Imaging of the Intestinal Microcirculation during Acute and Chronic Inflammation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Intestinal Microcirculation during Acute Pathologies
2.1. Acute Infections
2.2. Severe Acute Pancreatitis
2.3. Necrotizing Enterocolitis
2.4. Sepsis
3. Intestinal Microcirculation during Chronic Pathologies
3.1. Inflammatory Bowel Disease
3.2. Irritable Bowel Syndrome
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FCD | Functional capillary density |
GI | Gastrointestinal |
IVM | Intravital microscopy |
LPS | Lipopolysaccharide |
SAP | Severe acute pancreatitis |
NEC | Necrotizing enterocolitis |
SOFA | Sequential organ failure assessment |
ROS | Reactive oxygen species |
IBD | Inflammatory bowel disorder |
CD | Crohn’s disease |
UC | Ulcerative colitis |
VEGF-A | Vascular endothelial growth factor A |
CCL20 | Chemokine ligand 20 |
IBS | Irritable bowel syndrome |
TLR4 | Toll-like receptor 4 |
References
- Guven, G.; Hilty, M.P.; Ince, C. Microcirculation: Physiology, Pathophysiology, and Clinical Application. Blood Purif. 2020, 49, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Matheson, P.J.; Wilson, M.A.; Garrison, R.N. Regulation of intestinal blood flow. J. Surg. Res. 2000, 93, 182–196. [Google Scholar] [PubMed] [Green Version]
- Zheng, L.; Kelly, C.J.; Colgan, S.P. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: Cellular responses to hypoxia. Am. J. Physiol. Cell Physiol. 2015, 309, C350–C360. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Ma, L.; Sun, S.; Lu, X.; Wu, X.; Li, Z.; Tang, W. Fluid resuscitation guided by sublingual partial pressure of carbon dioxide during hemorrhagic shock in a porcine model. Shock 2013, 39, 361–365. [Google Scholar] [PubMed]
- Ince, C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit. Care 2015, 19, S8. [Google Scholar] [CrossRef] [Green Version]
- McDonald, D.M. Angiogenesis and vascular remodeling in inflammation and cancer: Biology and architecture of the vasculature. In Angiogenesis: An Integrative Approach from Science to Medicine; Springer: Boston, MA, USA, 2008; pp. 17–33. ISBN 9780387715179. [Google Scholar]
- Boerma, E.C.; van der Voort, P.H.J.; Spronk, P.E.; Ince, C. Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit. Care Med. 2007, 35, 1055–1060. [Google Scholar] [CrossRef]
- Kiessling, A.-H.; Reyher, C.; Philipp, M.; Beiras-Fernandez, A.; Moritz, A. Real-time measurement of rectal mucosal microcirculation during cardiopulmonary bypass. J. Cardiothorac. Vasc. Anesth. 2015, 29, 89–94. [Google Scholar]
- Do Amaral Tafner, P.F.; Chen, F.K.; Filho, R.R.; Corrêa, T.D.; De Freitas Chaves, R.C.; Neto, A.S. Recent advances in bedside microcirculation assessment in critically ill patients. Rev. Bras. Ter. Intensiva 2017, 29, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Ocak, I.; Kara, A.; Ince, C. Monitoring microcirculation. Best Pract. Res. Clin. Anaesthesiol. 2016, 30, 407–418. [Google Scholar] [CrossRef]
- Ince, C.; Boerma, E.C.; Cecconi, M.; De Backer, D.; Shapiro, N.I.; Duranteau, J.; Pinsky, M.R.; Artigas, A.; Teboul, J.L.; Reiss, I.K.M.; et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: Results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018, 44, 281–299. [Google Scholar] [CrossRef] [Green Version]
- Sharawy, N.; Mukhtar, A.; Islam, S.; Mahrous, R.; Mohamed, H.; Ali, M.; Hakeem, A.; Hossny, O.; Refaa, A.; Saka, A.; et al. Preliminary clinical evaluation of automated analysis of the sublingual microcirculation in the assessment of patients with septic shock: Comparison of automated versus semi-automated software. Clin. Hemorheol. Microcirc. 2017, 1–10. [Google Scholar] [CrossRef]
- Amedeo, A.; Morbidelli, L. Circulating Metabolites Originating from Gut. Molecules 2019, 24, 3992. [Google Scholar]
- Muccioli, G.G.; Naslain, D.; Bäckhed, F.; Reigstad, C.S.; Lambert, D.M.; Delzenne, N.M.; Cani, P.D. The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 2010, 6. [Google Scholar] [CrossRef]
- Weigert, R.; Sramkova, M.; Parente, L.; Amornphimoltham, P.; Masedunskas, A. Intravital microscopy: A novel tool to study cell biology in living animals. Histochem. Cell Biol. 2010, 133, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Hoole, S.; van Leeuwenhoek, A. The select works of Antony van Leeuwenhoek: Containing his microscopical discoveries in many of the works of nature / translated from the Dutch and Latin editions published by the author, by Samuel Hoole. London G. Sidney 2011. [Google Scholar] [CrossRef] [Green Version]
- Dutrochet, H. Recherches Anatomiques et Physiologiques sur la Structure Intime des Animaux et des Vegetaux, et sur Leur Motilite. Edinburgh Med. Surg. J. 1826, 31, 369–394. [Google Scholar]
