The Evaluation of Significance of Uncoupling Protein Genes UCP1, UCP2, UCP3, UCP4, UCP5, and UCP6 in Human Adaptation to Cold Climates
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometric Parameters
2.3. Hormonal Measurement
2.4. PCR-RFLP Analysis
2.5. SPINA Parameters
2.6. Search for Natural Selection Signals for Polymorphic Variants of UCP Genes
2.7. Evidence of Involvement of Polymorphic Variants of UCP Genes in Adaptation to Cold Climate
2.8. Statistical Analysis
3. Results
3.1. Assessment of the Contribution of Polymorphic Variants of UCP Genes in Human Adaptation to Cold
3.2. Effect of Polymorphic Variant rs3811787 of the UCP1 Gene on Human Adaptation to Cold
3.3. Effect of the rs1800849 Polymorphic Variant of the UCP3 Gene on Human Adaptation to Cold
4. Discussion
4.1. The Role of the rs3811787 of the UCP1 Gene in Non-Shivering Thermogenesis
4.2. The Role of the rs1800849 Polymorphism of the UCP3 Gene in Shivering Thermogenesis
5. Conclusions
- Two polymorphic variants of UCP1 (rs3811787) and UCP3 (rs1800849) genes, out of nine analyzed polymorphic variants of uncoupling protein genes (UCP1, UCP2, UCP3, UCP4, UCP5, and UCP6), demonstrated a direct involvement in human adaptation to cold climates. The other seven polymorphic variants of UCP genes have scored fewer points, so it is assumed that their contribution to human adaptation to cold is less significant;
- The results we obtained on the association of the TT genotype of rs3811787 in the UCP1 gene with increased FT3 levels, and elevated SPINA-GD value, in the absence of association with BSA, indicate that the active form of UCP1 in brown adipocytes may utilize more T3, additionally extracting T3 from serum. This increases T3 clearance and rate of peripheral deiodination (conversion of T4 to T3), which shifts the homeostasis of the pituitary–thyroid axis toward type 2 allostasis and ultimately leads to a higher basal metabolic rate;
- The findings on the association of the TT genotype of rs1800849 in the UCP3 gene with increased FT3 levels in blood and with body weight deficiency demonstrate that the uncoupling protein UCP3 in skeletal muscle mitochondria actively participates in the processes of “uncoupling to survive”. This involves creating a proton leak in the respiratory chain, resulting in the conversion of electrical charge into thermal energy at the expense of ATP synthesis. A secondary effect of UCP3-dependent “uncoupling to survive” is likely to be competition with anabolic pathways for ATP, which may affect BSA, growth, and weight.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klingenberg, M.; Echtay, K.; Bienengraeber, M.; Winkler, E.; Huang, S. Structure–Function Relationship in UCP1. Int. J. Obes. 1999, 23, S24–S29. [Google Scholar] [CrossRef]
- Ricquier, D.; Bouillaud, F. The Uncoupling Protein Homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem. J. 2000, 345, 161–179. [Google Scholar] [CrossRef] [PubMed]
- Echtay, K.S. Mitochondrial Uncoupling Proteins—What Is Their Physiological Role? Free Radic. Biol. Med. 2007, 43, 1351–1371. [Google Scholar] [CrossRef]
