.; Koynova, T.; Tsvetkov, R.; Koshev, Y. First Evidence for Active Carnivorous Predation in the European Ground Squirrel. Acta Ethol. 2022, 25, 191–193. [Google Scholar] [CrossRef]
- Matějů, J.; Šašek, J.; Vojta, J.; Poláková, S. Vegetation of Spermophilus citellus Localities in the Czech Republic (Rodentia: Sciuridae). Lynx Ser. Nova 2011, 42, 133–143. [Google Scholar]
- Mateos-González, F.; Poledník, L.; Poledníková, K. European Ground Squirrels in Backyard Gardens: Identifying and Mitigating Agricultural Conflicts with an Endangered Species. Anim. Biodivers. Conserv. 2023, 46, 139–145. [Google Scholar] [CrossRef]
- IUCN. IUCN SSC Position Statement on Research Involving Species at Risk of Extinction; IUCN Species Survival Commission (SSC): Abu Dhabi, United Arab Emirates, 1998. [Google Scholar]
- Bateson, M.; Martin, P. Measuring Behaviour: An Introductory Guide; Cambridge University Press: Cambridge, UK, 2021; ISBN 1-108-80841-7. [Google Scholar]
- Vásquez, R.A.; Ebensperger, L.A.; Bozinovic, F. The Influence of Habitat on Travel Speed, Intermittent Locomotion, and Vigilance in a Diurnal Rodent. Behav. Ecol. 2002, 13, 182–187. [Google Scholar] [CrossRef]
- Crang, R.; Lyons-Sobaski, S.; Wise, R. Plant Anatomy: A Concept-Based Approach to the Structure of Seed Plants; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 3-319-77315-1. [Google Scholar]
- McDonald, J. Handbook of Biological Statistics, 3rd ed.; Sparky House Publishing: Baltimore, MD, USA, 2014; p. 3. [Google Scholar]
- Hervé, M.; Hervé, M.M. Package ‘RVAideMemoire’. Available online: https://cran.r-project.org/web/packages/RVAideMemoire/index.html (accessed on 24 March 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foudation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Gras, R.; Saint Jean, L. Comments about Ivlev’s Electivity Index. Rev. Hydrobiol. Trop. 1982, 15, 33–37. [Google Scholar]
- Mau-Crimmins, T.M. Effects of Removing Cynodon dactylon from a Recently Abandoned Agricultural Field. Weed Res. 2007, 47, 212–221. [Google Scholar] [CrossRef]
- Krigas, N.; Tsiafouli, M.A.; Katsoulis, G.; Votsi, N.-E.; van Kleunen, M. Investigating the Invasion Pattern of the Alien Plant Solanum elaeagnifolium Cav. (Silverleaf Nightshade): Environmental and Human-Induced Drivers. Plants 2021, 10, 805. [Google Scholar] [CrossRef]
- Rojas-Sandoval, J.; Ferrufino-Acosta, L.; Flores, R.; Galán, P.; López, O.; MacVean, A.; Rodríguez Delcid, D.; Ruiz, Y.; Chacón-Madrigal, E. Flora Introduced and Naturalized in Central America. Biol. Invasions 2023, 25, 1007–1021. [Google Scholar] [CrossRef]
- García, S.; Guido, A.; Pezzani, F.; Lattanzi, F.A. Invasion Strategies of Cynodon dactylon: Competitive Ability under Low-Nutrient Conditions. Austral. Ecol. 2023, 48, 1107–1120. [Google Scholar] [CrossRef]
- Eleftherohorinos, I.G.; Bell, C.E.; Kotoula-Syka, E. Silverleaf Nightshade (Solanum elaeagnifolium) Control with Foliar Herbicides. Weed Technol. 1993, 7, 808–811. [Google Scholar] [CrossRef]
- Milton, K. Factors Influencing Leaf Choice by Howler Monkeys: A Test of Some Hypotheses of Food Selection by Generalist Herbivores. Am. Nat. 1979, 114, 362–378. [Google Scholar] [CrossRef]
