Fungal Pathogen Infection by Metarhizium anisopliae Alters Climbing Behavior of Lymantria dispar with Tree-Top Disease Induced by LdMNPV
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects, Virus, and Spore Suspension
2.2. Virulence Assay of LdMNPV Infection in L. dispar
2.3. Virulence Assay of M. anisopliae Infection in L. dispar
2.4. Virulence Assay of L. dispar Larvae Under Co-Infection
2.5. Vertical Displacement Differences in L. dispar Larvae Following Co-Infection
2.6. Statistical Analyses
3. Results
3.1. Death Symptoms of L. dispar Larvae Infected with LdMNPV and M. anisopliae
3.2. Death Symptoms of L. dispar Larvae Under LdMNPV and M. anisopliae Co-Infection
3.3. Virulence of LdMNPV and M. anisopliae Against L. dispar Larvae
3.4. Virulence of LdMNPV and M. anisopliae Co-Infection Against L. dispar Larvae
3.5. Climbing Speed of L. dispar Larvae Under LdMNPV and M. anisopliae Co-Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Djoumad, A.; Nisole, A.; Zahiri, R.; Freschi, L.; Picq, S.; Gundersen-Rindal, D.E.; Sparks, M.E.; Dewar, K.; Stewart, D.; Maaroufi, H.; et al. Comparative analysis of mitochondrial genomes of geographic variants of the gypsy moth, Lymantria dispar, reveals a previously undescribed genotypic entity. Sci. Rep. 2017, 7, 14245. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Griess, V.C.; Keena, M.A. Assessing the Potential Distribution of Asian Gypsy Moth in Canada: A Comparison of Two Methodological Approaches. Sci. Rep. 2020, 10, 22. [Google Scholar] [CrossRef]
- Haq, M.; O’tOole, A.; Beecker, J.; Gooderham, M.J. Return of Lymantria dispar dispa (gypsy moth): A case report. SAGE Open Med. Case Rep. 2021, 9, 2050313X211057926. [Google Scholar] [CrossRef] [PubMed]
- Keena, M.A.; Richards, J.Y. Comparison of Survival and Development of Gypsy Moth Lymantria dispar L. (Lepidoptera: Erebidae) Populations from Different Geographic Areas on North American Conifers. Insects 2020, 11, 260. [Google Scholar] [CrossRef]
- Motta, L.F.; Cerrudo, C.S.; Belaich, M.N. A Comprehensive Study of MicroRNA in Baculoviruses. Int. J. Mol. Sci. 2024, 25, 603. [Google Scholar] [CrossRef]
- Cerrudo, C.S.; Motta, L.F.; Warlet, F.U.C.; Lassalle, F.M.; Simonin, J.A.; Belaich, M.N. Protein-Gene Orthology in: An Exhaustive Analysis to Redefine the Ancestrally Common Coding Sequences. Viruses 2023, 15, 1091. [Google Scholar] [CrossRef]
- Ferrelli, M.L.; Salvador, R. Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis. Viruses 2023, 15, 1838. [Google Scholar] [CrossRef] [PubMed]
- Benning, F.M.C.; Jenni, S.; Garcia, C.Y.; Nguyen, T.H.; Zhang, X.; Chao, L.H. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. Nat. Commun. 2024, 15, 250. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, J.; Li, E.; Merchant, A.; Su, Z.; Liu, Q.; Zhou, X. NezhNPV, a new biocontrol agent for Nesodiprion zhejiangensis Zhou & Xiao (Hymenoptera: Diprionidae), an emerging forest pest. Pest Manag. Sci. 2025, 81, 1171–1185. [Google Scholar]
- Harrison, R.L.; Francoeur, C.B.; Rowley, D.L. An alphabaculovirus from the zebra caterpillar, Melanchra picta Harris, is an isolate of species Alphabaculovirus maconfiguratae. J. Invertebr. Pathol. 2024, 207, 108220. [Google Scholar] [CrossRef]