- Monteiro, B.S.; Freire-Brito, L.; Carrageta, D.F.; Oliveira, P.F.; Alves, M.G. Mitochondrial Uncoupling Proteins (UCP) as Key Modulators of ROS Homeostasis: A Crosstalk between Diabesity and Male Infertility? Antioxidants 2021, 10, 1746. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, K.A.; Lidell, M.E.; Orava, J.; Heglind, M.; Westergren, R.; Niemi, T.; Taittonen, M.; Laine, J.; Savisto, N.-J.; Enerbäck, S.; et al. Functional Brown Adipose Tissue in Healthy Adults. N. Engl. J. Med. 2009, 360, 1518–1525. [Google Scholar] [CrossRef] [PubMed]
- Fleury, C.; Neverova, M.; Collins, S.; Raimbault, S.; Champigny, O.; Levi-Meyrueis, C.; Bouillaud, F.; Seldin, M.F.; Surwit, R.S.; Ricquier, D.; et al. Uncoupling Protein-2: A Novel Gene Linked to Obesity and Hyperinsulinemia. Nat. Genet. 1997, 15, 269–272. [Google Scholar] [CrossRef]
- Fisler, J.S.; Warden, C.H. Uncoupling Proteins, Dietary Fat and the Metabolic Syndrome. Nutr. Metab. 2006, 3, 38. [Google Scholar] [CrossRef]
- Stark, M.J.; Hodyl, N.A.; Butler, M.; Clifton, V.L. Localisation and Characterisation of Uncoupling Protein-2 (UCP2) in the Human Preterm Placenta. Placenta 2012, 33, 1020–1025. [Google Scholar] [CrossRef]
- Pierelli, G.; Stanzione, R.; Forte, M.; Migliarino, S.; Perelli, M.; Volpe, M.; Rubattu, S. Uncoupling Protein 2: A Key Player and a Potential Therapeutic Target in Vascular Diseases. Oxid. Med. Cell. Longev. 2017, 2017, 7348372. [Google Scholar] [CrossRef]
- Nigro, M.; De Sanctis, C.; Formisano, P.; Stanzione, R.; Forte, M.; Capasso, G.; Gigliotti, G.; Rubattu, S.; Viggiano, D. Cellular and Subcellular Localization of Uncoupling Protein 2 in the Human Kidney. J. Mol. Histol. 2018, 49, 437–445. [Google Scholar] [CrossRef]
- Wang, X.; Qian, H.; Huang, X.; Li, J.; Zhang, J.; Zhu, N.; Chen, H.; Zhu, C.; Wang, J.; Zhang, P.; et al. UCP2 Mitigates the Loss of Human Spermatozoa Motility by Promoting mROS Elimination. Cell Physiol. Biochem. 2018, 50, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Boss, O.; Samec, S.; Paoloni-Giacobino, A.; Rossier, C.; Dulloo, A.; Seydoux, J.; Muzzin, P.; Giacobino, J.P. Uncoupling Protein-3: A New Member of the Mitochondrial Carrier Family with Tissue-Specific Expression. FEBS Lett. 1997, 408, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Yu, X.X.; Zhong, A.; Li, W.; Brush, J.; Sherwood, S.W.; Adams, S.H.; Pan, G. UCP4, a Novel Brain-Specific Mitochondrial Protein That Reduces Membrane Potential in Mammalian Cells. FEBS Lett. 1999, 443, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Sanchis, D.; Fleury, C.; Chomiki, N.; Goubern, M.; Huang, Q.; Neverova, M.; Grégoire, F.; Easlick, J.; Raimbault, S.; Lévi-Meyrueis, C.; et al. BMCP1, a Novel Mitochondrial Carrier with High Expression in the Central Nervous System of Humans and Rodents, and Respiration Uncoupling Activity in Recombinant Yeast. J. Biol. Chem. 1998, 273, 34611–34615. [Google Scholar] [CrossRef]
- Haguenauer, A.; Raimbault, S.; Masscheleyn, S.; Gonzalez-Barroso, M.D.M.; Criscuolo, F.; Plamondon, J.; Miroux, B.; Ricquier, D.; Richard, D.; Bouillaud, F.; et al. A New Renal Mitochondrial Carrier, KMCP1, Is up-Regulated during Tubular Cell Regeneration and Induction of Antioxidant Enzymes. J. Biol. Chem. 2005, 280, 22036–22043. [Google Scholar] [CrossRef]