- Nourshargh, S.; Alon, R. Leukocyte Migration into Inflamed Tissues. Immunity 2014, 41, 694–707. [Google Scholar] [CrossRef] [Green Version]
- Pittet, M.J.; Weissleder, R. Intravital imaging. Cell 2011, 147, 983–991. [Google Scholar] [CrossRef] [Green Version]
- McDaniel Mims, B.; Grisham, M.B. Humanizing the mouse immune system to study splanchnic organ inflammation. J. Physiol. 2018, 596, 3915–3927. [Google Scholar] [CrossRef] [Green Version]
- Grootjans, J.; Lenaerts, K.; Buurman, W.A.; Dejong, C.H.C.; Derikx, J.P.M. Life and death at the mucosal-luminal interface: New perspectives on human intestinal ischemia-reperfusion. World J. Gastroenterol. 2016, 22, 2760–2770. [Google Scholar] [CrossRef]
- Osborne, M.P.; Haddon, S.J.; Worton, K.J.; Spencer, A.J.; Starkey, W.G.; Thornber, D.; Stephen, J. Rotavirus-induced changes in the microcirculation of intestinal villi of neonatal mice in relation to induction and persistance of diarrhea. J. Pediatr. Gastroenterol. Nutr. 1991, 12, 111–120. [Google Scholar] [PubMed]
- Zhang, J.; Yu, W.Q.; Wei, T.; Zhang, C.; Wen, L.; Chen, Q.; Chen, W.; Qiu, J.Y.; Zhang, Y.; Liang, T.B. Effects of Short-Peptide-Based Enteral Nutrition on the Intestinal Microcirculation and Mucosal Barrier in Mice with Severe Acute Pancreatitis. Mol. Nutr. Food Res. 2020, 64, 1–11. [Google Scholar] [CrossRef]
- Schulz, J.; Vollmer, C.; Truse, R.; Bauer, I.; Beck, C.; Picker, O.; Herminghaus, A. Effect of Pravastatin Pretreatment and Hypercapnia on Intestinal Microvascular Oxygenation and Blood Flow during Sepsis. Shock 2020, 53, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Saijo, H.; Tatsumi, N.; Arihiro, S.; Kato, T.; Okabe, M.; Tajiri, H.; Hashimoto, H. Microangiopathy triggers, and inducible nitric oxide synthase exacerbates dextran sulfate sodium-induced colitis. Lab. Investig. 2015, 95, 728–748. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Granger, D.N.; Evans, D.J.; Evans, D.G.; Graham, D.Y.; Anderson, D.C.; Wolf, R.E.; Kvietys, P.R. Mechanisms involved in Helicobacter pylori-Induced inflammation. Gastroenterology 1993, 105, 1431–1440. [Google Scholar] [CrossRef]
- Kurose, I.; Granger, D.N.; Evans, D.J.; Evans, D.G.; Graham, D.Y.; Miyasaka, M.; Anderson, D.C.; Wolf, R.E.; Cepinskas, G.; Kvietys, P.R. Helicobacter pylori-induced microvascular protein leakage in rats: Role of neutrophils, mast cells, and platelets. Gastroenterology 1994, 107, 70–79. [Google Scholar] [CrossRef]
- Eibl, G.; Buhr, H.J.; Foitzik, T. Therapy of microcirculatory disorders in severe acute pancreatitis: What mediators should we block? Intensive Care Med. 2002, 28, 139–146. [Google Scholar] [CrossRef]
- Kataoka, H.; Ushiyama, A.; Akimoto, Y.; Matsubara, S.; Kawakami, H.; Iijima, T. Structural Behavior of the Endothelial Glycocalyx Is Associated with Pathophysiologic Status in Septic Mice: An Integrated Approach to Analyzing the Behavior and Function of the Glycocalyx Using Both Electron and Fluorescence Intravital Microscopy. Anesth. Analg. 2017, 125, 874–883. [Google Scholar] [CrossRef]
- Fokam, D.; Dickson, K.; Kamali, K.; Holbein, B.; Colp, P. Iron Chelation in Murine Models of Systemic Inflammation Induced by Gram-Positive and Gram-Negative Toxins. Antibiotics 2020, 9, 283. [Google Scholar] [CrossRef]
- Islam, S.; Jarosch, S.; Zhou, J.; Parquet, M.D.C.; Toguri, J.T.; Colp, P.; Holbein, B.E.; Lehmann, C. Anti-inflammatory and anti-bacterial effects of iron chelation in experimental sepsis. J. Surg. Res. 2015, 200, 266–273. [Google Scholar] [CrossRef]
- Ploppa, A.; Schmidt, V.; Hientz, A.; Reutershan, J.; Haeberle, H.A.; Nohé, B. Mechanisms of leukocyte distribution during sepsis: An experimental study on the interdependence of cell activation, shear stress and endothelial injury. Crit. Care 2010, 14, R201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binion, D.G.; West, G.A.; Ina, K.; Ziats, N.P.; Emancipator, S.N.; Fiocchi, C. Enhanced leukocyte binding by intestinal microvascular endothelial cells in inflammatory bowel disease. Gastroenterology 1997, 112, 1895–1907. [Google Scholar] [CrossRef] [PubMed]
- Souza, H.S.; Elia, C.C.S.; Spencer, J.; MacDonald, T.T. Expression of lymphocyte-endothelial receptor-ligand pairs, α4β7/MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. Gut 1999, 45, 856–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaser, A.; Ludwiczek, O.; Holzmann, S.; Moschen, A.R.; Weiss, G.; Enrich, B.; Graziadei, I.; Dunzendorfer, S.; Wiedermann, C.J.; Mürzl, E.; et al. Increased expression of CCL20 in human inflammatory bowel disease. J. Clin. Immunol. 2004, 24, 74–85. [Google Scholar] [CrossRef]
- Wang, C.; Kang, S.G.; Lee, J.; Sun, Z.; Kim, C.H. The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal. Immunol. 2009, 2, 173–183. [Google Scholar] [CrossRef]