- Masoudi, A.; Joseph, R.A.; Keyhani, N.O. Viral- and fungal-mediated behavioral manipulation of hosts: Summit disease. Appl. Microbiol. Biotechnol. 2024, 108, 492. [Google Scholar] [CrossRef]
- Gasque, S.N.; Han, Y.; van der Ham, I.; van Leeuwen, D.; van Oers, M.M.; Haverkamp, A.; Ros, V.I.D. Baculovirus entry into the central nervous system of Spodoptera exigua caterpillars is independent of the viral protein tyrosine phosphatase. Open Biol. 2024, 14, 230278. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D. Wipfelkrankheit: Modification of host behaviour during baculoviral infection. Oecologia 1997, 109, 219–228. [Google Scholar] [CrossRef]
- Zhang, J.; Cong, Q.; Rex, E.A.; Hallwachs, W.; Janzen, D.H.; Grishin, N.V.; Gammon, D.B. Gypsy moth genome provides insights into flight capability and virus-host interactions. Proc. Natl. Acad. Sci. USA 2019, 116, 1669–1678. [Google Scholar] [CrossRef]
- E B LaDouceur, E.; Hajek, A.E. Histologic lesions of experimental infection with Lymantria dispar multicapsid nucleopolyhedrovirus and Lymantria dispar cytoplasmic polyhedrosis virus in European gypsy moth caterpillars (Lymantria dispar dispar). Vet. Pathol. 2021, 58, 1152–1157. [Google Scholar] [CrossRef]
- Zhang, S.; An, S.; Hoover, K.; Li, Z.; Li, X.; Liu, X.; Shen, Z.; Fang, H.; Ros, V.I.D.; Zhang, Q.; et al. Host miRNAs are involved in hormonal regulation of HaSNPV-triggered climbing behaviour in Helicoverpa armigera. Mol. Ecol. 2018, 27, 459–475. [Google Scholar] [CrossRef]
- Bhattarai, U.R.; Li, F.; Katuwal Bhattarai, M.; Masoudi, A.; Wang, D. Phototransduction and circadian entrainment are the key pathways in the signaling mechanism for the baculovirus induced tree-top disease in the lepidopteran larvae. Sci. Rep. 2018, 8, 17528. [Google Scholar] [CrossRef]
- Li, F.; Liu, L.; Yu, X.; Rensing, C.; Wang, D. The PI3K/AKT Pathway and PTEN Gene Are Involved in “Tree-Top Disease” of Lymantria dispar. Genes 2022, 13, 247. [Google Scholar] [CrossRef]
- Bhattarai, M.K.; Bhattarai, U.R.; Feng, J.N.; Wang, D. Effect of Different Light Spectrum in Helicoverpa armigera Larvae during HearNPV Induced Tree-Top Disease. Insects 2018, 9, 183. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; van Houte, S.; van Oers, M.M.; Ros, V.I.D. Timely trigger of caterpillar zombie behaviour: Temporal requirements for light in baculovirus-induced tree-top disease. Parasitology 2018, 145, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.S.; Acharya, R.; Lucas, M.C.; Sharma, S.R.; Lee, Y.S.; Lee, K.Y. Effects of Lymantria dispar multiple nucleopolyhedrovirus and Bacillus thuringiensis var. kurstaki on different larval instars of Lymantria dispar asiatica. Arch. Insect Biochem. Physiol. 2023, 113, e22002. [Google Scholar] [CrossRef] [PubMed]
- Mezione de Carvalho, L.; Hwang, H.S.; Lee, K.Y. Effect of fluorescent brighteners on the insecticidal activity of Bacillus thuringiensis var. kurstaki and LdMNPV on Lymantria dispar asiatica in Korea. Arch. Insect Biochem. Physiol. 2024, 115, e22066. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Nan, Z.; Matthew, C.; Wang, Y.; Duan, T. Arbuscular mycorrhizal fungus changes alfalfa (Medicago sativa) metabolites in response to leaf spot (Phoma medicaginis) infection, with subsequent effects on pea aphid (Acyrthosiphon pisum) behavior. New Phytol. 2023, 239, 286–300. [Google Scholar] [CrossRef]