- Lizio, M.; Harshbarger, J.; Shimoji, H.; Severin, J.; Kasukawa, T.; Sahin, S.; Abugessaisa, I.; Fukuda, S.; Hori, F.; Ishikawa-Kato, S.; et al. Gateways to the FANTOM5 Promoter Level Mammalian Expression Atlas. Genome. Biol. 2015, 16, 22. [Google Scholar] [CrossRef]
- Garlid, K.D.; Orosz, D.E.; Modrianský, M.; Vassanelli, S.; Jezek, P. On the Mechanism of Fatty Acid-Induced Proton Transport by Mitochondrial Uncoupling Protein. J. Biol. Chem. 1996, 271, 2615–2620. [Google Scholar] [CrossRef]
- Cannon, B.; Nedergaard, J. Brown Adipose Tissue: Function and Physiological Significance. Physiol. Rev. 2004, 84, 277–359. [Google Scholar] [CrossRef]
- Bianco, A.C.; Silva, J.E. Cold Exposure Rapidly Induces Virtual Saturation of Brown Adipose Tissue Nuclear T3 Receptors. Am. J. Physiol. 1988, 255, E496–E503. [Google Scholar] [CrossRef]
- Carvalho, S.D.; Kimura, E.T.; Bianco, A.C.; Silva, J.E. Central Role of Brown Adipose Tissue Thyroxine 5′-Deiodinase on Thyroid Hormone-Dependent Thermogenic Response to Cold. Endocrinology 1991, 128, 2149–2159. [Google Scholar] [CrossRef]
- Rabelo, R.; Schifman, A.; Rubio, A.; Sheng, X.; Silva, J.E. Delineation of Thyroid Hormone-Responsive Sequences within a Critical Enhancer in the Rat Uncoupling Protein Gene. Endocrinology 1995, 136, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Sentis, S.C.; Oelkrug, R.; Mittag, J. Thyroid Hormones in the Regulation of Brown Adipose Tissue Thermogenesis. Endocr. Connect 2021, 10, R106–R115. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.W.; He, Y.; Karas, M.; Reitman, M. Uncoupling Protein-3 Is a Mediator of Thermogenesis Regulated by Thyroid Hormone, Beta3-Adrenergic Agonists, and Leptin. J. Biol. Chem. 1997, 272, 24129–24132. [Google Scholar] [CrossRef] [PubMed]
- Masaki, T.; Yoshimatsu, H.; Kakuma, T.; Hidaka, S.; Kurokawa, M.; Sakata, T. Enhanced Expression of Uncoupling Protein 2 Gene in Rat White Adipose Tissue and Skeletal Muscle Following Chronic Treatment with Thyroid Hormone. FEBS Lett. 1997, 418, 323–326. [Google Scholar] [CrossRef]
- Barbe, P.; Larrouy, D.; Boulanger, C.; Chevillotte, E.; Viguerie, N.; Thalamas, C.; Oliva Trastoy, M.; Roques, M.; Vidal, H.; Langin, D. Triiodothyronine-Mediated up-Regulation of UCP2 and UCP3 mRNA Expression in Human Skeletal Muscle without Coordinated Induction of Mitochondrial Respiratory Chain Genes. FASEB J. 2001, 15, 13–15. [Google Scholar] [CrossRef]
- de Lange, P.; Lanni, A.; Beneduce, L.; Moreno, M.; Lombardi, A.; Silvestri, E.; Goglia, F. Uncoupling Protein-3 Is a Molecular Determinant for the Regulation of Resting Metabolic Rate by Thyroid Hormone. Endocrinology 2001, 142, 3414–3420. [Google Scholar] [CrossRef]
- Kim, B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 2008, 18, 141–144. [Google Scholar] [CrossRef]
- Leonard, W.R.; Sorensen, M.V.; Galloway, V.A.; Spencer, G.J.; Mosher, M.J.; Osipova, L.; Spitsyn, V.A. Climatic Influences on Basal Metabolic Rates among Circumpolar Populations. Am. J. Hum. Biol. 2002, 14, 609–620. [Google Scholar] [CrossRef]
- Galloway, V.A.; Leonard, W.R.; Ivakine, E. Basal Metabolic Adaptation of the Evenki Reindeer Herders of Central Siberia. Am. J. Hum. Biol. 2000, 12, 75–87. [Google Scholar] [CrossRef]
- Snodgrass, J.J.; Leonard, W.R.; Sorensen, M.V.; Tarskaia, L.A.; Mosher, M.J. The Influence of Basal Metabolic Rate on Blood Pressure among Indigenous Siberians. Am. J. Phys. Anthr. 2008, 137, 145–155. [Google Scholar] [CrossRef]
