Eco-Efficiency Assessment of Beijing-Tianjin-Hebei Urban Agglomeration Based on Emergy Analysis and Two-Layer System Dynamics
Abstract
:1. Introduction
2. Research Objects and Data Sources
3. System Dynamics Method
3.1. Framework of the Model
3.2. Model Development and Formulas
3.3. Calculation Method of Emergy
3.4. Eco-Efficiency Evaluation Indicators
4. Results and Discussion
4.1. Model Validity Verification
4.2. Analysis of Simulation Results
4.2.1. Eco-Efficiency of Beijing-Tianjin-Hebei Urban Agglomeration
4.2.2. Analysis of Eco-Efficiency Indicators of Beijing-Tianjin-Hebei Urban Agglomeration
5. Conclusions and Suggestion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Items | Initial Data | Energy Conversion Rate | Solar Energy Value | Reference | |||||
---|---|---|---|---|---|---|---|---|---|
Beijing | Tianjin | Hebei | Beijing | Tianjin | Hebei | ||||
Updatable resource energy values (R) | The solar energy | 9.33 × 1019 | 7.12 × 1016 | 1.06 × 1021 | 1.00 | 9.33 × 1019 | 7.12 × 1016 | 1.06 × 1021 | [24] |
wind energy | 1.28 × 1017 | 9.77 × 1016 | 1.46 × 1018 | 6.32 × 102 | 8.09 × 1019 | 6.17 × 1019 | 9.22 × 1020 | [24] | |
Chemical energy of rainwater | 4.10 × 1016 | 3.16 × 1016 | 9.38 × 1017 | 1.82 × 104 | 7.46 × 1020 | 5.75 × 1020 | 1.71 × 1022 | [24] | |
The rain potential energy | 2.54 × 1015 | 2.07 × 1014 | 7.58 × 1016 | 8.89 × 103 | 2.26 × 1019 | 1.84 × 1018 | 6.74 × 1020 | [24] | |
Earth rotation energy | 1.65 × 1016 | 1.26 × 1016 | 1.88 × 1017 | 2.90 × 104 | 4.79 × 1020 | 3.65 × 1020 | 5.45 × 1021 | [36] | |
subtotal | 1.42 × 1021 | 1.00 × 1021 | 2.52 × 1022 | ||||||
Non-updatable resource energy values | Surface soil loss | 1.05 × 1016 | 1.35 × 1016 | 2.19 × 1017 | 7.40 × 104 | 7.77 × 1020 | 9.99 × 1020 | 1.62 × 1022 | [24] |
The raw coal (J) | 5.68 × 1017 | 5.17 × 1017 | 2.53 × 1018 | 4.00 × 104 | 2.27 × 1022 | 2.07 × 1022 | 1.01 × 1023 | [24] | |
Crude oil (J) | 3.15 × 1017 | 2.97 × 1017 | 3.12 × 1017 | 5.40 × 104 | 1.70 × 1022 | 1.6 × 1022 | 1.69 × 1022 | [24] | |
cement (t) | 8.27 × 106 | 2.68 × 106 | 4.69 × 107 | 2.07 × 1015 | 1.71 × 1022 | 5.55 × 1021 | 9.71 × 1022 | [37] | |
Natural gas (J) | 4.24 × 1016 | 2.10 × 1016 | 3.10 × 1016 | 4.80 × 104 | 2.04 × 1021 | 1.01 × 1021 | 1.49 × 1021 | [38] | |
steel (t) | 6.97 × 106 | 3.16 × 106 | 1.31 × 107 | 1.40 × 1015 | 9.76 × 1021 | 4.42 × 1021 | 1.83 × 1022 | [24] | |
Thermal power | 1.38 × 1017 | 8.42 × 1016 | 2.91 × 1017 | 1.60 × 105 | 2.21 × 1022 | 1.35 × 1022 | 4.66 × 1022 | [36] | |
subtotal | 9.15 × 1022 | 6.22 × 1022 | 2.98 × 1023 | ||||||
Import Emergy | imports | 3.74 × 1010 | 8.53 × 109 | 1.53 × 109 | 2.50 × 1012 | 9.36 × 1022 | 2.13 × 1022 | 3.82 × 1021 | [38] |
International tourist foreign exchange earnings | 2.77 × 109 | 1.42 × 108 | 2.32 × 108 | 2.50 × 1012 | 6.93 × 1021 | 3.55 × 1020 | 5.80 × 1020 | [38] | |
Actual utilization of foreign investment | 3.01 × 10 | 2.56 × 10 | 1.39 × 10 | 2.50 × 1020 | 7.53 × 1021 | 6.40 × 1021 | 3.48 × 1021 | [38] | |
subtotal | 1.08 × 1023 | 2.81 × 1022 | 7.88 × 1021 | ||||||
Export Emergy | exports | 1.20 × 1010 | 8.63 × 109 | 3.71 × 109 | 1.46 × 1012 | 1.75 × 1022 | 1.26 × 1022 | 5.42 × 1021 | [38] |
Waste energy value | Waste gas | 7.74 × 1013 | 4.20 × 1013 | 2.37 × 1014 | 4.80 × 104 | 3.72 × 1018 | 2.01 × 1018 | 1.14 × 1019 | [36] |