- Teramoto, K.; Miura, S.; Tsuzuki, Y.; Hokari, R.; Watanabe, C.; Inamura, T.; Ogawa, T.; Hosoe, N.; Nagata, H.; Ishii, H.; et al. Increased lymphocyte trafficking to colonic microvessels is dependent on MAdCAM- 1 and C-C chemokine mLARC / CCL20 in DSS-induced mice colitis. Clin. Exp. Immunol. 2005, 1, 421–428. [Google Scholar] [CrossRef]
- Nakamura, S.; Ohtani, H.; Watanabe, Y.; Fukushima, K.; Matsumoto, T.; Kitano, A.; Kobayashi, K.; Nagura, H. In situ expression of the cell adhesion molecules in inflammatory bowel disease: Evidence of immunologic activation of vascular endothelial cells. Lab. Investig. 1993, 69, 77–85. [Google Scholar]
- Baars, J.E.; Nuij, V.J.A.A.; Oldenburg, B.; Kuipers, E.J.; Van Der Woude, C.J. Majority of patients with inflammatory bowel disease in clinical remission have mucosal inflammation. Inflamm. Bowel Dis. 2012, 18, 1634–1640. [Google Scholar] [CrossRef]
- Arber, N.; Hallak, A.; Dotan, I.; Bujanover, Y.; Liberman, E.; Santo, M.; Moshkowitz, M.; Tiomny, E.; Aronson, M.; Berliner, S.; et al. Increased leukocyte adhesiveness/aggregation in patients with inflammatory bowel disease during remission: Further evidence for subclinical inflammation. Dis. Colon Rectum 1996, 39, 632–635. [Google Scholar] [CrossRef]
- Winchester, W.J.; Johnson, A.; Hicks, G.A.; Gebhart, G.F.; Greenwood-Van Meerveld, B.; McLean, P.G. Inhibition of endothelial cell adhesion molecule expression improves colonic hyperalgaesia. Neurogastroenterol. Motil. 2009, 21, 189–196. [Google Scholar] [CrossRef]
- Robles, A.; Perez Ingles, D.; Myneedu, K.; Deoker, A.; Sarosiek, I.; Zuckerman, M.J.; Schmulson, M.J.; Bashashati, M. Mast cells are increased in the small intestinal mucosa of patients with irritable bowel syndrome: A systematic review and meta-analysis. Neurogastroenterol. Motil. 2019, 31, 1–8. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, C.; Breslin, H.; O’Morain, B.M. Increased mast cells in the irritable bowel syndrome. Neurogastroenterol. Motil. 2000, 12, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.L.; Zhang, Y.; Zhang, S.Y.; Liang, Z.Y.; Yu, W.Q.; Liang, T.B. The hydrocortisone protection of glycocalyx on the intestinal capillary endothelium during severe acute pancreatitis. Shock 2015, 43, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.A.; Punwani, S.; Rodriguez-Justo, M.; Bainbridge, A.; Greenhalgh, R.; De Vita, E.; Forbes, A.; Cohen, R.; Windsor, A.; Obichere, A.; et al. Mural Crohn disease: Correlation of dynamic contrast-enhanced MR imaging findings with angiogenesis and inflammation at histologic examination-Pilot study. Radiology 2009, 251, 369–379. [Google Scholar] [CrossRef]
- Henriksnäs, J.; Atuma, C.; Phillipson, M.; Sandler, S.; Engstrand, L.; Holm, L. Acute effects of Helicobacter pylori extracts on gastric mucosal blood flow in the mouse. World J. Gastroenterol. 2009, 15, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Adachi, K.; Suetsugu, H.; Moriyama, N.; Kazumori, H.; Kawamura, A.; Fujishiro, H.; Sato, H.; Okuyama, T.; Ishihara, S.; Watanabe, M.; et al. Influence of helicobacter pylori infection and cetraxate on gastric mucosal blood flow during healing of endoscopic mucosal resection-induced ulcers. J. Gastroenterol. Hepatol. 2001, 16, 1211–1216. [Google Scholar] [CrossRef]
- Hotz, H.G.; Foitzik, T.; Rohweder, J.; Schulzke, J.D.; Fromm, M.; Runkel, N.S.F.; Buhr, H.J. Intestinal Microcirculation and Gut Permeability in Acute Pancreatitis: Early Changes and Therapeutic Implications. J. Gastrointest. Surg. 1998, 2, 518–525. [Google Scholar] [CrossRef]
- Downard, C.D.; Grant, S.N.; Matheson, P.J.; Guillaume, A.W.; Debski, R.; Fallat, M.E.; Garrison, R.N. Altered intestinal microcirculation is the critical event in the development of necrotizing enterocolitis. J. Pediatr. Surg. 2011, 46, 1023–1028. [Google Scholar] [CrossRef]
- Ito, Y.; Doelle, S.M.; Clark, J.A.; Halpern, M.D.; Mccuskey, R.S.; Dvorak, B. Intestinal microcirculatory dysfunction during the development of experimental necrotizing enterocolitis. Pediatr. Res. 2007, 61, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Yazji, I.; Sodhi, C.P.; Lee, E.K.; Good, M.; Egan, C.E.; Afrazi, A.; Neal, M.D.; Jia, H.; Lin, J.; Ma, C.; et al. Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proc. Natl. Acad. Sci. USA 2013, 110, 9451–9456. [Google Scholar] [CrossRef] [Green Version]
- Dyson, A.; Cone, S.; Singer, M.; Ackland, G.L. Microvascular and macrovascular flow are uncoupled in early polymicrobial sepsis. Br. J. Anaesth 2012, 108, 973–978. [Google Scholar] [PubMed] [Green Version]
