Evolution, Challenges, and Opportunities of Transportation Methods in the Last-Mile Delivery Process
Abstract
:1. Introduction
2. Methodology
2.1. Data Sources and Search Strategy
2.2. Article Selection
2.2.1. Criteria for Automatic Elimination Process
- Articles containing “last-mile delivery”, “last-mile transportation”, or “last-mile logistics” in the article title, abstract, and keywords.
- Subject areas related to “medicine”, “computer science”, “physics and astronomy”, and “earth and planetary sciences”, because vocabulary such as “last mile” is often used in disciplines such as electronic communication or the Internet, in addition to transportation; therefore, the scope of this review excluded these disciplines because the research interests did not pertain to these irrelevant areas and articles written in languages other than English.
- Articles that did not fall under the category of journal publications, such as conference papers, book chapters, editorials, books, and notes, were omitted from the analysis. This decision was based on the premise that journal articles, having undergone at least one round of peer review prior to publication, were considered more suitable for inclusion in literature reviews.
- Articles that were not published between 2014 and 2023—since the primary focus was on recent scholarship, only research from the past decade was reviewed.
2.2.2. Criteria for Manual Elimination Process
- Articles that qualitatively or quantitatively discussed various transportation modes in LMD.
- Articles in which the research scope was not clearly aligned with the LMD domain—for instance, the term “LMD” may have only appeared in the title or introduction, and the subsequent text lacked an in-depth discussion of the topic;
- Articles that did not specifically focus on available types of transportation modes—for instance, articles that primarily explored customer satisfaction in LMD without specifying a particular mode of transportation—as the scope of our study required the presence of at least one mode of transportation in the journal article;
- Articles that were unclear, nonsensitive, or communicated inadequately.
2.3. Data Extraction and Collection
2.4. Data Compilation and Analysis
2.5. PRISMA Flow Diagram
2.6. Characteristics of Included Articles
3. Results
3.1. Text Mining Analysis: Occurrences of Transport Modes
3.2. Co-Occurrence Network Analysis: Overlay Visualization
3.3. Formation of Clusters and Themes
3.3.1. Cluster 1: Emphasis on the Co-Creation of Value between Consumers and Logistics Providers
Consumer Intention
Satisfaction
Attitude
Trust
Perceived Risk
Reliability
3.3.2. Cluster 2: Emphasis on Practical Delivery Performance (Path Optimization or Algorithms)
Routing Problems
Time Windows
Sensitivity Analysis
3.3.3. Cluster 3: Emphasis on Environmental Friendliness
Sustainability
Congestion Pollution
Energy Consumption
Greenhouse Gas Emissions
4. Conclusions
4.1. General Research Trends in LMD Transportation Modes
4.2. Opportunities, Challenges, Implications, and Limitations
4.3. Contribution of This Study
4.4. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thao, T.T.; Binh, D.T.T. Impacts of Last Mile Delivery on Environment in Urban Areas: Hanoi Case Study. In Proceedings of the CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures, Hanoi, Vietnam, 28–29 October 2022; pp. 1653–1661. [Google Scholar]
- Fessler, A.; Cash, P.; Thorhauge, M.; Haustein, S. A public transport based crowdshipping concept: Results of a field test in Denmark. Transp. Policy 2023, 134, 106–118. [Google Scholar] [CrossRef]
- Hübner, A.H.; Kuhn, H.; Wollenburg, J. Last mile fulfilment and distribution in omni-channel grocery retailing: A strategic planning framework. Int. J. Retail Distrib. Manag. 2016, 44. [Google Scholar] [CrossRef]
- Joerss, M.; Schröder, J.; Neuhaus, F.; Klink, C.; Mann, F. Parcel Delivery: The Future of the Last Mile; McKinsey & Company: New York, NY, USA, 2016. [Google Scholar]
- Pourrahmani, E.; Jaller, M. Crowdshipping in last mile deliveries: Operational challenges and research opportunities. Socio-Econ. Plan. Sci. 2021, 78, 101063. [Google Scholar] [CrossRef]