- Pate, J.S.; Dieter Jeschke, W. Role of Stems in Transport, Storage, and Circulation of Ions and Metabolites by the Whole Plant. In Plant Stems; Gartner, B.L., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 177–204. ISBN 978-0-12-276460-8. [Google Scholar]
- Bairlein, F. Fruit-Eating in Brids and Its Nutritional Consequences. Comp. Biochem. Physiol. A Physiol. 1996, 113, 215–224. [Google Scholar] [CrossRef]
- Leitner, B.M.; Leitner, P. Diet of the Mohave Ground Squirrel (Xerospermophilus mohavensis) in Relation to Season and Rainfall. West. N. Am. Nat. 2017, 77, 1–13. [Google Scholar] [CrossRef]
- Karasov, W.H. Energy Assimilation, Nitrogen Requirement, and Diet in Free-Living Antelope Ground Squirrels Ammospermophilus leucurus. Physiol. Zool. 1982, 55, 378–392. [Google Scholar] [CrossRef]
- Dyni, E.J.; Yensen, E. Dietary Similarity in Sympatric Idaho and Columbian Ground Squirrels (Spermophilus brunneus and S. columbianus). Northwest Sci. 1996, 70, 99–108. [Google Scholar]
- Hisaw, F.L.; Emery, F.E. Food Selection of Ground Squirrels, Citellus tridecemlineatus. J. Mammal. 1927, 8, 41–44. [Google Scholar] [CrossRef]
- Dong, M.; de Kroon, H. Plasticity in Morphology and Biomass Allocation in Cynodon dactylon, a Grass Species Forming Stolons and Rhizomes. Oikos 1994, 70, 99–106. [Google Scholar] [CrossRef]
- Shendye, N.V.; Gurav, S.S. Cynodon dactylon: A Systemic Review of Pharmacognosy, Phytochemistry and Pharmacology. Int. J. Pharm. Pharm. Sci. 2014, 6, 7–12. [Google Scholar]
- Catling, P.M.; McElroy, A.R.; Spicer, K.W. Potential forage value of some eastern Canadian sedges (Cyperaceae: Carex). J. Range Manag. 1994, 47, 226–230. [Google Scholar] [CrossRef]
- Janyszek-Sołtysiak, M.; Grzelak, M.; Gajewski, P.; Jagodziński, A.M.; Gaweł, E.; Wrońska-Pilarek, D. Mineral Contents in Aboveground Biomass of Sedges (Carex L., Cyperaceae). Energies 2021, 14, 8007. [Google Scholar] [CrossRef]
- Taheri, Y.; Herrera-Bravo, J.; Huala, L.; Salazar, L.A.; Sharifi-Rad, J.; Akram, M.; Shahzad, K.; Melgar-Lalanne, G.; Baghalpour, N.; Tamimi, K.; et al. Cyperus spp.: A review on phytochemical composition, biological activity, and health-promoting effects. Oxid. Med. Cell. Longev. 2021, 2021, 4014867. [Google Scholar] [CrossRef]
- Živković, J.; Ristić, M.; Kschonsek, J.; Westphal, A.; Mihailović, M.; Filipović, V.; Böhm, V. Comparison of Chemical Profile and Antioxidant Capacity of Seeds and Oils from Salvia Sclarea and Salvia Officinalis. Chem. Biodivers. 2017, 14, e1700344. [Google Scholar] [CrossRef]
- Frank, C.L. Polyunsaturate Content and Diet Selection by Ground Squirrels (Spermophilus lateralis). Ecology 1994, 75, 458–463. [Google Scholar] [CrossRef]
- Mekki, M. Biology, Distribution and Impacts of Silverleaf Nightshade (Solanum elaeagnifolium Cav.). EPPO Bull. 2007, 37, 114–118. [Google Scholar] [CrossRef]
- Bouslamti, M.; Nouioura, G.; Kandsi, F.; El Hachlafi, N.; Elrherabi, A.; Lyoussi, B.; Benjelloun, A.S. Phytochemical Analysis and Acute Toxicity of Solanum elaeagnifolium Extract in Swiss Albino Mice. Sci. Afr. 2024, 24, e02212. [Google Scholar] [CrossRef]
- Guil-Guerrero, J. Nutritional Composition of Plantago Species (P. major L., P. lanceolata L., and P. media L.). Ecol. Food Nutr. 2001, 40, 481–495. [Google Scholar] [CrossRef]