- Chai, W.; Mao, X.; Li, C.; Zhu, L.; He, Z.; Wang, B. Neurotransmitter acetylcholine mediates the mummification of Ophiocordyceps sinensis-infected Thitarodes xiaojinensis larvae. Appl. Environ. Microbiol. 2024, 90, e0033324. [Google Scholar] [CrossRef]
- van Roosmalen, E.; de Bekker, C. Mechanisms Underlying Ophiocordyceps Infection and Behavioral Manipulation of Ants: Unique or Ubiquitous? Annu. Rev. Microbiol. 2024, 78, 575–593. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Eleftherianos, I.; Mohamed, A.; Bastin, A.; Keyhani, N.O. Cross-talk between immunity and behavior: Insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol. Rev. 2024, 48, fuae003. [Google Scholar] [CrossRef]
- Panwar, N.; Szczepaniec, A. Endophytic entomopathogenic fungi as biological control agents of insect pests. Pest Manag. Sci. 2024, 80, 6033–6040. [Google Scholar] [CrossRef]
- Shang, J.; Tang, G.; Yang, J.; Lu, M.; Wang, C.Z.; Wang, C. Sensing of a spore surface protein by a Drosophila chemosensory protein induces behavioral defense against fungal parasitic infections. Curr. Biol. CB 2023, 33, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Rensing, C.; Wang, D. Symbiotic Bacteria Modulate Lymantria dispar Immunity by Altering Community Proportions after Infection with LdMNPV. Int. J. Mol. Sci. 2023, 24, 9694. [Google Scholar] [CrossRef]
- McGuire, A.V.; Edwards, W.; Northfield, A.T.D. The infection efficacy of Metarhizium strains (Hypocreales: Clavicipitaceae) against the Queensland fruit fly Bactrocera tryoni (Diptera: Tephritidae). J. Econ. Entomol. 2023, 116, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Hughes, P.R.; Beek, N.A.M.V.; Wood, H.A. A modified droplet feeding method for rapid assay of bacillus thuringiensis and baculoviruses in noctuid larvae. J. Invertebr. Pathol. 1986, 48, 187–192. [Google Scholar] [CrossRef]
- Vandenberg, J.D. Standardized bioassay and screening of Beauveria bassiana and Paecilomyces fumosoroseus against the Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 1996, 89, 1418–1423. [Google Scholar] [CrossRef]
- Hassan, A.; Huang, Q.; Mehmood, N.; Xu, H.; Zhou, W.; Gao, Y. Alteration of Termite Locomotion and Allogrooming in Response to Infection by Pathogenic Fungi. J. Econ. Entomol. 2021, 114, 1256–1263. [Google Scholar] [CrossRef]
- Hassan, A.; Kang, L.; Zhang, K.; Wang, L.; Qin, X.; Fang, G.; Lu, Y.; Huang, Q. Effect of entomopathogenic fungi on behavior and physiology of Solenopsis invicta (Hymenoptera, Formicidae). J. Econ. Entomol. 2024, 117, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Beleña, Á.; Zueco, J. The Role of Age and Gender in Perceived Vulnerability to Infectious Diseases. Int. J. Environ. Res. Public Health 2020, 17, 485. [Google Scholar] [CrossRef] [PubMed]
- Will, I.; Das, B.; Trinh, T.; Brachmann, A.; Ohm, R.A.; de Bekker, C. Genetic Underpinnings of Host Manipulation by Ophiocordyceps as Revealed by Comparative Transcriptomics. G3 Genes Genomes Genet. 2020, 10, 2275–2296. [Google Scholar] [CrossRef]
- Imirzian, N.; Hughes, D.P. An agent-based model shows zombie ants exhibit search behavior. J. Theor. Biol. 2021, 526, 110789. [Google Scholar] [CrossRef]