- Hua, T.; Wu, X.; Wang, W.; Li, H.; Bradley, J.; Peberdy, M.A.; Ornato, J.P.; Tang, W. Micro- and Macrocirculatory Changes During Sepsis and Septic Shock in a Rat Model. Shock 2018, 49, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Dubin, A.; Edul, V.S.K.; Pozo, M.O.; Murias, G.; Canullán, C.M.; Martins, E.F.; Ferrara, G.; Canales, H.S.; Laporte, M.; Estenssoro, E.; et al. Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Crit. Care Med. 2008, 36, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Edul, V.S.K.; Ince, C.; Navarro, N.; Previgliano, L.; Risso-Vazquez, A.; Rubatto, P.N.; Dubin, A. Dissociation between sublingual and gut microcirculation in the response to a fluid challenge in postoperative patients with abdominal sepsis. Ann. Intensive Care 2014, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kruschewski, M.; Foitzik, T.; Perez-Cantó, A.; Hũbotter, A.; Buhr, H.J. Changes of colonic mucosal microcirculation and histology in two colitis models: An experimental study using intravital microscopy and a new histological scoring system. Dig. Dis. Sci. 2001, 46, 2336–2343. [Google Scholar] [CrossRef]
- Harris, N.R.; Carter, P.R.; Lee, S.; Watts, M.N.; Zhang, S.; Grisham, M.B. Association between blood flow and inflammatory state in a T-cell transfer model of inflammatory bowel disease in mice. Inflamm. Bowel Dis. 2010, 16, 776–782. [Google Scholar] [CrossRef] [Green Version]
- Hultén, L.; Lindhagen, J.; Lundgren, O.; Fasth, S.; Åhren, C. Regional Intestinal Blood Flow in Ulcerative Colitis and Crohn’s Disease. Gastroenterology 1977, 72, 388–396. [Google Scholar] [CrossRef]
- Alkim, C.; Savas, B.; Ensari, A.; Alkim, H.; Dagli, U.; Parlak, E.; Ulker, A.; Sahin, B. Expression of p53, VEGF, microvessel density, and cyclin-D1 in noncancerous tissue of inflammatory bowel disease. Dig. Dis. Sci. 2009, 54, 1979–1984. [Google Scholar] [CrossRef]
- Danese, S.; Fiorino, G.; Angelucci, E.; Vetrano, S.; Pagano, N.; Rando, G.; Spinelli, A.; Malesci, A.; Repici, A. Narrow-band imaging endoscopy to assess mucosal angiogenesis in inflammatory bowel disease: A pilot study. World J. Gastroenterol. 2010, 16, 2396–2400. [Google Scholar] [CrossRef]
- Ravnic, D.J.; Konerding, M.A.; Tsuda, A.; Huss, H.T.; Wolloscheck, T.; Pratt, J.P.; Mentzer, S.J. Structural adaptations in the murine colon microcirculation associated with hapten-induced inflammation. Gut 2007, 56, 518–523. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Zheng, Y.; Teng, G.; Li, J.; Wang, H. Imbalanced mucosal microcirculation in the remission stage of ulcerative colitis using probe-based confocal laser endomicroscopy. BMC Gastroenterol. 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Del Valle-Pinero, A.Y.; Sherwin, L.A.B.; Anderson, E.M.; Caudle, R.M.; Henderson, W.A. Altered vasoactive intestinal peptides expression in irritable bowel syndrome patients and rats with trinitrobenzene sulfonic acid-induced colitis. World J. Gastroenterol. 2015, 21, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Dumnicka, P.; Kuśnierz-Cabala, B.; Sporek, M.; Mazur-Laskowska, M.; Gil, K.; Kuźniewski, M.; Ceranowicz, P.; Warzecha, Z.; Dembiński, A.; Bonior, J.; et al. Serum concentrations of angiopoietin-2 and soluble fms-like tyrosine kinase 1 (SFlt-1) are associated with coagulopathy among patients with acute pancreatitis. Int. J. Mol. Sci. 2017, 18, 753. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Subbarao, G.C.; Maheshwari, A. Haematological abnormalities in neonatal necrotizing enterocolitis. J. Matern. Neonatal Med. 2012, 25, 14–17. [Google Scholar] [CrossRef]
- Scaldaferri, F.; Vetrano, S.; Sans, M.; Arena, V.; Straface, G.; Stigliano, E.; Repici, A.; Sturm, A.; Malesci, A.; Panes, J.; et al. VEGF-A Links Angiogenesis and Inflammation in Inflammatory Bowel Disease Pathogenesis. Gastroenterology 2009, 136, 585–595.e5. [Google Scholar] [CrossRef] [Green Version]
- Ardelean, D.S.; Yin, M.; Jerkic, M.; Peter, M.; Ngan, B.; Kerbel, R.S.; Foster, F.S.; Letarte, M. Anti-VEGF therapy reduces intestinal inflammation in Endoglin heterozygous mice subjected to experimental colitis. Angiogenesis 2014, 17, 641–659. [Google Scholar] [CrossRef]
- Danese, S.; Scaldaferri, F.; Vetrano, S.; Stefanelli, T.; Graziani, C.; Repici, A.; Ricci, R.; Straface, G.; Sgambato, A.; Malesci, A.; et al. Critical role of the CD40-CD40-ligand pathway in regulating mucosal inflammation-driven angiogenesis in inflammatory bowel disease. Gut 2007, 56, 1248–1256. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Watanabe, P.; Trevizan, A.R.; Silva-Filho, S.E.; Góis, M.B.; Garcia, J.L.; Cuman, R.K.N.; Breithaupt-Faloppa, A.C.; de Mello Gonçales Sant‘Ana, D.; de Alcantara Nogueira de Melo, G. Immunocompetent host develops mild intestinal inflammation in acute infection with Toxoplasma gondii. PLoS ONE 2018, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kondo, H.; Imai, Y.; Ishikawa, T.; Tsubota, K.I.; Yamaguchi, T. Hemodynamic analysis of microcirculation in malaria infection. Ann. Biomed. Eng. 2009, 37, 702–709. [Google Scholar] [CrossRef]