- Snodgrass, J.J.; Leonard, W.R.; Tarskaia, L.A.; Schoeller, D.A. Total Energy Expenditure in the Yakut (Sakha) of Siberia as Measured by the Doubly Labeled Water Method2. Am. J. Clin. Nutr. 2006, 84, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B.; Leonard, W.R.; Tarskaia, L.A.; Klimova, T.M.; Fedorova, V.I.; Baltakhinova, M.E.; Krivoshapkin, V.G.; Snodgrass, J.J. Seasonal and Socioeconomic Influences on Thyroid Function among the Yakut (Sakha) of Eastern Siberia: Seasonal Thyroid Changes in the Yakut. Am. J. Hum. Biol. 2013, 25, 814–820. [Google Scholar] [CrossRef]
- Chatzitomaris, A.; Hoermann, R.; Midgley, J.E.; Hering, S.; Urban, A.; Dietrich, B.; Abood, A.; Klein, H.H.; Dietrich, J.W. Thyroid Allostasis-Adaptive Responses of Thyrotropic Feedback Control to Conditions of Strain, Stress, and Developmental Programming. Front. Endocrinol. 2017, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B.; Bribiescas, R.G. Hierarchies in the Energy Budget: Thyroid Hormones and the Evolution of Human Life History Patterns. Evol. Anthr. 2023, 32, 275–292. [Google Scholar] [CrossRef]
- Dietrich, J.W.; Landgrafe-Mende, G.; Wiora, E.; Chatzitomaris, A.; Klein, H.H.; Midgley, J.E.M.; Hoermann, R. Calculated Parameters of Thyroid Homeostasis: Emerging Tools for Differential Diagnosis and Clinical Research. Front. Endocrinol. 2016, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, J.W.; Tesche, A.; Pickardt, C.R.; Mitzdorf, U. Thyrotropic Feedback Control: Evidence for an Additional Ultrashort Feedback Loop from Fractal Analysis. Cybern. Syst. 2004, 35, 315–331. [Google Scholar] [CrossRef]
- Nikanorova, A.A.; Borisova, T.V.; Pshennikova, V.G.; Nakhodkin, S.S.; Fedorova, S.A.; Barashkov, N.A. Type 2 Thyroid Allostasis in the residents of Yakutia. Yakut. Med. J. 2024, 86, 80–84. [Google Scholar] [CrossRef]
- Hoffecker, J.F.; Elias, S.A. Environment and Archeology in Beringia. Evol. Anthropol. Issues News Rev. 2003, 12, 34–49. [Google Scholar] [CrossRef]
- Hoffecker, J.F. A Prehistory of the North: Human Settlement of the Higher Latitudes; Rutgers University Press: New Brunswick, NJ, USA, 2005; ISBN 978-0-8135-3469-5. [Google Scholar]
- Holliday, T.W. Body Proportions in Late Pleistocene Europe and Modern Human Origins. J. Hum. Evol. 1997, 32, 423–448. [Google Scholar] [CrossRef]
- Pearson, O.M. Activity, Climate, and Postcranial Robusticity: Implications for Modern Human Origins and Scenarios of Adaptive Change. Curr. Anthr. 2000, 41, 569–607. [Google Scholar] [CrossRef]
- Brown, G.M.; Bird, G.S.; Boag, L.M.; Delahaye, D.J.; Green, J.E.; Hatcher, J.D.; Page, J. Blood Volume and Basal Metabolic Rate of Eskimos. Metabolism 1954, 3, 247–254. [Google Scholar] [PubMed]
- Gagge, A.P.; Gonzalez, R.R. Mechanisms of Heat Exchange: Biophysics and Physiology. Compr. Physiol. 2010, 45–84. [Google Scholar]
- Frisancho, A.R. Human Adaptation and Accommodation; University of Michigan Press: Ann Arbor, MI, USA, 1993; ISBN 978-0-472-09511-7. [Google Scholar]
- Makinen, T.M. Different Types of Cold Adaptation in Humans. Front. Biosci. 2010, 2, 1047–1067. [Google Scholar] [CrossRef] [PubMed]