- Aurambout, J.-P.; Gkoumas, K.; Ciuffo, B. Last mile delivery by drones: An estimation of viable market potential and access to citizens across European cities. Eur. Transp. Res. Rev. 2019, 11, 30. [Google Scholar] [CrossRef]
- Figliozzi, M.A. Carbon emissions reductions in last mile and grocery deliveries utilizing air and ground autonomous vehicles. Transp. Res. Part D Transp. Environ. 2020, 85, 102443. [Google Scholar] [CrossRef]
- Jiang, Y.; Lai, P.-L.; Yang, C.-C.; Wang, X. Exploring the factors that drive consumers to use contactless delivery services in the context of the continued COVID-19 pandemic. J. Retail. Consum. Serv. 2023, 72, 103276. [Google Scholar] [CrossRef]
- Merkert, R.; Bliemer, M.C.; Fayyaz, M. Consumer preferences for innovative and traditional last-mile parcel delivery. Int. J. Phys. Distrib. Logist. Manag. 2022, 52, 261–284. [Google Scholar] [CrossRef]
- Olsson, J.; Hellström, D.; Vakulenko, Y. Customer experience dimensions in last-mile delivery: An empirical study on unattended home delivery. Int. J. Phys. Distrib. Logist. Manag. 2023, 53, 184–205. [Google Scholar] [CrossRef]
- Vakulenko, Y.; Shams, P.; Hellström, D.; Hjort, K. Online retail experience and customer satisfaction: The mediating role of last mile delivery. Int. Rev. Retail Distrib. Consum. Res. 2019, 29, 306–320. [Google Scholar] [CrossRef]
- Gläser, S.; Jahnke, H.; Strassheim, N. Opportunities and challenges of crowd logistics on the last mile for courier, express and parcel service providers–a literature review. Int. J. Logist. Res. Appl. 2023, 26, 1006–1034. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Yuen, K.F. A systematic review on seafarer health: Conditions, antecedents and interventions. Transp. Policy 2022, 122, 11–25. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Galvagno, M.; Dalli, D. Theory of value co-creation: A systematic literature review. Manag. Serv. Qual. 2014, 24, 643–683. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Perianes-Rodriguez, A.; Waltman, L.; Van Eck, N.J. Constructing bibliometric networks: A comparison between full and fractional counting. J. Informetr. 2016, 10, 1178–1195. [Google Scholar] [CrossRef]
- He, Y. Pricing of the Bus-Truck Co-Delivery Mode of Last Mile Delivery Considering Social Welfare Maximization. Sustainability 2023, 15, 376. [Google Scholar] [CrossRef]
- Chen, C.; Pan, S. Using the crowd of taxis to last mile delivery in e-commerce: A methodological research. In Proceedings of the Studies in Computational Intelligence, Cambridge, UK, 10 November 2016; pp. 61–70. [Google Scholar]
- Chen, C.; Pan, S.; Wang, Z.; Zhong, R.Y. Using taxis to collect citywide E-commerce reverse flows: A crowdsourcing solution. Int. J. Prod. Res. 2017, 55, 1833–1844. [Google Scholar] [CrossRef]
- Kervola, H.; Kallionpää, E.; Liimatainen, H. Delivering Goods Using a Baby Pram: The Sustainability of Last-Mile Logistics Business Models. Sustainability 2022, 14, 14031. [Google Scholar] [CrossRef]
- Cai, L.; Yuen, K.F.; Fang, M.; Wang, X. A literature review on the impact of the COVID-19 pandemic on consumer behaviour: Implications for consumer-centric logistics. Asia Pac. J. Mark. Logist. 2023. [Google Scholar] [CrossRef]
- Prahalad, C.K.; Ramaswamy, V. Co-creation experiences: The next practice in value creation. J. Interact. Mark. 2004, 18, 5–14. [Google Scholar] [CrossRef]
- Wang, X.; Yuen, K.F.; Teo, C.-C.; Wong, Y.D. Online consumers’ satisfaction in self-collection: Value co-creation from the service fairness perspective. Int. J. Electron. Commer. 2021, 25, 230–260. [Google Scholar] [CrossRef]
- Piotrowicz, W.; Cuthbertson, R. Last mile framework for omnichannel retailing. Delivery from the customer perspective. In Exploring Omnichannel Retailing: Common Expectations and Diverse Realities; Springer: Cham, Switzerland, 2019; pp. 267–288. [Google Scholar]
- Yuen, K.F.; Wang, X.; Ng, L.T.W.; Wong, Y.D. An investigation of customers’ intention to use self-collection services for last-mile delivery. Transp. Policy 2018, 66, 1–8. [Google Scholar] [CrossRef]
- Le, T.V.; Ukkusuri, S.V. Crowd-shipping services for last mile delivery: Analysis from American survey data. Transp. Res. Interdiscip. Perspect. 2019, 1, 100008. [Google Scholar] [CrossRef]