- Funaki, S.; Tokutomi, F.; Wada-Takahashi, S.; Yoshino, F.; Yoshida, A.; Maehata, Y.; Miyamoto, C.; Toyama, T.; Sato, T.; Hamada, N.; et al. Porphyromonas gingivalis infection modifies oral microcirculation and aortic vascular function in the stroke-prone spontaneously hypertensive rat (SHRSP). Microb. Pathog. 2016, 92, 36–42. [Google Scholar] [CrossRef]
- Weidlich, K.; Kroth, J.; Nussbaum, C.; Hiedl, S.; Bauer, A.; Christ, F.; Genzel-Boroviczeny, O. Changes in microcirculation as early markers for infection in preterm infants-an observational prospective study. Pediatr. Res. 2009, 66, 461–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidemann, J.; Rüther, C.; Kebschull, M.; Domschke, W.; Brüwer, M.; Koch, S.; Kucharzik, T.; Maaser, C. Expression of IL-12-related molecules in human intestinal microvascular endothelial cells is regulated by TLR3. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, 1315–1324. [Google Scholar] [CrossRef] [Green Version]
- Sewald, X. Visualizing viral infection in vivo by multi-photon intravital microscopy. Viruses 2018, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Popa, C.C.; Badiu, D.C.; Rusu, O.C.; Grigorean, V.T.; Neagu, S.I.; Strugaru, C.R. Mortality prognostic factors in acute pancreatitis. J. Med. Life 2016, 9, 413–418. [Google Scholar] [CrossRef]
- Awla, D.; Abdulla, A.; Zhang, S.; Roller, J.; Menger, M.D.; Regnér, S.; Thorlacius, H. Lymphocyte function antigen-1 regulates neutrophil recruitment and tissue damage in acute pancreatitis. Br. J. Pharmacol. 2011, 163, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.D.; Kingsnorth, A.N.; Imrie, C.W.; McMahon, M.J.; Neoptolemos, J.P.; McKay, C.; Toh, S.K.C.; Skaife, P.; Leeder, P.C.; Wilson, P.; et al. Double blind, randomised, placebo controlled study of a platelet activating factor antagonist, lexipafant, in the treatment and prevention of organ failure in predicted severe acute pancreatitis. Gut 2001, 48, 62–69. [Google Scholar] [CrossRef]
- Nankervis, C.A.; Reber, K.M.; Nowicki, P.T. Age-dependent changes in the postnatal intestinal microcirculation. Microcirculation 2001, 8, 377–387. [Google Scholar]
- Bowker, R.M.; Yan, X.; De Plaen, I.G. Intestinal microcirculation and necrotizing enterocolitis: The vascular endothelial growth factor system. Semin. Fetal Neonatal. Med. 2018, 23, 411–415. [Google Scholar] [CrossRef]
- Janssen Lok, M.; Miyake, H.; Hock, A.; Daneman, A.; Pierro, A.; Offringa, M. Value of abdominal ultrasound in management of necrotizing enterocolitis: A systematic review and meta-analysis. Pediatr. Surg. Int. 2018, 34, 589–612. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). J. Am. Med. Assoc. 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.J.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Assessment of global incidence and mortality of hospital-treated sepsis current estimates and limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C. Sepsis: Calming the cytokine storm. Nat. Rev. Drug Discov. 2010, 9, 360–361. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C.; Grodzin, C.J.; Balk, R.A. Sepsis: A new hypothesis for pathogenesis of the disease process. Chest 1997, 112, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Muller Kobold, A.C.; Tulleken, J.E.; Zijlstra, J.G.; Sluiter, W.; Hermans, J.; Kallenberg, C.G.M.; Cohen Tervaert, J.W. Leukocyte activation in sepsis: Correlations with disease state and mortality. Intensive Care Med. 2000, 26, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.; Nguyen, N.; Keller, S.; Moore, C.; Shin, M.C.; McKillop, I.H. Reducing leukocyte trafficking preserves hepatic function after sepsis. J. Trauma-Inj. Infect. Crit. Care 2010, 69, 360–366. [Google Scholar] [CrossRef]
- Coopersmith, C.M.; de Backer, D.; Deutschman, C.S.; Ferrer, R.; Lat, I.; Machado, F.R.; Martin, G.S.; Martin-Loeches, I.; Nunnally, M.E.; Antonelli, M.; et al. Surviving sepsis campaign: Research priorities for sepsis and septic shock. Intensive Care Med. 2018, 44, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of clinical criteria for sepsis for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA-J. Am. Med. Assoc. 2016, 315, 762–774. [Google Scholar] [CrossRef] [Green Version]
- De Backer, D.; Donadello, K.; Taccone, F.S.; Ospina-Tascon, G.; Salgado, D.; Vincent, J.-L. Microcirculatory alterations: Potential mechanisms and implications for therapy. Ann. Intensive Care 2011, 1. [Google Scholar] [CrossRef] [Green Version]
- Ellis, C.G.; Bateman, R.M.; Sharpe, M.D.; Sibbald, W.J.; Gill, R. Effect of a maldistribution of microvascular blood flow on capillary O2 extraction in sepsis. Am. J. Physiol. Hear. Circ. Physiol. 2002, 282, 156–164. [Google Scholar] [CrossRef]