Waste water | 4.47 × 1015 | 2.04 × 1015 | 7.40 × 1015 | 8.60 × 105 | 3.85 × 1021 | 1.75 × 1021 | 6.36 × 1021 | [24] | |
subtotal | 3.85 × 1021 | 1.76 × 1021 | 6.37 × 1021 |
References
- Shen, K.R. Promoting high-quality economic development with urban agglomerations. People’s Wkly. 2018, 16, 10–11. [Google Scholar]
- He, Y.; Cai, M. Decoupling relationship between economic growth and resource environment in Beijing-Tianjin-Hebei region. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2016, 18, 33–41. [Google Scholar]
- Wang, H.Z. Research on the coordinated development of economy, society and ecological environment in Beijing-Tianjin-Hebei urban agglomeration. Econ. Manag. 2017, 31, 22–26. [Google Scholar]
- Zhang, R.; Dong, S.; Li, Z. The economic and environmental effects of the Beijing-Tianjin-Hebei Collaborative Development Strategy—Taking Hebei Province as an example. Environ. Sci. Pollut. Res. 2020, 27, 35692–35702. [Google Scholar] [CrossRef]
- Xue, F.; Zhou, M. Analysis on the spatio-temporal evolution and influencing factors of green total factor productivity in the Beijing-Tianjin-Hebe region under the environment cooperative governance. J. Beijing Univ. Technol. (Soc. Sci. Ed.) 2021, 21, 69–83. [Google Scholar]
- Robaina-Alves, M.; Moutinho, V.; Macedo, P. A new frontier approach to model the eco-efficiency in European countries. J. Clean. Prod. 2015, 103, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.N.; Peng, J.; Liu, Y.X.; Wang, M.; Wang, Y.l. Research progress in regional eco-efficiency. Acta Ecol. Sin. 2018, 38, 8277–8284. [Google Scholar]
- Gu, C.; Li, Z.; Cheng, X. The impact of relative fiscal revenue and expenditure on regional eco-efficiency—Based on the perspective of vertical political imbalance and the scale of local fiscal expenditure. Sub Natl. Fiscal Res. 2016, 4, 46–55. [Google Scholar]
- Alizadeh, S.; Zafari-Koloukhi, H.; Rostami, F.; Rouhbakhsh, M.; Avami, A. The eco-efficiency assessment of wastewater treatment plants in the city of Mashhad using emergy and life cycle analyses. J. Clean. Prod. 2020, 249, 119327. [Google Scholar] [CrossRef]
- Yan, X.; Tu, J.-J. The spatio-temporal evolution and driving factors of eco-efficiency of resource-based cities in the Yellow River Basin. J. Nat. Resour. 2021, 36, 223–239. [Google Scholar] [CrossRef]
- Yu, W.; Chen, T.; Yu, S.; Wang, H. Study on spatial-temporal distribution and dynamic evolution of eco-efficiency in china’s coastal provinces. J. Coast. Res. 2020, 106, 454–458. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J. Sustainable land use management for improving land eco-efficiency: A case study of Hebei, China. Ann. Oper. Res. 2020, 290, 265–277. [Google Scholar] [CrossRef]
- Gai, M.; Zhan, Y. Spatial evolution of marine ecological efficiency and its influential factors in china coastal regions. Sci. Geogr. Sin. 2019, 39, 616–625. [Google Scholar]
- Tu, B.; Zhang, H.; Zhang, Y.M.; Tu, Q.Y. Eco-efficiency measurement and influencing factors analysis on pearl river delta urban agglomerations in China. J. Environ. Prot. Ecol. 2019, 20, S92–S103. [Google Scholar]
- Zhang, Y.; Geng, W.; Zhang, P.; Li, E.; Rong, T.; Liu, Y.; Shao, J.; Chang, H. Dynamic Changes, Spatiotemporal Differences and Factors Influencing the Urban Eco-Efficiency in the Lower Reaches of the Yellow River. Int. J. Environ. Res. Public Health 2020, 17, 7510. [Google Scholar] [CrossRef]
