Evolution of Allorecognition in the Tunicata
Abstract
:1. Allorecognition in Invertebrate Animals
2. Relationships within the Subphylum Tunicata
3. Evolution of Allorecognition within the Subphylum Tunicata: Negotiating Space
3.1. Order Stolidobranchia
3.1.1. Coloniality in Order Stoliobranchia
3.1.2. Allorecognition in Order Stolidobranchia
3.2. Order Phlebobranchia
3.2.1. Coloniality in Order Phlebobranchia
3.2.2. Allorecognition in Order Phlebobranchia
3.3. Order Aplousobranchia
3.3.1. Coloniality in Order Aplousobranchia
3.3.2. Allorecognition in Order Aplousobranchia
4. Evolution of Allorecognition within the Subphylum Tunicata: Regulating Mating
5. Conclusions
Funding
Conflicts of Interest
References
- Buss, L.W. Somatic cell parasitism and the evolution of somatic tissue compatibility. PNAS 1982, 79, 5337–5341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medzhitov, R.; Preston-Hurlburt, P.; Janeway, C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997, 388, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Rauta, P.R.; Samanta, M.; Dash, H.R.; Nayak, B.; Das, S. Toll-like receptors (TLRs) in aquatic animals: Signaling pathways, expressions and immune responses. Immunol. Lett. 2014, 158, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Grosberg, R.K.; Hart, M.W. Mate selection and the evolution of highly polymorphic self/nonself recognition genes. Science 2000, 289, 2111–2114. [Google Scholar] [CrossRef]
- Milinski, M. Mate choice optimizes offspring MHC genetics and drives sexual reproduction. Immunogenetics 2016, 1. [Google Scholar] [CrossRef]
- Hiscock, S.J.; Kües, U.; Dickinson, H.G. Molecular mechanisms of self-incompatibility in flowering plants and fungi—Different means to the same end. Trends Cell Biol. 1996, 6, 421–428. [Google Scholar] [CrossRef]
- Nasrallah, J.B. Recognition and rejection of self in plant self-incompatibility: Comparisons to animal histocompatibility. Trends Immunol. 2005, 26, 412–418. [Google Scholar] [CrossRef]
- Vacquier, V.D.; Lee, Y.-H. Abalone sperm lysin: Unusual mode of evolution of a gamete recognition protein. Zygote 1993, 1, 181–196. [Google Scholar] [CrossRef]
- Vacquier, V.D.; Swanson, W.J.; Lee, Y.-H. Positive Darwinian selection on two homologous fertilization proteins: What is the selective pressure driving their divergence? J. Mol. Evol. 1997, 44, S15–S22. [Google Scholar] [CrossRef]
- Cohen, C.S.; Saito, Y.; Weissman, I.L. Evolution of allorecognition in botryllid ascidians inferred from a molecular phylogeny. Evolution 1998, 52, 746–756. [Google Scholar] [CrossRef] [Green Version]
- Khalturin, K.; Bosch, T.C. Self/nonself discrimination at the basis of chordate evolution: Limits on molecular conservation. Curr. Opin. Immunol. 2007, 19, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, F.W. Variation and fusion in colonies of compound ascidians. Proc. Calif. Acad. Sci. (3rd Ser.) 1903, 3, 137–186. [Google Scholar]
- Grosberg, R.K. The evolution of allorecognition specificity in clonal invertebrates. Q. Rev. Biol. 1988, 63, 377–412. [Google Scholar] [CrossRef]
- Feldgarden, M.; Yund, P.O. Allorecognition in colonial marine invertebrates: Does selection favor fusion with kin of fusion with self? Biol. Bull. 1992, 182, 155–158. [Google Scholar] [CrossRef]
- Stoner, D.S.; Weissman, I.L. Somatic and germ cell parasitism in a colonial ascidian: Possible role for a highly polymorphic allorecognition system. PNAS 1996, 93, 15254–15259. [Google Scholar] [CrossRef] [Green Version]
- Bishop, J.D.D.; Pemberton, A.J. The third way: Spermcast mating in sessile marine invertebrates. Integr. Comp. Biol. 2006, 46, 398–406. [Google Scholar] [CrossRef]
- Olsen, K.C.; Ryan, W.H.; Winn, A.A.; Kosman, E.T.; Moscoso, J.A.; Krueger-Hadfield, S.A.; Burgess, S.C.; Carlon, D.B.; Grosberg, R.K.; Kalisz, S.; et al. Inbreeding shapes the evolution of marine invertebrates. Evolution 2020. [Google Scholar] [CrossRef]
- Charlesworth, D.; Charlesworth, B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Evol. Syst. 1987, 18, 237–268. [Google Scholar] [CrossRef]
- Perez-Portela, R.; Bishop, J.D.D.; Davis, A.R.; Turon, X. Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences. Mol. Phylogenet. Evol. 2009, 50, 560–570. [Google Scholar] [CrossRef] [Green Version]
- Harada, Y.; Takagaki, Y.; Sunagawa, M.; Saito, T.; Yamada, L.; Taniguchi, H.; Shoguchi, E.; Sawada, H. Mechanism of self-sterility in a hermaphroditic chordate. Science 2008, 320, 548–550. [Google Scholar] [CrossRef] [Green Version]
- Sawada, H.; Tanaka, E.; Ban, S.; Yamasaki, C.; Fujino, J.; Ooura, K.; Abe, Y.; Matsumoto, K.I.; Yokosawa, H. Self/nonself recognition in ascidian fertilization: Vitelline coat protein HrVC70 is a candidate allorecognition molecule. PNAS 2004, 101, 15615–15620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ban, S.; Harada, Y.; Yokosawa, H.; Sawada, H. Highly polymorphic vitelline-coat protein HaVC80 from the ascidian, Halocynthia aurantium: Structural analysis and involvement in self/nonself recognition during fertilization. Dev. Biol. 2005, 286, 440–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Register of Marine Species. Available online: http://www.marinespecies.org (accessed on 18 April 2020).