- Bárdos, B.; Altbacker, V.; Török, H.K.; Nagy, I. Housing European Ground Squirrels (Spermophilus citellus) for an Ex Situ Conservation Program. Methods Protoc. 2024, 7, 18. [Google Scholar] [CrossRef]
Food Type | Food Part | Definition |
---|---|---|
Plant matter | Leaves | Lamina, petiole, and sheath |
Stem | Main vegetative axis and lateral branches from which leaves and reproductive organs develop | |
Seeds | Includes solitary seeds and those formed on seedheads | |
Flower | Includes solitary flowers and inflorescences | |
Root | Underground plant organ that functions in anchorage and absorption | |
Rhizome | Modified underground stems that grow horizontally at shallow depths beneath the soil surface | |
Leaves + Stem | Undistinguishable combination of leaves and stem | |
Flower + Seeds + Leaves | Undistinguishable combination of flowers, seeds, and leaves | |
Animal matter | Animal | Invertebrate or vertebrate body part(s) that could be taxonomically identified by their remains |
Food Type | Mean Duration (s) | Total Events (N) | Weighted Percentage (%) |
---|---|---|---|
Rhizome | 73.5 | 668 | 38.90 |
Leaves | 23.0 | 1583 | 28.80 |
Stem | 29.7 | 518 | 12.20 |
Seeds | 35.7 | 391 | 11.10 |
Leaves + Stem | 43.7 | 109 | 3.77 |
Flower | 17.9 | 262 | 3.72 |
Flower + Seeds + Leaves | 21.4 | 85 | 1.44 |
Animal | 60.0 | 1 | 0.05 |
Genus | Mean Duration (s) | Total Events (N) | Weighted Percentage (%) |
---|---|---|---|
Cynodon | 52.5 | 1154 | 49.40 |
Carex–Cyperus | 30.0 | 867 | 21.20 |
Salvia | 40.1 | 218 | 7.13 |
Solanum | 20.2 | 270 | 4.45 |
Plantago | 18.4 | 285 | 4.26 |
Erodium | 27.3 | 99 | 2.20 |
Morus | 30.8 | 86 | 2.16 |
Malva | 27.8 | 78 | 1.77 |
Taraxacum | 18.2 | 118 | 1.75 |
Veronica | 19.9 | 83 | 1.35 |
Euphorbia | 45.7 | 36 | 1.34 |
Portulaca | 33.2 | 28 | 0.75 |
Hordeum | 48.7 | 18 | 0.71 |
Trifolium | 14.5 | 28 | 0.33 |
Crepis | 17.4 | 23 | 0.33 |
Geranium | 15.1 | 20 | 0.25 |
Arenaria | 19.5 | 14 | 0.22 |
Cerastium | 18.4 | 10 | 0.15 |
Senecio | 13.7 | 6 | 0.06 |
Gastropoda | 60.0 | 1 | 0.04 |
Tribulus | 40.0 | 1 | 0.03 |
Capsella | 19.5 | 2 | 0.03 |
Muscari | 30.0 | 1 | 0.02 |
Bellis | 9.0 | 1 | <0.01 |
Hypecoum | 9.0 | 1 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klagkou, S.; Rammou, D.-L.; Tsiripidis, I.; Astaras, C.; Youlatos, D. Feeding Habits of European Ground Squirrels in Anthropogenic Habitats in Central Macedonia, Greece. Biology 2025, 14, 386. https://doi.org/10.3390/biology14040386
Klagkou S, Rammou D-L, Tsiripidis I, Astaras C, Youlatos D. Feeding Habits of European Ground Squirrels in Anthropogenic Habitats in Central Macedonia, Greece. Biology. 2025; 14(4):386. https://doi.org/10.3390/biology14040386
Chicago/Turabian StyleKlagkou, Stefania, Dimitra-Lida Rammou, Ioannis Tsiripidis, Christos Astaras, and Dionisios Youlatos. 2025. "Feeding Habits of European Ground Squirrels in Anthropogenic Habitats in Central Macedonia, Greece" Biology 14, no. 4: 386. https://doi.org/10.3390/biology14040386
APA StyleKlagkou, S., Rammou, D.-L., Tsiripidis, I., Astaras, C., & Youlatos, D. (2025). Feeding Habits of European Ground Squirrels in Anthropogenic Habitats in Central Macedonia, Greece. Biology, 14(4), 386. https://doi.org/10.3390/biology14040386