- Punel, A.; Stathopoulos, A. Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects. Transp. Res. Part E Logist. Transp. Rev. 2017, 105, 18–38. [Google Scholar] [CrossRef]
- Kapser, S.; Abdelrahman, M. Acceptance of autonomous delivery vehicles for last-mile delivery in Germany–Extending UTAUT2 with risk perceptions. Transp. Res. Part C Emerg. Technol. 2020, 111, 210–225. [Google Scholar] [CrossRef]
- Lai, P.-L.; Jang, H.; Fang, M.; Peng, K. Determinants of customer satisfaction with parcel locker services in last-mile logistics. Asian J. Shipp. Logist. 2022, 38, 25–30. [Google Scholar] [CrossRef]
- Wu, R.; Li, P. Continuance intention to use self-delivery boxes: An empirical study in Tianjin, China. J. Retail. Consum. Serv. 2023, 70, 103152. [Google Scholar] [CrossRef]
- Lyu, G.; Teo, C.-P. Last mile innovation: The case of the locker alliance network. Manuf. Serv. Oper. Manag. 2022, 24, 2425–2443. [Google Scholar] [CrossRef]
- Tsai, Y.-T.; Tiwasing, P. Customers’ intention to adopt smart lockers in last-mile delivery service: A multi-theory perspective. J. Retail. Consum. Serv. 2021, 61, 102514. [Google Scholar] [CrossRef]
- Chen, C.-F.; White, C.; Hsieh, Y.-E. The role of consumer participation readiness in automated parcel station usage intentions. J. Retail. Consum. Serv. 2020, 54, 102063. [Google Scholar] [CrossRef]
- Zhuo, J.; Wei, J.; Liu, L.C.; Koong, K.S.; Miao, S. An examination of the determinants of service quality in the Chinese express industry. Electron. Mark. 2013, 23, 163–172. [Google Scholar] [CrossRef]
- Leon, S.; Chen, C.; Ratcliffe, A. Consumers’ perceptions of last mile drone delivery. Int. J. Logist. Res. Appl. 2023, 26, 345–364. [Google Scholar] [CrossRef]
- Ganjipour, H.; Edrisi, A. Applying the integrated model to understanding online buyers’ intention to adopt delivery drones in Iran. Transp. Lett. 2023, 15, 98–110. [Google Scholar] [CrossRef]
- Chen, C.; Demir, E.; Huang, Y.; Qiu, R. The adoption of self-driving delivery robots in last mile logistics. Transp. Res. Part E Logist. Transp. Rev. 2021, 146, 102214. [Google Scholar] [CrossRef]
- Yuen, K.F.; Koh, L.Y.; Anwar, M.H.D.B.; Wang, X. Acceptance of autonomous delivery robots in urban cities. Cities 2022, 131, 104056. [Google Scholar] [CrossRef]
- Edrisi, A.; Ganjipour, H. Factors affecting intention and attitude toward sidewalk autonomous delivery robots among online shoppers. Transp. Plan. Technol. 2022, 45, 588–609. [Google Scholar] [CrossRef]
- Upadhyay, C.K.; Tewari, V.; Tiwari, V. Assessing the impact of sharing economy through adoption of ICT based crowdshipping platform for last-mile delivery in urban and semi-urban India. Inf. Technol. Dev. 2021, 27, 670–696. [Google Scholar] [CrossRef]
- Flavián, C.; Guinalíu, M.; Gurrea, R. The role played by perceived usability, satisfaction and consumer trust on website loyalty. Inf. Manag. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Gajewska, T.; Zimon, D.; Kaczor, G.; Madzík, P. The impact of the level of customer satisfaction on the quality of e-commerce services. Int. J. Product. Perform. Manag. 2020, 69, 666–684. [Google Scholar] [CrossRef]
- Rai, H.B.; Verlinde, S.; Macharis, C. Who is interested in a crowdsourced last mile? A segmentation of attitudinal profiles. Travel Behav. Soc. 2021, 22, 22–31. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef] [PubMed]
- Koufteros, X.; Droge, C.; Heim, G.; Massad, N.; Vickery, S.K. Encounter satisfaction in e-tailing: Are the relationships of order fulfillment service quality with its antecedents and consequences moderated by historical satisfaction? Decis. Sci. 2014, 45, 5–48. [Google Scholar] [CrossRef]
- Hong, W.; Zheng, C.; Wu, L.; Pu, X. Analyzing the relationship between consumer satisfaction and fresh e-commerce logistics service using text mining techniques. Sustainability 2019, 11, 3570. [Google Scholar] [CrossRef]
- Huang, G. The relationship between customer satisfaction with logistics service quality and customer loyalty of china e-commerce market: A case of SF express (Group) Co., Ltd. J. Digit. Bus. Soc. Sci. 2019, 5, 120–137. [Google Scholar]