- Swalla, B.J.; Cameron, C.B.; Corley, L.S.; Garey, J.R. Urochordates are monophyletic within the deuterostomes. Syst. Biol. 2000, 49, 52–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, L.; Swalla, B.J. Molecular phylogeny of the protochordates: Chordate evolution. Can. J. Zool. 2005, 83, 24–33. [Google Scholar] [CrossRef]
- Tsagkogeorga, G.; Turon, X.; Hopcroft, R.R.; Tilak, M.K.; Feldstein, T.; Shenkar, N.; Loya, Y.; Huchon, D.; Douzery, E.J.; Delsuc, F. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol. Biol. 2009, 9, 187. [Google Scholar] [CrossRef] [Green Version]
- Govindarajan, A.F.; Bucklin, A.; Madin, L.P. A molecular phylogeny of the Thaliacea. J. Plank. Res. 2011, 33, 843–853. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.R.; Tsagkogeorga, G.; Delsuc, F.; Blanquart, S.; Shenkar, N.; Loya, Y.; Douzery, E.J.; Huchon, D. Tunicate mitogenomics and phylogenetics: Peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny. BMC Genom. 2009, 10, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubinstein, N.D.; Feldstein, T.; Shenkar, N.; Botero-Castro, F.; Griggio, F.; Mastrototaro, F.; Delsuc, F.; Douzery, E.J.; Gissi, C.; Huchon, D. Deep sequencing of mixed total DNA without barcodes allows efficient assembly of highly plastic ascidian mitochondrial genomes. Genome Biol. Evol. 2013, 5, 1185–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shenkar, N.; Koplovitz, G.; Dray, L.; Gissi, C.; Huchon, D. Back to solitude: Solving the phylogenetic position of the Diazonidae using molecular and developmental characters. Mol. Phylogenet. Evol. 2016, 100, 51–56. [Google Scholar] [CrossRef]
- Delsuc, F.; Philippe, H.; Tsagkogeorga, G.; Simion, P.; Tilak, M.K.; Turon, X.; López-Legentil, S.; Piette, J.; Lemaire, P.; Douzery, E.J. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol. 2018, 16, 39. [Google Scholar] [CrossRef] [Green Version]
- Kocot, K.M.; Tassia, M.G.; Halanych, K.M.; Swalla, B.J. Phylogenomics offers resolution of major tunicate relationships. Mol. Phylogenet. Evol. 2018, 121, 166–173. [Google Scholar] [CrossRef]
- Delsuc, F.; Brinkmann, H.; Chourrout, D.; Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 2006, 439, 965–968. [Google Scholar] [CrossRef]
- Stolfi, A.; Brown, F.D. Tunicata. In Evolutionary Developmental Biology of Invertebrates, 1st ed.; Wanninger, A., Ed.; Springer: Vienna, Austria, 2015; Volume 6, pp. 135–204. [Google Scholar]
- Berrill, N.J. Regeneration and budding in tunicates. Biol. Rev. 1951, 26, 456–475. [Google Scholar] [CrossRef]
- Alié, A.; Hiebert, L.S.; Simion, P.; Scelzo, M.; Prünster, M.M.; Lotito, S.; Delsuc, F.; Douzery, E.J.; Dantec, C.; Lemaire, P.; et al. Convergent acquisition of nonembryonic development in styelid ascidians. Mol. Biol. Evol. 2018, 35, 1728–1743. [Google Scholar] [CrossRef] [Green Version]
- Brown, F.D.; Swalla, B.J. Evolution and development of budding by stem cells: Ascidian coloniality as a case study. Dev. Biol. 2012, 369, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Oka, H.; Watanabe, H. Vascular budding, a new type of budding in Botryllus. Biol. Bull. 1957, 112, 225–240. [Google Scholar] [CrossRef]
- Gutierrez, S.; Brown, F.D. Vascular budding in Symplegma brakenhielmi and the evolution of coloniality in styelid ascidians. Dev. Biol. 2017, 423, 152–169. [Google Scholar] [CrossRef]
- Scelzo, M.; Alié, A.; Pagnotta, S.; Lejeune, C.; Henry, P.; Gilletta, L.; Hiebert, L.S.; Mastrototaro, F.; Tiozzo, S. Novel budding mode in Polyandrocarpa zorritensis: A model for comparative studies on asexual development and whole body regeneration. EvoDevo 2019, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.H. Aggregation and fusion between conspecifics of a solitary ascidian. Biol. Bull. 1982, 162, 195–201. [Google Scholar] [CrossRef]