- De Backer, D.; Creteur, J.; Sakr, Y.; Vincent, J.-L.; Dubois, M.-J. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit. Care Med. 2004, 32, 1825–1831. [Google Scholar] [CrossRef]
- Rochwerg, B.; Alhazzani, W.; Sindi, A.; Heels-Ansdell, D.; Thabane, L.; Fox-Robichaud, A.; Mbuagbaw, L.; Szczeklik, W.; Alshamsi, F.; Altayyar, S.; et al. Fluid resuscitation in sepsis: A systematic review and network meta-analysis. Ann. Intern. Med. 2014, 161, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Obonyo, N.G.; Fanning, J.P.; Ng, A.S.Y.; Pimenta, L.P.; Shekar, K.; Platts, D.G.; Maitland, K.; Fraser, J.F. Effects of volume resuscitation on the microcirculation in animal models of lipopolysaccharide sepsis: A systematic review. Intensive Care Med. Exp. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Ergin, B.; Zafrani, L.; Kandil, A.; Baasner, S.; Lupp, C.; Demirci, C.; Westphal, M.; Ince, C. Fully Balanced Fluids do not Improve Microvascular Oxygenation, Acidosis and Renal Function in a Rat Model of Endotoxemia. Shock 2016, 46, 83–91. [Google Scholar] [CrossRef]
- Hernández, G.; Teboul, J.L. Is the macrocirculation really dissociated from the microcirculation in septic shock? Intensive Care Med. 2016, 42, 1621–1624. [Google Scholar] [CrossRef]
- Trzeciak, S.; Glaspey, L.J.; Dellinger, R.P.; Durflinger, P.; Anderson, K.; Dezfulian, C.; Roberts, B.W.; Chansky, M.E.; Parrillo, J.E.; Hollenberg, S.M. Randomized Controlled Trial of Inhaled Nitric Oxide for the Treatment of Microcirculatory Dysfunction in Patients With Sepsis. Crit. Care Med. 2014, 42, 2482–2492. [Google Scholar]
- Boerma, E.C.; Koopmans, M.; Konijn, A.; Kaiferova, K.; Bakker, A.J.; Van Roon, E.N.; Buter, H.; Bruins, N.; Egbers, P.H.; Gerritsen, R.T.; et al. Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: A double-blind randomized placebo controlled trial. Crit. Care Med. 2010, 38, 93–100. [Google Scholar] [CrossRef]
- Boerma, E.C.; Ince, C. The role of vasoactive agents in the resuscitation of microvascular perfusion and tissue oxygenation in critically ill patients. Intensive Care Med. 2010, 36, 2004–2018. [Google Scholar] [CrossRef] [Green Version]
- Enrico, C.; Kanoore Edul, V.S.; Vazquez, A.R.; Pein, M.C.; Pérez de la Hoz, R.A.; Ince, C.; Dubin, A. Systemic and microcirculatory effects of dobutamine in patients with septic shock. J. Crit. Care 2012, 27, 630–638. [Google Scholar] [CrossRef]
- Spicer, A.; Calfee, C.S. Fixing the leak: Targeting the vascular endothelium in sepsis. Crit. Care 2012, 16, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Reis, P.A.; Alexandre, P.C.B.; D’Avila, J.C.; Siqueira, L.D.; Antunes, B.; Estato, V.; Tibiriça, E.V.; Verdonk, F.; Sharshar, T.; Chrétien, F.; et al. Statins prevent cognitive impairment after sepsis by reverting neuroinflammation, and microcirculatory/endothelial dysfunction. Brain. Behav. Immun. 2017, 60, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Prauchner, C.A. Oxidative stress in sepsis: Pathophysiological implications justifying antioxidant co-therapy. Burns 2017, 43, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef] [PubMed]
- Ricanek, P.; Lunde, L.K.; Frye, S.A.; Støen, M.; Nygård, S.; Morth, J.P.; Rydning, A.; Vatn, M.H.; Amiry-Moghaddam, M.; Tønjum, T. Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clin. Exp. Gastroenterol. 2015, 8, 49–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurisic, G.; Sundberg, J.P.; Detmar, M. Blockade of VEGF receptor-3 aggravates inflammatory bowel disease and lymphatic vessel enlargement. Inflamm. Bowel Dis. 2013, 19, 1983–1989. [Google Scholar] [CrossRef] [Green Version]
- Herrera Gomez, R.G.; Gallois, C.; Adler, M.; Malka, D.; Planchard, D.; Pistilli, B.; Ducreux, M.; Mir, O. Safety of bevacizumab in cancer patients with inflammatory bowel disease. J. Clin. Oncol. 2019, 37. [Google Scholar] [CrossRef]
- Habtezion, A.; Nguyen, L.P.; Hadeiba, H.; Butcher, E.C. Leukocyte Trafficking to the Small Intestine and Colon. Gastroenterology 2016, 150, 340–354. [Google Scholar]
- Cesarini, M.; Fiorino, G. Leukocyte traffic control: A novel therapeutic strategy for inflammatory bowel disease—An update. Expert Rev. Clin. Immunol. 2013, 9, 301–306. [Google Scholar] [CrossRef]
- Saevik, F.; Nylund, K.; Hausken, T.; Odegaard, S.; Gilja, O.H. Bowel perfusion measured with dynamic contrast-enhanced ultrasound predicts treatment outcome in patients with crohn’s disease. Inflamm. Bowel Dis. 2014, 20, 2029–2037. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, D.; Wiener, S.; Brüning, A.; Schwarting, K.; Jantschek, G.; Stange, E.F. Mesenteric blood flow is related to disease activity and risk of relapse in Crohn’s disease: A prospective follow-up study. Am. J. Gastroenterol. 1999, 94, 2942–2950. [Google Scholar] [CrossRef]