- Saltykova, M.M. The Main Physiological Mechanisms of Cold Adaptation in Humans. Neurosci. Behav. Physi. 2018, 48, 543–550. [Google Scholar] [CrossRef]
- Toner, M.M.; McArdle, W.D. Human thermoregulatory responses to acute cold stress with special reference to water immersion. Compr. Physiol. 1996, 2011, 379–397. [Google Scholar]
- Hancock, A.M.; Clark, V.J.; Qian, Y.; Di Rienzo, A. Population Genetic Analysis of the Uncoupling Proteins Supports a Role for UCP3 in Human Cold Resistance. Mol. Biol. Evol. 2011, 28, 601–614. [Google Scholar] [CrossRef]
- Stepanov, V.A.; Kharkov, V.N.; Vagaitseva, K.V.; Bocharova, A.V.; Popovich, A.A.; Khitrinskaya, I.Y.; Kazantsev, A.Y. Search for Genetic Markers of Climatic Adaptation in Populations of North Eurasia. Russ. J. Genet. 2017, 53, 1172–1183. [Google Scholar] [CrossRef]
- Watanabe, Y.; Wakiyama, Y.; Waku, D.; Valverde, G.; Tanino, A.; Nakamura, Y.; Oota, H. Cold adaptation in Upper Paleolithic hunter-gatherers of eastern Eurasia. bioRxiv 2024. [Google Scholar] [CrossRef]
- Nikanorova, A.A.; Barashkov, N.A.; Pshennikova, V.G.; Nakhodkin, S.S.; Gotovtsev, N.N.; Romanov, G.P.; Solovyev, A.V.; Kuzmina, S.S.; Sazonov, N.N.; Fedorova, S.A. The Role of Non-shivering Thermogenesis Genes on Leptin Levels Regulation in Residents of the Coldest Region of Siberia. Int. J. Mol. Sci. 2021, 22, 4657. [Google Scholar] [CrossRef]
- Nikanorova, A.A.; Barashkov, N.A.; Pshennikova, V.G.; Gotovtsev, N.N.; Romanov, G.P.; Solovyev, A.V.; Kuzmina, S.S.; Sazonov, N.N.; Fedorova, S.A. Relationships between Uncoupling Protein Genes UCP1, UCP2 and UCP3 and Irisin Levels in Residents of the Coldest Region of Siberia. Genes 2022, 13, 1612. [Google Scholar] [CrossRef]
- International Obesity Task Force. Obesity: Managing the Global Epidemic: Report of the World Health Organization (WHO) Consultation; World Health Organization: Geneva, Switzerland, 1997. [Google Scholar]
- Haycock, G.B.; Schwartz, G.J.; Wisotsky, D.H. Geometric Method for Measuring Body Surface Area: A Height-Weight Formula Validated in Infants, Children, and Adults. J. Pediatr. 1978, 93, 62–66. [Google Scholar] [CrossRef]
- Dietrich, J.W. Der Hypophysen-Schilddrüsen-Regelkreis. Entwicklung Und Klinische Anwendung Eines Nichtlinearen Modells; Logos-Verlag: Berlin, Germany, 2002; ISBN 978-3-89722-850-4. [Google Scholar]
- Dietrich, J.W.; Stachon, A.; Antic, B.; Klein, H.H.; Hering, S. The AQUA-FONTIS Study: Protocol of a Multidisciplinary, Cross-Sectional and Prospective Longitudinal Study for Developing Standardized Diagnostics and Classification of Non-Thyroidal Illness Syndrome. BMC Endocr. Disord. 2008, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, J.W.; Landgrafe, G.; Fotiadou, E.H. TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis. J. Thyroid Res. 2012, 2012, 351864. [Google Scholar] [CrossRef]
- The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Schnor, N.P.P.; Verlengia, R.; Novais, P.F.S.; Crisp, A.H.; Leite, C.V.D.S.; Rasera-Junior, I.; Oliveira, M.R.M. de Association of 5-HT2C (Rs3813929) and UCP3 (Rs1800849) Gene Polymorphisms with Type 2 Diabetes in Obese Women Candidates for Bariatric Surgery. Arch. Endocrinol. Metab. 2017, 61, 326–331. [Google Scholar] [CrossRef]