- Akeb, H.; Moncef, B.; Durand, B. Building a collaborative solution in dense urban city settings to enhance parcel delivery: An effective crowd model in Paris. Transp. Res. Part E Logist. Transp. Rev. 2018, 119, 223–233. [Google Scholar] [CrossRef]
- Fan, Z.; Yanjie, J.; Huitao, L.; Yuqian, Z.; Blythe, P.; Jialiang, F. Travel satisfaction of delivery electric two-wheeler riders: Evidence from Nanjing, China. Transp. Res. Part A Policy Pract. 2022, 162, 253–266. [Google Scholar] [CrossRef]
- Ye, R.; De Vos, J.; Ma, L. Analysing the association of dissonance between actual and ideal commute time and commute satisfaction. Transp. Res. Part A Policy Pract. 2020, 132, 47–60. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; Pan, Y.; Du, M. Satisfaction of Logistics Dispatchers Who Use Electric Tricycles for the Last Mile of Delivery: Perspective from Policy Intervention. Sustainability 2022, 14, 7638. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Bohner, G.; Dickel, N. Attitudes and attitude change. Annu. Rev. Psychol. 2011, 62, 391–417. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Elsevier: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Trafimow, D. Habit as both a direct cause of intention to use a condom and as a moderator of the attitude-intention and subjective norm-intention relations. Psychol. Health 2000, 15, 383–393. [Google Scholar] [CrossRef]
- Hunecke, M.; Haustein, S.; Böhler, S.; Grischkat, S. Attitude-based target groups to reduce the ecological impact of daily mobility behavior. Environ. Behav. 2010, 42, 3–43. [Google Scholar] [CrossRef]
- Liao, W.-L.; Fang, C.-Y. Applying an extended theory of planned behavior for sustaining a landscape restaurant. Sustainability 2019, 11, 5100. [Google Scholar] [CrossRef]
- Saadé, R.G.; Tan, W.; Kira, D. Is usage predictable using belief-attitude-intention paradigm? Issues Informing Sci. Inf. Technol. 2008, 5, 591–599. [Google Scholar]
- Wang, X.; Yuen, K.F.; Wong, Y.D.; Teo, C.C. An innovation diffusion perspective of e-consumers’ initial adoption of self-collection service via automated parcel station. Int. J. Logist. Manag. 2018, 29, 237–260. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wang, X.; Wong, Y.D.; Zhou, Q. Antecedents and outcomes of sustainable shipping practices: The integration of stakeholder and behavioural theories. Transp. Res. Part E Logist. Transp. Rev. 2017, 108, 18–35. [Google Scholar] [CrossRef]
- de Oliveira, L.K.; Morganti, E.; Dablanc, L.; de Oliveira, R.L.M. Analysis of the potential demand of automated delivery stations for e-commerce deliveries in Belo Horizonte, Brazil. Res. Transp. Econ. 2017, 65, 34–43. [Google Scholar] [CrossRef]
- McEvily, B.; Tortoriello, M. Measuring trust in organisational research: Review and recommendations. J. Trust Res. 2011, 1, 23–63. [Google Scholar] [CrossRef]
- Lin, X.; Nishiki, Y.; Tavasszy, L.A. Performance and intrusiveness of crowdshipping systems: An experiment with commuting cyclists in The Netherlands. Sustainability 2020, 12, 7208. [Google Scholar] [CrossRef]
- Wang, Y.D.; Emurian, H.H. An overview of online trust: Concepts, elements, and implications. Comput. Hum. Behav. 2005, 21, 105–125. [Google Scholar] [CrossRef]
- Lien, N.T.K.; Doan, T.-T.T.; Bui, T.N. Fintech and banking: Evidence from Vietnam. J. Asian Financ. Econ. Bus. 2020, 7, 419–426. [Google Scholar] [CrossRef]
- Roh, T.; Yang, Y.S.; Xiao, S.; Park, B.I. What makes consumers trust and adopt fintech? An empirical investigation in China. Electron. Commer. Res. 2022. [Google Scholar] [CrossRef]
- Mainardes, E.W.; Costa, P.M.F.; Nossa, S.N. Customers’ satisfaction with fintech services: Evidence from Brazil. J. Financ. Serv. Mark. 2023, 28, 378–395. [Google Scholar] [CrossRef]
- Cebeci, M.S.; Tapia, R.J.; Kroesen, M.; de Bok, M.; Tavasszy, L. The effect of trust on the choice for crowdshipping services. Transp. Res. Part A Policy Pract. 2023, 170, 103622. [Google Scholar] [CrossRef]
- Tussyadiah, I.P.; Park, S. Consumer evaluation of hotel service robots. In Proceedings of the Information and Communication Technologies in Tourism 2018: Proceedings of the International Conference, Jönköping, Sweden, 24–26 January 2018; pp. 308–320. [Google Scholar]