- Kingsley, E.A.; Briscoe, D.A.; Raftos, D.A. Correlation of histocompatibility reactions with fusion between conspecifics in the solitary urochordate Styela plicata. Biol. Bull. 1989, 176, 282–289. [Google Scholar] [CrossRef]
- Shirae, M.; Hirose, E.; Saito, Y. Behavior of hemocytes in the allorejection reaction in two compound ascidians, Botryllus scalaris and Symplegma reptans. Biol. Bull. 1999, 197, 188–197. [Google Scholar] [CrossRef]
- Yund, P.O.; Feldgarden, M. Rapid proliferation of historecognition alleles in populations of a colonial ascidian. J. Exp. Zool. 1992, 263, 442–452. [Google Scholar] [CrossRef]
- Hirose, E.; Shirae, M.; Saito, Y. Colony specificity in the xenogeneic combinations among four Botrylloides species (Urochordata, Ascidiacea). Zool. Sci. 2002, 19, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Okuyama, M.; Saito, Y. Studies on Japanese botryllid ascidians. II. A new species of the genus Botryllus from the vicinity of Shimoda. Zool. Sci. 2002, 19, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Mukai, H.; Watanabe, H. On the occurrence of colony specificity in some compound ascidians. Biol. Bull. 1974, 147, 411–421. [Google Scholar] [CrossRef]
- Hirose, E.; Saito, Y.; Watanabe, H. A new type of the manifestation of colony specificity in the compound ascidian, Botrylloides violaceus Oka. Biol. Bull. 1988, 175, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Okuyama, M.; Saito, Y. Studies on Japanese botryllid ascidians. I. A new species of the genus Botryllus from the Izu Islands. Zool. Sci. 2001, 18, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Okuyama, M. Studies on Japanese botryllid ascidians. IV. A new species of the genus Botryllus with a unique colony shape, from the vicinity of Shimoda. Zool. Sci. 2003, 20, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Nagasawa, N. Studies on Japanese botryllid ascidians. III. A new species of the genus Botryllus with a vivid colony color from the vicinity of Shimoda. Zool. Sci. 2003, 20, 765–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, Y.; Watanabe, H. Colony specificity in the compound ascidian, Botryllus scalaris. Proc. Jpn. Acad. 1982, 58, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Taketa, D.A.; De Tomaso, A.W. Botryllus schlosseri allorecognition: Tackling the enigma. Dev. Comp. Immunol. 2015, 48, 254–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nydam, M.L.; Lemmon, A.R.; Cherry, J.R.; Kortyna, M.L.; Hernandez, C.; Cohen, C.S. Phylogenetic relationships among botryllid ascidians. 2020; Unpublished. [Google Scholar]
- Ballarin, L.; Kawamura, K. The hemocytes of Polyandrocarpa mysakiensis: Morphology and immune-related activities. Invertebr. Surviv. J. 2009, 6, 154–161. [Google Scholar]
- Berrill, N.J.; Giese, A.C.; Pearse, J.S. Chordata: Tunicata. Reprod. Mar. Invertebr. 1975, 2, 241–282. [Google Scholar]
- Kott, P. The Australian Ascidiacea part 1, phlebobranchia and stolidobranchia. Mem. Qld. Mus. 1985, 23, 1–440. [Google Scholar]
- Freeman, G. Transplantation specificity in echinoderms and lower chordates. Transplant. Proc. 1970, 2, 236–239. [Google Scholar]
- Koyama, H.; Watanabe, H. Colony specificity in the colonial ascidian, Perophora japonica. Annot Zool Jpn. 1981, 54, 30–41. [Google Scholar]
- Koyama, H.; Watanabe, H. Colony specificity in the ascidian, Perophora sagamiensis. Biol. Bull. 1982, 162, 171–181. [Google Scholar] [CrossRef]