- Verdi, H.; Kınık, S.T.; Baysan-Çebi, H.P.; Yalçın, Y.Y.; Yazıcı-Güvercin, A.C.; Aydın, B.; Tütüncü, N.B.; Ataç, F.B. Uncoupling Protein Gene UCP1-3826A/G, UCP2 Ins/Del and UCP3-55C/T Polymorphisms in Obese Turkish Children. Turk. J. Pediatr. 2020, 62, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Li, Z.; Xu, X.; He, J.; Chen, J.; Xu, X.; Du, X.; Bai, X.; Zhang, B.; He, X.; et al. Analysis of association between common variants of uncoupling proteins genes and diabetic retinopathy in a Chinese population. BMC Med. Genet. 2020, 21, 25. [Google Scholar] [CrossRef]
- Cha, M.H.; Shin, H.D.; Kim, K.S.; Lee, B.H.; Yoon, Y. The effects of uncoupling protein 3 haplotypes on obesity phenotypes and very low-energy diet–induced changes among overweight Korean female subjects. Metabolism 2006, 55, 578–586. [Google Scholar] [CrossRef]
- Leonard, W.R.; Levy, S.B.; Tarskaia, L.A.; Klimova, T.M.; Fedorova, V.I.; Baltakhinova, M.E.; Krivoshapkin, V.G.; Snodgrass, J.J. Seasonal Variation in Basal Metabolic Rates among the Yakut (Sakha) of Northeastern Siberia: Seasonality In BMR In The Yakut. Am. J. Hum. Biol. 2014, 26, 437–445. [Google Scholar] [CrossRef]
- Reed, H.L.; Silverman, E.D.; Shakir, K.M.M.; Dons, R.; Burman, K.D.; O’Brian, J.T. Changes in Serum Triiodothyronine (T3) Kinetics after Prolonged Antarctic Residence: The Polar T3 Syndrome. J. Clin. Endocrinol. Metab. 1990, 70, 965–974. [Google Scholar] [CrossRef]
- Nikanorova, A.A.; Barashkov, N.A.; Pshennikova, V.G.; Teryutin, F.M.; Nakhodkin, S.S.; Solovyev, A.V.; Romanov, G.P.; Burtseva, T.E.; Fedorova, S.A. A Systematic Review and Meta-Analysis of Free Triiodothyronine (FT3) Levels in Humans Depending on Seasonal Air Temperature Changes: Is the Variation in FT3 Levels Related to Non-shivering Thermogenesis? Int. J. Mol. Sci. 2023, 24, 14052. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Verdejo, R.; Marlatt, K.L.; Ravussin, E.; Galgani, J.E. Contribution of Brown Adipose Tissue to Human Energy Metabolism. Mol. Asp. Med. 2019, 68, 82–89. [Google Scholar] [CrossRef]
- Heldmaier, G. Zitterfreie Wärmebildung und Körpergröße bei Säugetieren. Z Verg. Physiol. 1971, 73, 222–247. [Google Scholar] [CrossRef]
- Oelkrug, R.; Polymeropoulos, E.T.; Jastroch, M. Brown Adipose Tissue: Physiological Function and Evolutionary Significance. J. Comp. Physiol. B 2015, 185, 587–606. [Google Scholar] [CrossRef] [PubMed]
- Skulachev, V.P. Uncoupling: New Approaches to an Old Problem of Bioenergetics. Biochim. Biophys. Acta 1998, 1363, 100–124. [Google Scholar] [CrossRef]
- Vidal-Puig, A.J.; Grujic, D.; Zhang, C.Y.; Hagen, T.; Boss, O.; Ido, Y.; Szczepanik, A.; Wade, J.; Mootha, T.; Cortright, R.; et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J. Biol. Chem. 2000, 275, 16258–16266. [Google Scholar] [CrossRef]
- Gong, D.W.; Monemdjou, S.; Gavrilova, O.; Leon, L.R.; Marcus-Samuels, B.; Chou, C.J.; Reitman, M.L. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J. Biol. Chem. 2000, 275, 16251–16257. [Google Scholar] [CrossRef]