- Forrester, J.W. Industrial dynamics: A major breakthrough for decision makers. Harv. Bus. Rev. 1958, 36, 37–66. [Google Scholar]
- Wang, Q.F. Advanced System Dynamics; Tsinghua University Press: Beijing, China, 1995. [Google Scholar]
- O’Regan, B.; Moles, R. Using system dynamics to model the interaction between environmental and economic factors in the mining industry. J. Clean. Prod. 2006, 14, 689–707. [Google Scholar] [CrossRef]
- Egilmez, G.; Tatari, O. A dynamic modeling approach to highway sustainability: Strategies to reduce overall impact. Transp. Res. Part A Policy Pr. 2012, 46, 1086–1096. [Google Scholar] [CrossRef]
- Gao, C.; Gao, C.; Song, K.; Fang, K. Pathways towards regional circular economy evaluated using material flow analysis and system dynamics. Resour. Conserv. Recycl. 2020, 154, 104527. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Huang, Q.; Zheng, X.; Liu, F.; Hu, Y.; Zuo, Y. Dynamic analysis method to open the “black box” of urban metabolism. Resour. Conserv. Recycl. 2018, 139, 377–386. [Google Scholar] [CrossRef]
- Huang, Q. Research on Spatiotemporal Dynamic Optimization of Land Use from the Perspective of Urban Metabolism; China University of Geosciences: Beijing, China, 2019. [Google Scholar]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision-Making; John Wiley Sons, Inc.: Hoboken, NJ, USA, 1996; Volume 370. [Google Scholar]
- Zhang, Y.; Yang, Z.F. Emergy analysis of urban material metabolism and evaluation of eco-efficiency in Beijing. Acta Sci. Circumst. 2007, 27, 1892–1900. [Google Scholar]
- Liu, G.; Yang, Z.; Chen, B.; Ulgiati, S. Emergy-based dynamic mechanisms of urban development, resource consumption and environmental impacts. Ecol. Model. 2014, 271, 90–102. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Li, Z.; Jia, S.; Zhang, F.; Li, Y. Eco-Efficiency Evaluation of Regional Circular Economy: A Case Study in Zengcheng, Guangzhou. Sustainability 2018, 10, 453. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Wan, Y.; Feng, L.; Ai, J.; Wang, Y. An integrated data envelopment analysis and emergy-based ecological footprint methodology in evaluating sustainable development, a case study of Jiangsu Province, China. Ecol. Indic. 2016, 70, 23–34. [Google Scholar] [CrossRef]
- Ou, X. Regional Differences and Influencing Factors of Ecological Efficiency in China—An Empirical Analysis Based on the Perspective of Time and Space. Resour. Environ. Yangtze Basin 2018, 27, 11. [Google Scholar]
- Qu, W. Spatio-temporal Differences and Driving Factors of Regional Ecological Efficiency in China. East China Econ. Manag. 2018, 32, 59–66. [Google Scholar]
- Chen, H.; Dong, K.; Wang, F.; Ayamba, E.C. The spatial effect of tourism economic development on regional ecological efficiency. Environ. Sci. Pollut. Res. 2020, 27, 38241–38258. [Google Scholar]
- Tang, M.; Li, Z.; Hu, F.; Wu, B. How does land urbanization promote urban eco-efficiency? The mediating effect of industrial structure advancement. J. Clean. Prod. 2020, 272, 122798. [Google Scholar] [CrossRef]
- Shan, H.J. Re-estimation of China’s capital stock k: 1952–2006. J. Quantit. Tech. Econ. 2008, 25, 17–31. [Google Scholar]