- Kott, P. The Australian Ascidiacea part 2, Aplousobranchia (1) and Supplement: Phlebobranchia and stolidobranchia. Mem. Qld. Mus. 1990, 29, 1–266. [Google Scholar]
- Monniot, C. Ascidies de Nouvelle-Calédonie. VIII. Phlébobranches (suite). Bull. Mus. Nat. d’Histoire Nat. Sect. A 1990, 12, 491–515. [Google Scholar]
- Moreno, T.R.; Rocha, R.M. Filogenia de Aplousobranchia (Tunicata: Ascidiacea). Rev. Bras. Zool. 2008, 25, 269–298. [Google Scholar] [CrossRef]
- López-Legentil, S.; Ruchty, M.; Domenech, A.; Turon, X. Life cycles and growth rates of two morphotypes of Cystodytes (Ascidiacea) in the western Mediterranean. Mar. Ecol. Prog. Ser. 2005, 296, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Turon, X.; López-Legentil, S. Ascidian molecular phylogeny inferred from mtDNA data with emphasis on the Aplousobranchiata. Mol. Phylogenet. Evol. 2004, 33, 309–320. [Google Scholar] [CrossRef]
- Watanabe, H.; Taneda, Y. Self or non-self recognition in compound ascidians. Am. Zool. 1982, 22, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Stocker, L.J. Effects of size and shape of colony on rates of fission, fusion, growth and mortality in a subtidal invertebrate. J. Exp. Mar. Biol. Ecol. 1991, 149, 161–175. [Google Scholar] [CrossRef]
- Smith, K.F.; Stefaniak, L.; Saito, Y.; Gemmill, C.E.; Cary, S.C.; Fidler, A.E. Increased inter-colony fusion rates are associated with reduced COI haplotype diversity in an invasive colonial ascidian Didemnum vexillum. PLoS ONE 2012, 7, e30473. [Google Scholar] [CrossRef]
- Weinberg, R.B.; Clancy, D.L.; Cohen, C.S. Genotypic variability following fusion in the invasive colonial tunicate Didemnum vexillum. Invertebr. Biol. 2019, 138, e12263. [Google Scholar] [CrossRef]
- Bak, R.P.M.; Sybesma, J.; Van Duyl, F.C. The ecology of the tropical compound ascidian Trididemnum solidum. 11. Abundance, growth and survival. Mar. Ecol. Prog. Ser. 1981, 6, 43–52. [Google Scholar] [CrossRef]
- Carlisle, D.B. Locomotory powers of adult ascidians. J. Zool. 1961, 136, 141–146. [Google Scholar] [CrossRef]
- López-Legentil, S.; Erwin, P.M.; Velasco, M.; Turon, X. Growing or reproducing in a temperate sea: Optimization of resource allocation in a colonial ascidian. Invertebr. Biol. 2013, 132, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Ritzmann, N.F.; Rocha, R.M.D.; Roper, J.J. Sexual and asexual reproduction in Didemnum rodriguesi (Ascidiacea, Didemnidae). Iheringia Sér. Zool. 2009, 99, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Bishop, J.D.; Sommerfeldt, A.D. Not like Botryllus: Indiscriminate post–metamorphic fusion in a compound ascidian. Proc. R. Soc. B 1999, 266, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Rosati, F.; DeSantis, R. Studies on fertilization in ascidians. I. Self-sterility and specific recognition between gametes of Ciona intestinalis. Exp. Cell. Res. 1978, 121, 111–119. [Google Scholar] [CrossRef]
- Kawamura, K.; Fujita, H.; Nakauchi, M. Cytological characterization of self incompatibility in gametes of the ascidian, Ciona intestinalis. Dev. Growth Differ. 1987, 29, 627–642. [Google Scholar] [CrossRef]
- Phillippi, A. A Comparative Study of Self-Fertilization in the Life Histories of Three Ascidian Species with Contrasting Dispersal Patterns. Ph.D. Thesis, University of Maine, Orono, ME, USA, 2005. [Google Scholar]
- Phillippi, A.; Yund, P. Self-fertilization and inbreeding depression in three ascidian species that differ in genetic dispersal potential. Mar. Biol. 2017, 164, 179. [Google Scholar] [CrossRef]
- Morgan, T.H. The genetic and the physiological problems of self-sterility in Ciona. V. The genetic problem. J. Exp. Zool. 1942, 90, 199–228. [Google Scholar] [CrossRef]