- Shabalina, I.G.; Hoeks, J.; Kramarova, T.V.; Schrauwen, P.; Cannon, B.; Nedergaard, J. Cold Tolerance of UCP1-Ablated Mice: A Skeletal Muscle Mitochondria Switch toward Lipid Oxidation with Marked UCP3 up-Regulation Not Associated with Increased Basal, Fatty Acid- or ROS-Induced Uncoupling or Enhanced GDP Effects. Biochim. Biophys. Acta 2010, 1797, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Riley, C.L.; Dao, C.; Kenaston, M.A.; Muto, L.; Kohno, S.; Nowinski, S.M.; Solmonson, A.D.; Pfeiffer, M.; Sack, M.N.; Lu, Z.; et al. The Complementary and Divergent Roles of Uncoupling Proteins 1 and 3 in Thermoregulation. J. Physiol. 2016, 594, 7455–7464. [Google Scholar] [CrossRef]
- Codella, R.; Alves, T.C.; Befroy, D.E.; Choi, C.S.; Luzi, L.; Rothman, D.L.; Kibbey, R.G.; Shulman, G.I. Overexpression of UCP3 Decreases Mitochondrial Efficiency in Mouse Skeletal Muscle in Vivo. FEBS Lett. 2023, 597, 309–319. [Google Scholar] [CrossRef]
- Wijers, S.L.J.; Schrauwen, P.; Saris, W.H.M.; van Marken Lichtenbelt, W.D. Human Skeletal Muscle Mitochondrial Uncoupling Is Associated with Cold Induced Adaptive Thermogenesis. PLoS ONE 2008, 3, e1777. [Google Scholar] [CrossRef]
- Park, S.; Cho, S.; Seo, H.J.; Lee, J.H.; Kim, M.Y.; Lee, S.D. Entire Mitochondrial DNA Sequencing on Massively Parallel Sequencing for the Korean Population. J. Korean Med. Sci. 2017, 32, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B.; Klimova, T.M.; Zakharova, R.N.; Fedorov, A.I.; Fedorova, V.I.; Baltakhinova, M.E.; Bondy, M.; Atallah, D.; Thompson-Vasquez, J.; Dong, K.; et al. Brown Adipose Tissue Thermogenesis among Young Adults in Northeastern Siberia and Midwest United States and Its Relationship with Other Biological Adaptations to Cold Climates. Am. J. Hum. Biol. 2022, 34, e23723. [Google Scholar] [CrossRef] [PubMed]
- Dhamrait, S.S.; Williams, A.G.; Day, S.H.; Skipworth, J.; Payne, J.R.; World, M.; Humphries, S.E.; Montgomery, H.E. Variation in the Uncoupling Protein 2 and 3 Genes and Human Performance. J. Appl. Physiol. 2012, 112, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Horber, F.F.; Haymond, M.W. Human Growth Hormone Prevents the Protein Catabolic Side Effects of Prednisone in Humans. J. Clin. Investig. 1990, 86, 265–272. [Google Scholar] [CrossRef]
- Das, S.; Morvan, F.; Jourde, B.; Meier, V.; Kahle, P.; Brebbia, P.; Toussaint, G.; Glass, D.J.; Fornaro, M. ATP Citrate Lyase Improves Mitochondrial Function in Skeletal Muscle. Cell Metab. 2015, 21, 868–876. [Google Scholar] [CrossRef]
Gene | Chromosomal Region | SNP | Physical Location | Primer Sequence | Annealing Temperature/ Time, Product Size | Restriction Enzymes, Allele Sizes (bp) |
---|---|---|---|---|---|---|
UCP1 | 4q31.1 | rs1800592 −3826A > G | the promoter region | F: 5′-ACATTTTGTGCAGCGATTTCTG-3′ R: 5′-TTCACCACTTCTGACAGGCT-3′ | 56 °C/45 s, 301 bp | Ksp22I A = 265 + 36 G = 301 |
rs3811787 −412A > C | 5′-flanking region | F: 5′-CCTTCTGTCACCCTTTGGCTGCACACCTTCGCC-3′ R: 5′-TGACAAGTTCAGAGTGCTCTT-3′ | 57 °C/45 s, 296 bp | Bst2UI T = 262 + 34 G = 296 | ||
UCP2 | 11q13.4 | rs659366 −866G > A | 5′-proximal region | F: 5′-AGCGTGACCTCACGCTCCTA-3′ R: 5′-GACTGAACGTCTTTGGGACTCCGT-3′ | 59 °C/45 s, 299 bp | BspFNI T = 178 + 121 C = 299 |
rs660339 Ala55Val | exon 4 | F: 5′-TTGACAGAATCATACAGGCCGA-3′ R: 5′-TTGGAGCATCGAGATGACTG-3′ | 53.8 °C/45 s, 392 bp | Bst4CI G = 392 A = 153 + 110 | ||
UCP3 | 11q13.4 | rs1800849 −55C > T | the promoter region | F: 5′-CCTTGTCACCAAGGAAGCGTCCACAGCTT-3′ R: 5′-CTTCTGGCTTGGCACTGGTCTTATACACCC-3′ | 59 °C/45 s, 215 bp | SmaI C = 185 + 30 T = 215 |