- Bots, S.J.; Kuin, S.; Ponsioen, C.Y.; Gecse, K.B.; Duijvestein, M.; D’Haens, G.R.; Löwenberg, M. Relapse rates and predictors for relapse in a real-life cohort of IBD patients after discontinuation of anti-TNF therapy. Scand. J. Gastroenterol. 2019, 54, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovell, R.M.; Ford, A.C. Global Prevalence of and Risk Factors for Irritable Bowel Syndrome: A Meta-analysis. Clin. Gastroenterol. Hepatol. 2012, 10, 712–721.e4. [Google Scholar] [CrossRef] [PubMed]
- Malagelada, J.R.; Malagelada, C. Mechanism-Oriented Therapy of Irritable Bowel Syndrome. Adv. Ther. 2016, 33, 877–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manabe, N.; Tanaka, T.; Hata, J.; Kusunoki, H.; Haruma, K. Pathophysiology underlying irritable bowel syndrome—From the viewpoint of dysfunction of autonomic nervous system activity-. J. Smooth Muscle Res. 2009, 45, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, T.; Manabe, N.; Hata, J.; Kusunoki, H.; Ishii, M.; Sato, M.; Kamada, T.; Shiotani, A.; Haruma, K. Characterization of autonomic dysfunction in patients with irritable bowel syndrome using fingertip blood flow. Neurogastroenterol. Motil. 2008, 20, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Weiser, M.; Hilz, M.J.; Bronfin, L.; Axelrod, F.B. Assessing microcirculation in familial dysautonomia by laser Doppler flowmeter. Clin. Auton. Res. 1998, 8, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.C.; Chen, C.S.; Kuo, C.D.; Lin, H.D.; Chan, R.C.; Kao, M.J.; Wei, S.H. Impaired microvascular flow motion in subclinical diabetic feet with sudomotor dysfunction. Microvasc. Res. 2012, 83, 243–248. [Google Scholar] [CrossRef]
- Leister, I.; Sydow, J.; Stojanovic, T.; Füzesi, L.; Sattler, B.; Heuser, M.; Becker, H.; Markus, P.M. Impact of vasoactive intestinal polypeptide and gastrin-releasing peptide on small bowel microcirculation and mucosal injury after hepatic ischemia/reperfusion in rats. Int. J. Colorectal Dis. 2005, 20, 42–48. [Google Scholar] [CrossRef]
- Suzuki, H.; Noda, Y.; Paul, S.; Gao, X.-P.; Rubinstein, I. Encapsulation of vasoactive intestinal peptide into liposomes: Effects on vasodilation in vivo. Life Sci. 1995, 57, 1451–1457. [Google Scholar] [CrossRef]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Lim, D.Y.; Yeo, W.S. The role of inflammation in irritable bowel syndrome (IBS). J. Inflamm. Res. 2018, 11, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Borghini, R.; Puzzono, M.; Rosato, E.; Di Tola, M.; Marino, M.; Greco, F.; Picarelli, A. Nickel-Related Intestinal Mucositis in IBS-Like Patients: Laser Doppler Perfusion Imaging and Oral Mucosa Patch Test in Use. Biol. Trace Elem. Res. 2016, 173, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Koçak, E.; Akbal, E.; Köklü, S.; Ergül, B.; Can, M. The colonic tissue levels of TLR2, TLR4 and nitric oxide in patients with irritable bowel syndrome. Intern. Med. 2016, 55, 1043–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Soltow, M.; Zimmermann, K.; Pavlovic, D.; Johnston, B.; Lehmann, C. Experimental TLR4 inhibition improves intestinal microcirculation in endotoxemic rats. Microvasc. Res. 2015, 101, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, Z.G.; Zhang, J.; Chen, Y.D.; Li, H.G.; Gao, H.K.; Wang, R.; Hu, T.Z. Microcirculatory detection of Toll-like receptor 4 in rat pancreas and intestine. Clin. Hemorheol. Microcirc. 2006, 34, 213–219. [Google Scholar]
- Sinagra, E.; Morreale, G.C.; Mohammadian, G.; Fusco, G.; Guarnotta, V.; Tomasello, G.; Cappello, F.; Rossi, F.; Amvrosiadis, G.; Raimondo, D. New therapeutic perspectives in irritable bowel syndrome: Targeting low-grade inflammation, immuno-neuroendocrine axis, motility, secretion and beyond. World J. Gastroenterol. 2017, 23, 6593–6627. [Google Scholar] [CrossRef] [Green Version]
Microcirculatory Alteration | Condition | Type | Methodology | Main Findings | Reference |
---|---|---|---|---|---|
Ischemia/hypoxia | Rotavirus | Preclinical | Morphometry | Early ischemia in intestinal villi | [22] |
SAP | Preclinical | RT-PCR | Intestinal hypoxia, high expression of hypoxic factors | [23] | |
Sepsis | Preclinical | Spectrophotometry | Decreased microcirculatory oxygenation | [24] | |
IBD 1 | Preclinical | Protein expression | Ischemic lamina propria | [25] | |
Villi atrophy | Rotavirus | Preclinical | Histochemical techniques | Short, ischemic villi early in illness; hyperemic microcirculation on recovery | [22] |
Leukocyte activity | H. pylori | Preclinical | IVM 2 | Increased leukocyte adhesion | [26,27] |
SAP 3 | Preclinical | IVM | Increased leukocyte rolling | [28] | |
Sepsis | Preclinical | IVM, in vitro assay | Increased leukocyte and adhesion, maldistribution to damaged endothelium | [29,30,31,32] | |