- Zhang, J.; Wu, G.Y.; Zhang, J.P. China’s inter-provincial material capital stock estimation: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Cai, X.M. Ecosystem Ecology; Science Press: Beijing, China, 2000. [Google Scholar]
- Lan, S.F.; Qin, P.; Lu, H.F. Emergy Analysis of Eco-Economic System; Chemical Industry Press: Beijing, China, 2002. [Google Scholar]
- Brown, M.; Buranakarn, V. Emergy indices and ratios for sustainable material cycles and recycle options. Resour. Conserv. Recycl. 2003, 38, 1–22. [Google Scholar] [CrossRef]
- Li, S.C.; Fu, X.F.; Zheng, D. Emergy analysis of the level of sustainable economic development in China. J. Nat. Resour. 2001, 16, 297–304. [Google Scholar]
- Li, C.F.; Cao, Y.Y.; Yang, J.C.; Han, F.X. Dynamic Analysis of Sustainable Development in Tianjin Binhai New Area Based on Emergy. J. Dalian Univ. Technol. (Social Sci.) 2015, 36, 12–18. [Google Scholar]
- Luo, F.Z.; Li, W.Y. Research on the Development Level of Circular Economy in Southern Shaanxi Based on System Dynamics. Ecol. Econ. 2019, 35, 63–69. [Google Scholar]
- Axelrod, R. Advancing the art of simulation in the social sciences. Complexity 1997, 3, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.S. Multi-scenario simulation and case study for region green development based on system dynamics. Syst. Eng. 2017, 35, 76–84. [Google Scholar]
- Ren, Y.; Fang, C. Spatial pattern and evaluation of eco-efficiency in counties of the Beijing-Tianjin-Hebei Urban Agglomeration. Prog. Geogr. 2017, 36, 87–98. [Google Scholar]
- Chen, J.; Wei, N.; Zhou, Y.; Ge, X. Bayesian analysis of population agglomeration and ecological efficiency in Beijing-Tianjin-Hebei region. J. Phys. Conf. Ser. 2019, 1324, 012090. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecol. Eng. 1997, 9, 51–69. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Yan, M.C. Simulation analysis of Guangzhou city metabolic efficiency. Resour. Sci. 2011, 8, 1555–1562. [Google Scholar]
Serial Number | Relational Formula | ||
---|---|---|---|
Beijing | Tianjin | Hebei | |
1 | Increment of fixed assets = [469.89 × (TIME-2000) + 602.66] × 95% | Increment of fixed assets = [76.491 × (TIME-2000)2 − 315.35 × (TIME-2000) + 1079.1] × 95% | Increment of fixed assets = [146.44 × (TIME-2000)2 − 327.4 × (TIME-2000) + 2016.5] × 95% |
2 | Depreciation of fixed assets = fixed assets × 9.6% | Depreciation of fixed assets = fixed assets × 9.6% | Depreciation of fixed assets = fixed assets × 9.6% |
3 | lg(GDP) = −1.899 + 0.823 × lgL + 0.813 × lgK | lg(GDP) = −1.484 + 1.054 × lgL + 0.565 × lgK | lg(GDP) = −9.573 + 3.296 × lgL + 0.433 × lgK |
4 | Labor = population × labor rate | Labor = population × labor rate | Labor = population × labor rate |
5 | IF population > 23,000,000, Immigrant population = population × 0.002; ELSE = population × 0.02 | Immigrant population = population × 0.003 | Immigrant population = population × 0.002 |
Emigration population = population × 0.001 | Emigration population = population × 0.002 | Emigration population = population × 0.002 | |
6 | Wastewater emergy value = population × 2.574 × 1014/Person + GDP × 6.95 × 108/GDP | Wastewater emergy value = population × 1.53 × 1014/Person + GDP × 1.92 × 109/GDP | Wastewater emergy value = population × 8.32 × 1013/Person + GDP × 4.23 × 109/GDP |