rs2075577 Tyr210Tyr | exon 3 | F: 5′-GGGACTGGAACCCAAGTCT-3′ R: 5′-ACGACATCCTCAAGGAGAAGCTGCTGGAGTA-3′ | 58 °C/45 s, 249 bp | RsaNI G = 218 + 32 A = 249 | ||
UCP4 | 6p11.2-q12 | rs9472817 C > G | intron 8 | F: 5′-CCAAAGCCCTTGGCAATACC-3′ R: 5′-AACCTGCTGCACAGATTGTTGGGGAAATTCATC-3′ | 51.2 °C/45 s, 366 bp | Taq I C = 332 + 34 G = 366 |
UCP5 | Xq24 | rs1010978 T > C | intron 3 | F: 5′-TTTGTATATGGCGGCCTTGC-3′ R: 5′-CTTAAGCCTAGCAAACTAACAAATCACTAAAGT-3′ | 59.5 °C/45 s, 284 bp | RsaNI T = 191 + 59 + 34 C = 191 + 93 |
UCP6 | 13q14.13 | rs9526067 A > T | intron 5 | F: 5′-CTCAGAGCCTCCAGTTTCCT-3′ R: 5′-GTTGTTGTTTGGTCTTTTGCTCTTTTTTTTTAT-3′ | 56.3 °C/45 s, 250 bp | SmiI T = 250 A = 211 + 39 |
Criteria | The Presence of Associations | High Statistical Significance p < 0.01 | Average Statistical Significance p = 0.02–0.03 | Low Statistical Significance p = 0.04–0.05 | |
---|---|---|---|---|---|
1 | TSH | 3 points | 2 points | 1 point | |
FT3 | 3 points | 2 points | 1 point | ||
FT4 | 3 points | 2 points | 1 point | ||
2 | SPINA-GT | 3 points | 2 points | 1 point | |
SPINA-GD | 3 points | 2 points | 1 point | ||
3 | BSA | 3 points | 2 points | 1 point | |
4 | The presence of directional selection of natural signals for polymorphic variants of UCP genes | ||||
Selection signals for Arctic and temperate climates | Selection signals for tropical and equatorial climate | ||||
3 points | 0 points |
The Criterions | UCP1 rs1800592 | UCP1 rs3811787 | UCP2 rs659366 | UCP2 rs660339 | UCP3 rs1800849 | UCP3 rs2075577 | UCP4 rs9472817 | UCP5 rs1010978 | UCP6 rs9526067 |
---|---|---|---|---|---|---|---|---|---|
1 a | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 |
2 a | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
3 a | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
4 b | 3 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
Total | 3 | 7 | 0 | 0 | 6 | 0 | 0 | 2 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikanorova, A.A.; Barashkov, N.A.; Pshennikova, V.G.; Nakhodkin, S.S.; Romanov, G.P.; Solovyev, A.V.; Fedorova, S.A. The Evaluation of Significance of Uncoupling Protein Genes UCP1, UCP2, UCP3, UCP4, UCP5, and UCP6 in Human Adaptation to Cold Climates. Biology 2025, 14, 454. https://doi.org/10.3390/biology14050454
Nikanorova AA, Barashkov NA, Pshennikova VG, Nakhodkin SS, Romanov GP, Solovyev AV, Fedorova SA. The Evaluation of Significance of Uncoupling Protein Genes UCP1, UCP2, UCP3, UCP4, UCP5, and UCP6 in Human Adaptation to Cold Climates. Biology. 2025; 14(5):454. https://doi.org/10.3390/biology14050454
Chicago/Turabian StyleNikanorova, Alena A., Nikolay A. Barashkov, Vera G. Pshennikova, Sergey S. Nakhodkin, Georgii P. Romanov, Aisen V. Solovyev, and Sardana A. Fedorova. 2025. "The Evaluation of Significance of Uncoupling Protein Genes UCP1, UCP2, UCP3, UCP4, UCP5, and UCP6 in Human Adaptation to Cold Climates" Biology 14, no. 5: 454. https://doi.org/10.3390/biology14050454
APA StyleNikanorova, A. A., Barashkov, N. A., Pshennikova, V. G., Nakhodkin, S. S., Romanov, G. P., Solovyev, A. V., & Fedorova, S. A. (2025). The Evaluation of Significance of Uncoupling Protein Genes UCP1, UCP2, UCP3, UCP4, UCP5, and UCP6 in Human Adaptation to Cold Climates. Biology, 14(5), 454. https://doi.org/10.3390/biology14050454