- Loewenstein, G.F.; Weber, E.U.; Hsee, C.K.; Welch, N. Risk as feelings. Psychol. Bull. 2001, 127, 267. [Google Scholar] [CrossRef]
- Pollet, B.G.; Staffell, I.; Shang, J.L. Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electrochim. Acta 2012, 84, 235–249. [Google Scholar] [CrossRef]
- Lee, M.-C. Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electron. Commer. Res. Appl. 2009, 8, 130–141. [Google Scholar] [CrossRef]
- Quintero, J.A.; Felix, E.R.; Rincón, L.E.; Crisspín, M.; Baca, J.F.; Khwaja, Y.; Cardona, C.A. Social and techno-economical analysis of biodiesel production in Peru. Energy Policy 2012, 43, 427–435. [Google Scholar] [CrossRef]
- Parimbelli, E.; Bottalico, B.; Losiouk, E.; Tomasi, M.; Santosuosso, A.; Lanzola, G.; Quaglini, S.; Bellazzi, R. Trusting telemedicine: A discussion on risks, safety, legal implications and liability of involved stakeholders. Int. J. Med. Inform. 2018, 112, 90–98. [Google Scholar] [CrossRef]
- Agag, G.; El-Masry, A.; Alharbi, N.S.; Ahmed Almamy, A. Development and validation of an instrument to measure online retailing ethics: Consumers’ perspective. Internet Res. 2016, 26, 1158–1180. [Google Scholar] [CrossRef]
- Chen, C.; Leon, S.; Ractham, P. Will customers adopt last-mile drone delivery services? An analysis of drone delivery in the emerging market economy. Cogent Bus. Manag. 2022, 9, 2074340. [Google Scholar] [CrossRef]
- Zhu, X.; Pasch, T.; Bergstrom, A. Understanding the structure of risk belief systems concerning drone delivery: A network analysis. Technol. Soc. 2020, 62, 101262. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L. SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Demoulin, N.T.; Djelassi, S. An integrated model of self-service technology (SST) usage in a retail context. Int. J. Retail Distrib. Manag. 2016, 44, 540–559. [Google Scholar] [CrossRef]
- Vasić, N.; Kilibarda, M.; Andrejić, M.; Jović, S. Satisfaction is a function of users of logistics services in e-commerce. Technol. Anal. Strateg. Manag. 2021, 33, 813–828. [Google Scholar] [CrossRef]
- Shao, Z.; Li, X.; Guo, Y.; Zhang, L. Influence of service quality in sharing economy: Understanding customers’ continuance intention of bicycle sharing. Electron. Commer. Res. Appl. 2020, 40, 100944. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wang, X.; Ma, F.; Wong, Y.D. The determinants of customers’ intention to use smart lockers for last-mile deliveries. J. Retail. Consum. Serv. 2019, 49, 316–326. [Google Scholar] [CrossRef]
- Dantzig, G.B.; Ramser, J.H. The truck dispatching problem. Manag. Sci. 1959, 6, 80–91. [Google Scholar] [CrossRef]
- Laporte, G. Fifty years of vehicle routing. Transp. Sci. 2009, 43, 408–416. [Google Scholar] [CrossRef]
- Clarke, G.; Wright, J.W. Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 1964, 12, 568–581. [Google Scholar] [CrossRef]
- Lijun, F.; Changshi, L.; Zhang, W. Half-open time-dependent multi-depot electric vehicle routing problem considering battery recharging and swapping. Int. J. Ind. Eng. Comput. 2023, 14, 129–146. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, C.; Bell, M.G.; Miao, L. A branch-and-price algorithm for location-routing problems with pick-up stations in the last-mile distribution system. Eur. J. Oper. Res. 2022, 303, 1258–1276. [Google Scholar] [CrossRef]
- Rastani, S.; Çatay, B. A large neighborhood search-based matheuristic for the load-dependent electric vehicle routing problem with time windows. Ann. Oper. Res. 2021, 324, 761–793. [Google Scholar] [CrossRef]
- Qi, W.; Li, L.; Liu, S.; Shen, Z.-J.M. Shared mobility for last-mile delivery: Design, operational prescriptions, and environmental impact. Manuf. Serv. Oper. Manag. 2018, 20, 737–751. [Google Scholar] [CrossRef]
- Allahviranloo, M.; Baghestani, A. A dynamic crowdshipping model and daily travel behavior. Transp. Res. Part E Logist. Transp. Rev. 2019, 128, 175–190. [Google Scholar] [CrossRef]
- Najmi, A.; Rey, D.; Rashidi, T.H. Novel dynamic formulations for real-time ride-sharing systems. Transp. Res. Part E Logist. Transp. Rev. 2017, 108, 122–140. [Google Scholar] [CrossRef]