- Fredericksen, M.A.; Zhang, Y.; Hazen, M.L.; Loreto, R.G.; Mangold, C.A.; Chen, D.Z.; Hughes, D.P. Three-dimensional visualization and a deep-learning model reveal complex fungal parasite networks in behaviorally manipulated ants. Proc. Natl. Acad. Sci. USA 2017, 114, 12590–12595. [Google Scholar] [CrossRef]
- Edwards, S.; De Fine Licht, H.H. Rearing zombie flies: Laboratory culturing of the behaviourally manipulating fungal pathogen Entomophthora muscae. MethodsX 2023, 12, 102523. [Google Scholar] [CrossRef]
- Zheng, S.; Loreto, R.; Smith, P.; Patterson, A.; Hughes, D.; Wang, L. Specialist and Generalist Fungal Parasites Induce Distinct Biochemical Changes in the Mandible Muscles of Their Host. Int. J. Mol. Sci. 2019, 20, 4589. [Google Scholar] [CrossRef]
- Ryu, T.H.; Subramanian, M.; Yeom, E.; Yu, K. The prominin-like Gene Expressed in a Subset of Dopaminergic Neurons Regulates Locomotion in Drosophila. Mol. Cells 2022, 45, 640–648. [Google Scholar] [CrossRef]
- Han, J.; Cui, M.; Withycombe, J.; Schmidtbauer, M.; Chiginsky, J.; Neher, O.T.; Strausbaugh, C.A.; Majumdar, R.; Nalam, V.J.; Nachappa, P. Beet curly top virus affects vector biology: The first transcriptome analysis of the beet leafhopper. J. Gen. Virol. 2024, 105, 10.1099. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Xie, X.; Liu, Q.; Dong, H.; Hou, Y.; Xia, Q.; Zhao, P. Enhanced locomotor behaviour is mediated by activation of tyrosine hydroxylase in the silkworm brain. Insect Mol. Biol. 2023, 32, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Lee, Y.Z.; Hu, I.C.; Chiu, L.Y.; Ding, W.C.; Wang, J.; Sue, S.C.; Tate, S.I.; Lyu, P.C. Backbone resonance assignments of dopamine N-acetyltransferase in free and cofactor-bound states. Biomol. NMR Assign. 2025, 19, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.; Wang, Z.; Lin, T.; Wang, S.; Li, J.; Dong, S.; Nieh, J.C.; Tan, K. Bee fear responses are mediated by dopamine and influence cognition. J. Anim. Ecol. 2025, 94, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chen, H.; He, J.; Zeng, X.; Lei, H.; Liu, J. Dual roles of dopaminergic pathways in olfactory learning and memory in the oriental fruit fly, Bactrocera dorsalis. Pestic. Biochem. Physiol. 2024, 200, 105825. [Google Scholar] [CrossRef]
- Kato, T.; Inagaki, S.; Shibata, C.; Takayanagi, K.; Uehara, H.; Nishimura, K.; Park, E.Y. Topical Infection of Cordyceps militaris in Silkworm Larvae Through the Cuticle has Lower Infectivity Compared to Beauveria bassiana and Metarhizium anisopliae. Curr. Microbiol. 2024, 82, 26. [Google Scholar] [CrossRef]
- Hong, S.; Shang, J.; Sun, Y.; Tang, G.; Wang, C. Fungal infection of insects: Molecular insights and prospects. Trends Microbiol. 2024, 32, 302–316. [Google Scholar] [CrossRef]
- Anwar, W.; Amin, H.; Khan, H.A.A.; Akhter, A.; Bashir, U.; Anjum, T.; Kalsoom, R.; Javed, M.A.; Zohaib, K.A. Chitinase of Trichoderma longibrachiatum for control of Aphis gossypii in cotton plants. Sci. Rep. 2023, 13, 13181. [Google Scholar] [CrossRef]
- Tu, C.; Zhang, Y.; Zhu, P.; Sun, L.; Xu, P.; Wang, T.; Luo, J.; Yu, J.; Xu, L. Enhanced toxicity of entomopathogenic fungi Beauveria bassiana with bacteria expressing immune suppressive dsRNA in a leaf beetle. Pestic. Biochem. Physiol. 2023, 193, 105431. [Google Scholar] [CrossRef]