- Morgan, T.H. The genetic and the physiological problems of self-sterility in Ciona. VI. Theoretical discussion of genetic data. J. Exp. Zool. 1944, 95, 37–59. [Google Scholar] [CrossRef]
- Harada, Y.; Sawada, H. Allorecognition mechanisms during ascidian fertilization. Int. J. Dev. Biol. 2008, 52, 637–645. [Google Scholar] [CrossRef] [Green Version]
- Urayama, S.; Harada, Y.; Nakagawa, Y.; Ban, S.; Akasaka, M.; Kawasaki, N.; Sawada, H. Ascidian sperm glycosylphosphatidylinositol-anchored CRISP-like protein as a binding partner for an allorecognizable sperm receptor on the vitelline coat. J. Biol. Chem. 2008, 283, 21725–21733. [Google Scholar] [CrossRef] [Green Version]
- Milkman, R. Genetic and developmental studies on Botryllus schlosseri. Biol. Bull. 1967, 132, 229–243. [Google Scholar] [CrossRef]
- Sabbadin, A. Self and cross-fertilization in the compound ascidian Botryllus schlosseri. Dev. Biol. 1971, 24, 379–391. [Google Scholar] [CrossRef]
- Scofield, V.L.; Schlumpberger, J.M.; Weissman, I.L. Colony specificity in the colonial tunicate Botryllus and the origins of vertebrate immunity. Am. Zool. 1982, 22, 783–794. [Google Scholar] [CrossRef] [Green Version]
- Oka, H. Colony specificity in compound ascidians. The genetic control of fusibility. In Profiles of Japanese Science and Scientists, 1st ed.; Yukawa, H., Ed.; Kodansha: Tokyo, Japan, 1970; pp. 195–206. [Google Scholar]
- De Tomaso, A.W.; Nyholm, S.V.; Palmeri, K.J.; Ishizuka, K.J.; Ludington, W.B.; Mitchel, K.; Weissman, I.L. Isolation and characterization of a protochordate histocompatibility locus. Nature 2005, 438, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Smith, W.C. Self- and cross-fertilization in the solitary ascidian Ciona savignyi. Biol. Bull. 2005, 209, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.S. The effects of contrasting modes of fertilization on levels of inbreeding in the marine invertebrate genus Corella. Evolution 1996, 50, 1896–1907. [Google Scholar] [CrossRef] [PubMed]
- Lambert, G.; Lambert, C.; Abbott, D. Corella species in the American Pacific Northwest: Distinction of C. inflata Huntsman, 1912 from C. willmeriana Herdman, 1898 (Ascidiacea, Phlebobranchia). Can. J. Zool. 1981, 59, 1493–1504. [Google Scholar] [CrossRef]
- Svane, I.; Young, C.M. The ecology and behaviour of ascidian larvae. Oceanogr. Mar. Biol. 1989, 27, 45–90. [Google Scholar]
- Morris, J.E. A ‘fertilization membrane’ in the ascidian Herdmania momus and its relation to self- and cross-fertilization. Experientia 1962, 18, 567–568. [Google Scholar] [CrossRef]
- Bishop, J.D.D.; Jones, C.S.; Noble, L.R. Female control of paternity in the internally-fertilizing compound ascidian Diplosoma listerianum. II. Investigation of male mating success using RAPD markers. Proc. R. Soc. B 1996, 263, 401–407. [Google Scholar]
- Pemberton, A.J.; Sommerfeldt, A.D.; Wood, C.A.; Flint, H.C.; Noble, L.R.; Clarke, K.R.; Bishop, J.D.D. Plant-like mating in an animal: Sexual compatibility and allocation trade-offs in a simultaneous hermaphrodite with remote transfer of sperm. J. Evol. Biol. 2004, 17, 506–518. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nydam, M.L. Evolution of Allorecognition in the Tunicata. Biology 2020, 9, 129. https://doi.org/10.3390/biology9060129
Nydam ML. Evolution of Allorecognition in the Tunicata. Biology. 2020; 9(6):129. https://doi.org/10.3390/biology9060129
Chicago/Turabian StyleNydam, Marie L. 2020. "Evolution of Allorecognition in the Tunicata" Biology 9, no. 6: 129. https://doi.org/10.3390/biology9060129
APA StyleNydam, M. L. (2020). Evolution of Allorecognition in the Tunicata. Biology, 9(6), 129. https://doi.org/10.3390/biology9060129