- Arslan, A.M.; Agatz, N.; Kroon, L.; Zuidwijk, R. Crowdsourced delivery—A dynamic pickup and delivery problem with ad hoc drivers. Transp. Sci. 2019, 53, 222–235. [Google Scholar] [CrossRef]
- Liu, D.; Kaisar, E.I.; Yang, Y.; Yan, P. Physical Internet-enabled E-grocery delivery Network: A load-dependent two-echelon vehicle routing problem with mixed vehicles. Int. J. Prod. Econ. 2022, 254, 108632. [Google Scholar] [CrossRef]
- Nguyen, M.A.; Dang, G.T.-H.; Hà, M.H.; Pham, M.-T. The min-cost parallel drone scheduling vehicle routing problem. Eur. J. Oper. Res. 2022, 299, 910–930. [Google Scholar] [CrossRef]
- Rave, A.; Fontaine, P.; Kuhn, H. Drone location and vehicle fleet planning with trucks and aerial drones. Eur. J. Oper. Res. 2023, 308, 113–130. [Google Scholar] [CrossRef]
- Zhen, L.; Gao, J.; Tan, Z.; Wang, S.; Baldacci, R. Branch-price-and-cut for trucks and drones cooperative delivery. IISE Trans. 2023, 55, 271–287. [Google Scholar] [CrossRef]
- Moshref-Javadi, M.; Hemmati, A.; Winkenbach, M. A comparative analysis of synchronized truck-and-drone delivery models. Comput. Ind. Eng. 2021, 162, 107648. [Google Scholar] [CrossRef]
- Moshref-Javadi, M.; Hemmati, A.; Winkenbach, M. A truck and drones model for last-mile delivery: A mathematical model and heuristic approach. Appl. Math. Model. 2020, 80, 290–318. [Google Scholar] [CrossRef]
- Murray, C.C.; Raj, R. The multiple flying sidekicks traveling salesman problem: Parcel delivery with multiple drones. Transp. Res. Part C Emerg. Technol. 2020, 110, 368–398. [Google Scholar] [CrossRef]
- Zachariadis, E.E.; Tarantilis, C.D.; Kiranoudis, C.T. The load-dependent vehicle routing problem and its pick-up and delivery extension. Transp. Res. Part B Methodol. 2015, 71, 158–181. [Google Scholar] [CrossRef]
- Desrochers, M.; Desrosiers, J.; Solomon, M. A new optimization algorithm for the vehicle routing problem with time windows. Oper. Res. 1992, 40, 342–354. [Google Scholar] [CrossRef]
- Xia, Y.; Fu, Z. Improved tabu search algorithm for the open vehicle routing problem with soft time windows and satisfaction rate. Clust. Comput. 2019, 22, 8725–8733. [Google Scholar] [CrossRef]
- Repoussis, P.P.; Tarantilis, C.D.; Ioannou, G. The open vehicle routing problem with time windows. J. Oper. Res. Soc. 2007, 58, 355–367. [Google Scholar] [CrossRef]
- Lin, I.-C.; Lin, T.-H.; Chang, S.-H. A decision system for routing problems and rescheduling issues using unmanned aerial vehicles. Appl. Sci. 2022, 12, 6140. [Google Scholar] [CrossRef]
- Ostermeier, M.; Heimfarth, A.; Hübner, A. Cost-optimal truck-and-robot routing for last-mile delivery. Networks 2022, 79, 364–389. [Google Scholar] [CrossRef]
- Di Puglia Pugliese, L.; Macrina, G.; Guerriero, F. Trucks and drones cooperation in the last-mile delivery process. Networks 2021, 78, 371–399. [Google Scholar] [CrossRef]
- Punakivi, M.; Saranen, J. Identifying the success factors in e-grocery home delivery. Int. J. Retail Distrib. Manag. 2001, 29, 156–163. [Google Scholar] [CrossRef]
- Punakivi, M.; Tanskanen, K. Increasing the cost efficiency of e-fulfilment using shared reception boxes. Int. J. Retail Distrib. Manag. 2002, 30, 498–507. [Google Scholar] [CrossRef]
- Vincent, F.Y.; Susanto, H.; Jodiawan, P.; Ho, T.-W.; Lin, S.-W.; Huang, Y.-T. A simulated annealing algorithm for the vehicle routing problem with parcel lockers. IEEE Access 2022, 10, 20764–20782. [Google Scholar]
- Giovanni, B.; Novellani, S. Last mile deliveries with lockers: Formulations and algorithms. Soft Comput. 2022, 27, 12843–12861. [Google Scholar]
- Kahr, M. Determining locations and layouts for parcel lockers to support supply chain viability at the last mile. Omega 2022, 113, 102721. [Google Scholar] [CrossRef]
- Yalcin Kavus, B.; Ayyildiz, E.; Gulum Tas, P.; Taskin, A. A hybrid Bayesian BWM and Pythagorean fuzzy WASPAS-based decision-making framework for parcel locker location selection problem. Environ. Sci. Pollut. Res. 2022, 30, 90006–90023. [Google Scholar] [CrossRef]
- Koshta, N.; Devi, Y.; Chauhan, C. Evaluating Barriers to the Adoption of Delivery Drones in Rural Healthcare Supply Chains: Preparing the Healthcare System for the Future. IEEE Trans. Eng. Manag. 2022. [Google Scholar] [CrossRef]