- Bai, J.; Xu, Z.; Li, L.; Ma, W.; Xu, L.; Ma, L. Temporospatial modulation of Lymantria dispar immune system against an entomopathogenic fungal infection. Pest Manag. Sci. 2020, 76, 3982–3989. [Google Scholar] [CrossRef]
- Adams, J.R.; McClintock, J.T. Baculoviridae. Nuclear Polyhedrosis Viruses. Part 1. In Nuclear Polyhedrosis Viruses of Insects; CRC Press: Boca Raton, FL, USA, 1991; pp. 87–204. [Google Scholar]
- Terra, W.R.; Ferreira, C. Insect digestive enzymes: Properties, compartmentalization and function. Comp. Biochem. Physiol. Part B Comp. Biochem. 1994, 109, 1–62. [Google Scholar] [CrossRef]
- Cory, J.S.; Myers, J.H. The ecology and evolution of insect baculoviruses. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 239–272. [Google Scholar] [CrossRef]
- Engelhard, E.K.; Kam-Morgan, L.N.; Washburn, J.O.; Volkman, L.E. The insect tracheal system: A conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc. Natl. Acad. Sci. USA 1994, 91, 3224–3227. [Google Scholar] [CrossRef] [PubMed]
- Volkman, L.E.; Goldsmith, P.A. Mechanism of neutralization of budded Autographa californica nuclear polyhedrosis virus by a monoclonal antibody: Inhibition of entry by adsorptive endocytosis. Virology 1985, 143, 185–195. [Google Scholar] [CrossRef]
- Trudeau, D.; Washburn, J.O.; Volkman, L.E. Central role of hemocytes in Autographa californica M nucleopolyhedrovirus pathogenesis in Heliothis virescens and Helicoverpa zea. J. Virol. 2001, 75, 996–1003. [Google Scholar] [CrossRef]
- Han, J.O.; Naeger, N.L.; Hopkins, B.K.; Sumerlin, D.; Stamets, P.E.; Carris, L.M.; Sheppard, W.S. Directed evolution of Metarhizium fungus improves its biocontrol efficacy against Varroa mites in honey bee colonies. Sci. Rep. 2021, 11, 10582. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Siddiqui, J.A.; Akutse, K.S.; Ramos Aguila, L.C.; Xu, Y. General Limitations to Endophytic Entomopathogenic Fungi Use as Plant Growth Promoters, Pests and Pathogens Biocontrol Agents. Plants 2021, 10, 2119. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, D. Four antimicrobial peptides of Asian gypsy moth respond to infection of its viral pathogen, nucleopolyhedrovirus (LdMNPV). Pestic. Biochem. Physiol. 2023, 190, 105335. [Google Scholar] [CrossRef]
- Akhanaev, Y.B.; Belousova, I.A.; Ershov, N.I.; Nakai, M.; Martemyanov, V.V.; Glupov, V.V. Comparison of tolerance to sunlight between spatially distant and genetically different strains of Lymantria dispar nucleopolyhedrovirus. PLoS ONE 2017, 12, e0189992. [Google Scholar] [CrossRef]
- Santos, T.S.; Silva, T.M.; Cardoso, J.C.; Albuquerque-Junior, R.L.C.; Zielinska, A.; Souto, E.B.; Severino, P.; Mendonca, M.D.C. Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity. Antibiotics 2021, 10, 852. [Google Scholar] [CrossRef]
- Sun, K.; Fu, K.; Hu, T.; Shentu, X.; Yu, X. Leveraging insect viruses and genetic manipulation for sustainable agricultural pest control. Pest Manag. Sci. 2024, 80, 2515–2527. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, L.; Ma, R.; Fang, W.; Hu, J.; Lei, C.; Sun, X. Improving Baculovirus Infectivity by Efficiently Embedding Enhancing Factors into Occlusion Bodies. Appl. Environ. Microbiol. 2017, 83, e00595-17. [Google Scholar] [CrossRef]