IBD | Clinical | Ex vivo assay | Patient cells exhibit increased leukocyte-binding capacity | [33,34] | |
Preclinical | FACS 4, flow cytometry | Increased lymphocyte homing | [35,36] | ||
Preclinical | IVM, immunohistochemistry | Increased lymphocyte adhesion, facilitated by adhesion molecules and chemokines | [37,38] | ||
Clinical | Endoscopy, histology | Inflammation persists into remission | [39] | ||
Clinical | Leukocyte adhesion/aggregation test | Increased adhesiveness persists into remission | [40] | ||
IBS 5 | Preclinical | Physical response | Inhibition of leukocyte adhesion molecules ameliorated disease | [41] | |
Clinical | Cell count, immunohistochemistry | Increased mast cells | [42,43] | ||
Barrier dysfunction | H. pylori | Preclinical | IVM | Increased microvascular albumin leakage | [27] |
SAP | Preclinical | Fluorescence, electron microscopy | Increased intestinal permeability; degradation of the glycocalyx | [23,28,44] | |
Sepsis | Preclinical | IVM, electron microscopy | Reduced thickness of the glycocalyx, molecular hyperpermeability | [29] | |
IBD | Preclinical | Evan’s blue dye | Increased vascular permeability over time | [25] | |
Clinical | MR imaging | Vessel permeability increases with disease chronicity | [45] | ||
Capillary perfusion | H. pylori | Preclinical | Laser Doppler | 30% reduction in mucosal blood flow | [46] |
Clinical | Laser Doppler | Decreased mucosal blood flow | [47] | ||
Rotavirus | Preclinical | Histochemical techniques | Reduced blood flow in early infection | [22] | |
SAP | Preclinical | Laser Doppler, IVM | Impaired mucosal microcirculation; reduced colonic perfusion | [23,28,44,48] | |
NEC 6 | Preclinical | IVM, laser Doppler | “Stop and go” arteriole flow, reduced microvascular perfusion and intestinal flow | [49,50] | |
Preclinical | Confocal microscopy | Intestinal perfusion reduced with TLR4 7 activation | [51] | ||
Sepsis | Preclinical | Side-stream darkfield imaging | Impaired microvascular flow index despite macrovascular parameters; persistent dysfunction in mucosal villi | [52,53,54] | |
Preclinical | IVM | Decreased capillary density | [30,31] | ||
Clinical | Side-stream darkfield imaging | Sublingual perfusion not correlated to intestinal perfusion | [55] | ||
IBD | Preclinical | IVM | Perfusion varies with disease stage | [56] | |
Preclinical | Fluorescent angiography, laser Doppler | Perfusion abnormalities precede histological abnormalities, mild inflammation associated with decreased blood flow | [25,57] | ||
Clinical | 83Kr-clearance | Mild disease associated with increased perfusion, severe associated with decreased | [58] | ||
Clinical | Immunostaining, Narrow band imaging, MR imaging | Increased microvessel density; reduced perfusion despite increased vessel density | [45,59,60] | ||
Preclinical | IVM, cellular topographic mapping | Reduced velocity despite volumetric increase in flow | [61] | ||
Clinical | Confocal laser endomicroscopy | UC 8 patients in remission had reduced mucosal capillary density | [62] | ||
IBS | Preclinical | Immunoassay | Increased levels of vasoactive intestinal peptides may impact blood flow | [63] | |
Microvessel structure | NEC | Preclinical | IVM | Arterioles reduced in size | [49] |
IBD | Preclinical | Histology | Vessel stenosis; dilated vessels in the lamina propria and submucosa | [25] | |
Hematological abnormalities, | SAP | Clinical | Routine hemostasis tests | Patients had at least one abnormal result, some overt DIC 9 | [64] |
Intravascular coagulopathy | NEC | Clinical | Review | Thrombocytopenia, altered neutrophil counts, hemolytic anemia. DIC | [65] |
IBD | Preclinical | Laser Doppler | Reduced red blood cell concentration | [57] | |
Angiogenesis | IBD | Clinical | Flow cytometry, immunohistochemistry., cytokine release | Increased expression of angiogenic factors | [59,66,67,68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dickson, K.; Malitan, H.; Lehmann, C. Imaging of the Intestinal Microcirculation during Acute and Chronic Inflammation. Biology 2020, 9, 418. https://doi.org/10.3390/biology9120418
Dickson K, Malitan H, Lehmann C. Imaging of the Intestinal Microcirculation during Acute and Chronic Inflammation. Biology. 2020; 9(12):418. https://doi.org/10.3390/biology9120418
Chicago/Turabian StyleDickson, Kayle, Hajer Malitan, and Christian Lehmann. 2020. "Imaging of the Intestinal Microcirculation during Acute and Chronic Inflammation" Biology 9, no. 12: 418. https://doi.org/10.3390/biology9120418
APA StyleDickson, K., Malitan, H., & Lehmann, C. (2020). Imaging of the Intestinal Microcirculation during Acute and Chronic Inflammation. Biology, 9(12), 418. https://doi.org/10.3390/biology9120418