- Wangsa, I.D.; Wee, H.M.; Hsiao, Y.L.; Rizky, N. Identifying an effective last-mile customer delivery option with an integrated eco-friendly inventory model. INFOR Inf. Syst. Oper. Res. 2022, 60, 165–200. [Google Scholar] [CrossRef]
- Cokyasar, T. Optimization of battery swapping infrastructure for e-commerce drone delivery. Comput. Commun. 2021, 168, 146–154. [Google Scholar] [CrossRef]
- Allen, J.; Browne, M.; Holguin-Veras, J. Sustainability strategies for city logistics. In Green Logistics: Improving the Environmental Sustainability of Logistics; Kogan Page Ltd.: London, UK, 2010; pp. 282–305. [Google Scholar]
- Schöder, D. The impact of e-commerce development on urban logistics sustainability. Open J. Soc. Sci. 2016, 4, 1. [Google Scholar] [CrossRef]
- Siragusa, C.; Tumino, A.; Mangiaracina, R.; Perego, A. Electric vehicles performing last-mile delivery in B2C e-commerce: An economic and environmental assessment. Int. J. Sustain. Transp. 2022, 16, 22–33. [Google Scholar] [CrossRef]
- Friedrich, R. Environmental External Costs of Transport; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A review of last mile logistics innovations in an externalities cost reduction vision. Sustainability 2018, 10, 782. [Google Scholar] [CrossRef]
- Brundtland, G.H. Report of the World Commission on Environment and Development: “Our Common Future”; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Gonzalez-Calderon, C.A.; Posada-Henao, J.J.; Granada-Muñoz, C.A.; Moreno-Palacio, D.P.; Arcila-Mena, G. Cargo bicycles as an alternative to make sustainable last-mile deliveries in Medellin, Colombia. Case Stud. Transp. Policy 2022, 10, 1172–1187. [Google Scholar] [CrossRef]
- Malik, F.A.; Egan, R.; Dowling, C.M.; Caulfield, B. Factors influencing e-cargo bike mode choice for small businesses. Renew. Sustain. Energy Rev. 2023, 178, 113253. [Google Scholar] [CrossRef]
- Buldeo Rai, H.; Verlinde, S.; Merckx, J.; Macharis, C. Can the crowd deliver? Analysis of crowd logistics’ types and stakeholder support. City Logistics 3: Towards Sustainable and Liveable Cities; Wiley: Hoboken, NJ, USA, 2018; pp. 89–108. [Google Scholar]
- Frehe, V.; Mehmann, J.; Teuteberg, F. Understanding and assessing crowd logistics business models–using everyday people for last mile delivery. J. Bus. Ind. Mark. 2017, 32, 75–97. [Google Scholar] [CrossRef]
- Bányai, T. Impact of the integration of first-mile and last-mile drone-based operations from trucks on energy efficiency and the environment. Drones 2022, 6, 249. [Google Scholar] [CrossRef]
- Baldisseri, A.; Siragusa, C.; Seghezzi, A.; Mangiaracina, R.; Tumino, A. Truck-based drone delivery system: An economic and environmental assessment. Transp. Res. Part D Transp. Environ. 2022, 107, 103296. [Google Scholar] [CrossRef]
- Garus, A.; Alonso, B.; Raposo, M.A.; Grosso, M.; Krause, J.; Mourtzouchou, A.; Ciuffo, B. Last-mile delivery by automated droids. Sustainability assessment on a real-world case study. Sustain. Cities Soc. 2022, 79, 103728. [Google Scholar] [CrossRef]
- Borghetti, F.; Caballini, C.; Carboni, A.; Grossato, G.; Maja, R.; Barabino, B. The use of drones for last-mile delivery: A numerical case study in Milan, Italy. Sustainability 2022, 14, 1766. [Google Scholar] [CrossRef]
- Iwan, S.; Nürnberg, M.; Jedliński, M.; Kijewska, K. Efficiency of light electric vehicles in last mile deliveries–Szczecin case study. Sustain. Cities Soc. 2021, 74, 103167. [Google Scholar] [CrossRef]
- Browne, M.; Allen, J.; Nemoto, T.; Patier, D.; Visser, J. Reducing social and environmental impacts of urban freight transport: A review of some major cities. Procedia-Soc. Behav. Sci. 2012, 39, 19–33. [Google Scholar] [CrossRef]
- Pan, Y.; Li, S.; Chen, Q.; Zhang, N.; Cheng, T.; Li, Z.; Guo, B.; Han, Q.; Zhu, T. Efficient schedule of energy-constrained UAV using crowdsourced buses in last-mile parcel delivery. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–23. [Google Scholar] [CrossRef]
- She, R.; Ouyang, Y. Efficiency of UAV-based last-mile delivery under congestion in low-altitude air. Transp. Res. Part C Emerg. Technol. 2021, 122, 102878. [Google Scholar] [CrossRef]