- Beperet, I.; Simón, O.; López-Ferber, M.; van Lent, J.; Williams, T.; Caballero, P. Mixtures of Insect-Pathogenic Viruses in a Single Virion: Towards the Development of Custom-Designed Insecticides. Appl. Environ. Microbiol. 2021, 87, e02180-20. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Yang, S.; Lei, W.; Nyamwasa, I.; Hu, J.; Sun, X. Displaying enhancing factors on the surface of occlusion bodies improves the insecticidal efficacy of a baculovirus. Pest Manag. Sci. 2020, 76, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Mastore, M.; Caramella, S.; Quadroni, S.; Brivio, M.F. Drosophila suzukii Susceptibility to the Oral Administration of Bacillus thuringiensis, Xenorhabdus nematophila and Its Secondary Metabolites. Insects 2021, 12, 635. [Google Scholar] [CrossRef]
- Deschodt, P.S.; Cory, J.S. Compatibility of the fungus Beauveria bassiana and Trichoplusia ni SNPV against the cabbage looper Trichoplusia ni: Crop plant matters. Pest Manag. Sci. 2024, 80, 2851–2859. [Google Scholar] [CrossRef] [PubMed]
- Acharya, R.; Lee, J.Y.; Hwang, H.S.; Kim, M.K.; Lee, S.Y.; Jung, H.Y.; Park, I.; Lee, K.Y. Identification of entomopathogenic fungus Metarhizium rileyi infested in fall armyworm in the cornfield of Korea, and evaluation of its virulence. Arch. Insect Biochem. Physiol. 2022, 111, e21965. [Google Scholar] [CrossRef]
LC50 Value (Spore∙mL−1) | 95% Confidence (Spore∙mL−1) | LC90 Value (Spore∙mL−1) | 95% Confidence (Spore∙mL−1) | Regression Equation | χ2 0.05 | ||
---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | Lower Limit | Upper Limit | ||||
1.77 × 108 | 1.99 × 108 | 5.06 × 1010 | 2.501 × 1010 | 2.18 × 1010 | 3.12 × 1013 | Y = 0.406x − 2.942 | 0.485 |
Strain | Concentration | LT50 Value (d) | 95% Confidence (d) | LT90 Value (d) | 95% Confidence (d) | ||
---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | Lower Limit | Upper Limit | ||||
HJN-G3-2C | 5 × 109 spore/mL | 3.484 | 2.907 | 4.035 | 11.008 | 8.916 | 15.073 |
5 × 108 spore/mL | 6.905 | 6.036 | 8.144 | 16.218 | 13.721 | 24.986 | |
5 × 107 spore/mL | 8.373 | 7.515 | 9.746 | 16.705 | 13.266 | 25.392 | |
LdMNPV | 2 × 108 OBs/mL | 4.910 | 4.394 | 5.433 | 10.619 | 9.124 | 13.216 |
1 × 108 OBs/mL | 5.439 | 4.951 | 5.938 | 10.358 | 9.092 | 12.483 | |
2 × 107 OBs/mL | 5.457 | 4.632 | 6.385 | 11.922 | 9.487 | 17.921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Q.; Wei, Y.-S.; Wang, D. Fungal Pathogen Infection by Metarhizium anisopliae Alters Climbing Behavior of Lymantria dispar with Tree-Top Disease Induced by LdMNPV. Biology 2025, 14, 1029. https://doi.org/10.3390/biology14081029
Song Q, Wei Y-S, Wang D. Fungal Pathogen Infection by Metarhizium anisopliae Alters Climbing Behavior of Lymantria dispar with Tree-Top Disease Induced by LdMNPV. Biology. 2025; 14(8):1029. https://doi.org/10.3390/biology14081029
Chicago/Turabian StyleSong, Qi, Yu-Shan Wei, and Dun Wang. 2025. "Fungal Pathogen Infection by Metarhizium anisopliae Alters Climbing Behavior of Lymantria dispar with Tree-Top Disease Induced by LdMNPV" Biology 14, no. 8: 1029. https://doi.org/10.3390/biology14081029
APA StyleSong, Q., Wei, Y.-S., & Wang, D. (2025). Fungal Pathogen Infection by Metarhizium anisopliae Alters Climbing Behavior of Lymantria dispar with Tree-Top Disease Induced by LdMNPV. Biology, 14(8), 1029. https://doi.org/10.3390/biology14081029