7 | Emergy value of exhaust gas = GDP × 5.19 × 106 | Emergy value of exhaust gas = GDP × 1.16 × 107 | Emergy value of exhaust gas = GDP × 3.03 × 107 |
8 | Emergy input = emergy_of_foreign_direct_investment + import_emergy + international_tourism_foreign exchange_earnings_emergy | ||
9 | Emergy reduction = emergy × 0.05 + emergy output | ||
10 | Energy value of waste = exhaust gas emergy value + waste water emergy value |
Classification | Emergy Indicators | Calculation Formula | Unit |
---|---|---|---|
The energy flow | Updatable Resource Emergy (R) | R | sej/a |
Non-updatable resource Emergy (N) | N | sej/a | |
Import Emergy (IMP) | I | sej/a | |
Export Emergy (EXP) | E | sej/a | |
Waste emergy value (W) | W | sej/a | |
Total emergy (U) | R + N + IMP | sej/a | |
The energy efficiency | Emergy Self-sufficiency Ratio (ESR) | (N + R)/U | % |
Emergy Waste Ratio (EWR) | W/R | % | |
Environment load ratio (ELR) | (U − R)/R | % | |
Emergy Yield Ratio (EYR) | (R + N + IMP)/IMP | % | |
Contaminant emergy ratio (W′) | W/U | % | |
Non-updatable resource emergy ratio (N′) | N/U | % | |
Eco-efficiency index [25] | UEI | EYR × (1 − W/U)2 × (1 − N/U)2 | - |
The Real Value | Simulation Value | Error | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Beijing | Tianjin | Hebei | Beijing | Tianjin | Hebei | Beijing | Tianjin | Hebei | |
Total Population (10,000) | 2015–2018 | 2167.25 | 1556.50 | 7492.75 | 2133.75 | 1489.67 | 7474.74 | (0.0154) | (0.0429) | (0.0024) |
GDP (billion) | 2015–2018 | 26,918.81 | 17,957.16 | 33,330.15 | 25,400.10 | 19,758.86 | 33,552.27 | (0.0564) | 0.1003 | 0.0067 |
International tourist foreign exchange earnings (US $10,000) | 2015–2018 | 508,030 | 353,548 | 56,991.75 | 471,500 | 368,461.65 | 70,281.46 | (0.0719) | 0.0422 | 0.2332 |
Actual utilization of foreign investment (US $10,000) | 2015–2018 | 1,691,623 | 1,167,307 | 853,895.3 | 1,317,312 | 1,000,000 | 1,009,490.8 | (0.2213) | (0.1433) | 0.1822 |
Total exports (US $10,000) | 2015–2018 | 5,979,500 | 5,773,075 | 3,221,700 | 5,679,745 | 6,796,826 | 2,948,552 | (0.0501) | 0.1773 | (0.0848) |
Total import (US $10,000) | 2015–2018 | 27,473,500 | 7,456,900 | 1,823,300 | 34,969,494 | 8,093,880 | 2,268,320 | 0.2728 | 0.0854 | 0.2441 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, H.; Liu, H.; Bao, X.; Cui, W. Eco-Efficiency Assessment of Beijing-Tianjin-Hebei Urban Agglomeration Based on Emergy Analysis and Two-Layer System Dynamics. Systems 2022, 10, 61. https://doi.org/10.3390/systems10030061
Huo H, Liu H, Bao X, Cui W. Eco-Efficiency Assessment of Beijing-Tianjin-Hebei Urban Agglomeration Based on Emergy Analysis and Two-Layer System Dynamics. Systems. 2022; 10(3):61. https://doi.org/10.3390/systems10030061
Chicago/Turabian StyleHuo, Huanhuan, Haiyan Liu, Xinzhong Bao, and Wei Cui. 2022. "Eco-Efficiency Assessment of Beijing-Tianjin-Hebei Urban Agglomeration Based on Emergy Analysis and Two-Layer System Dynamics" Systems 10, no. 3: 61. https://doi.org/10.3390/systems10030061
APA StyleHuo, H., Liu, H., Bao, X., & Cui, W. (2022). Eco-Efficiency Assessment of Beijing-Tianjin-Hebei Urban Agglomeration Based on Emergy Analysis and Two-Layer System Dynamics. Systems, 10(3), 61. https://doi.org/10.3390/systems10030061