- Anosike, A.; Loomes, H.; Udokporo, C.K.; Garza-Reyes, J.A. Exploring the challenges of electric vehicle adoption in final mile parcel delivery. Int. J. Logist. Res. Appl. 2023, 26, 683–707. [Google Scholar] [CrossRef]
- Kirschstein, T. Comparison of energy demands of drone-based and ground-based parcel delivery services. Transp. Res. Part D Transp. Environ. 2020, 78, 102209. [Google Scholar] [CrossRef]
- Ramroth, L.A.; Gonder, J.D.; Brooker, A.D. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective; 0148-7191; SAE Technical Paper: Warrendale, PA, USA, 2013. [Google Scholar]
- Quak, H.; Nesterova, N.; van Rooijen, T. Possibilities and barriers for using electric-powered vehicles in city logistics practice. Transp. Res. Procedia 2016, 12, 157–169. [Google Scholar] [CrossRef]
- Jos, O.; Greet, J.-M.; Jeroen, P. Trends in Global CO2 Emissions: 2012 Report; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2012. [Google Scholar]
- Mazzoncini, R.; Somaschini, C.; Longo, M. The infrastructure for sustainable mobility. In Green Planning for Cities and Communities: Novel Incisive Approaches to Sustainability; Springer: Cham, Switzerland, 2020; pp. 255–277. [Google Scholar]
- OECD. OECD Regions and Cities at a Glance 2018; OECD: Paris, France, 2018. [Google Scholar]
- Park, J.; Kim, S.; Suh, K. A comparative analysis of the environmental benefits of drone-based delivery services in urban and rural areas. Sustainability 2018, 10, 888. [Google Scholar] [CrossRef]
- Stolaroff, J.K.; Samaras, C.; O’Neill, E.R.; Lubers, A.; Mitchell, A.S.; Ceperley, D. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery. Nat. Commun. 2018, 9, 409. [Google Scholar] [CrossRef]
- Figliozzi, M.A. Lifecycle modeling and assessment of unmanned aerial vehicles (Drones) CO2e emissions. Transp. Res. Part D Transp. Environ. 2017, 57, 251–261. [Google Scholar] [CrossRef]
- Urzúa-Morales, J.G.; Sepulveda-Rojas, J.P.; Alfaro, M.; Fuertes, G.; Ternero, R.; Vargas, M. Logistic modeling of the last mile: Case study Santiago, Chile. Sustainability 2020, 12, 648. [Google Scholar] [CrossRef]
- Pelletier, S.; Jabali, O.; Laporte, G. Charge scheduling for electric freight vehicles. Transp. Res. Part B Methodol. 2018, 115, 246–269. [Google Scholar] [CrossRef]
- Novotná, M.; Švadlenka, L.; Jovčić, S.; Simić, V. Micro-hub location selection for sustainable last-mile delivery. PLoS ONE 2022, 17, e0270926. [Google Scholar] [CrossRef]
- Simić, V.; Lazarević, D.; Dobrodolac, M. Picture fuzzy WASPAS method for selecting last-mile delivery mode: A case study of Belgrade. Eur. Transp. Res. Rev. 2021, 13, 43. [Google Scholar] [CrossRef]
Transportation Modes | Occurrences | Identify Keywords |
---|---|---|
Parcel lockers | 44 | Smart locker; modular locker; mobile parcel locker; express cabinet; pick up locker |
Autonomous drones | 43 | Delivery drone; drone delivery service; unmanned aerial vehicles/UAVs; drone delivery system/DDs |
Trucks | 34 | Conventional truck; diesel truck; truck |
Bicycles | 19 | Bike; commercial bike; cargo bike; e-bike |
Crowd logistics | 25 | Crowd; crowd shipping; crowd worker; crow shipper; crowdsourced delivery |
Electric vehicles | 21 | Electric light commercial vehicles (eLCVs) |
Tricycles | 8 | Freight tricycle |
Autonomous robots | 8 | Sidewalk autonomous delivery robot; autonomous delivery robot |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Cai, L.; Lai, P.-L.; Wang, X.; Ma, F. Evolution, Challenges, and Opportunities of Transportation Methods in the Last-Mile Delivery Process. Systems 2023, 11, 509. https://doi.org/10.3390/systems11100509
Zhu X, Cai L, Lai P-L, Wang X, Ma F. Evolution, Challenges, and Opportunities of Transportation Methods in the Last-Mile Delivery Process. Systems. 2023; 11(10):509. https://doi.org/10.3390/systems11100509
Chicago/Turabian StyleZhu, Xiaonan, Lanhui Cai, Po-Lin Lai, Xueqin Wang, and Fei Ma. 2023. "Evolution, Challenges, and Opportunities of Transportation Methods in the Last-Mile Delivery Process" Systems 11, no. 10: 509. https://doi.org/10.3390/systems11100509
APA StyleZhu, X., Cai, L., Lai, P. -L., Wang, X., & Ma, F. (2023). Evolution, Challenges, and Opportunities of Transportation Methods in the Last-Mile Delivery Process. Systems, 11(10), 509. https://doi.org/10.3390/systems11100509