Progress in Digital Climate Governance in China: Statistical Measurement, Regional Differences, and Dynamic Evolution
Abstract
:1. Introduction
2. Literature Discussion and Theoretical Analysis
3. Data and Methodology
3.1. Construction of the Index System
3.2. Research Methodology
3.2.1. Entropy Weight Method
3.2.2. Decomposition of Regional Differences
3.2.3. α Convergence
3.2.4. β Convergence
3.2.5. Nuclear Density Estimation
3.2.6. Markov Chain Analysis
3.2.7. Coupled Coordination Degree Model
3.2.8. Panel Regression Model
3.2.9. Driscoll and Kraay Standard Errors Model
4. Discussions of Results
4.1. Digital Climate Governance Index Calculations
4.2. Decomposition of the Digital Climate Governance Index
4.3. Analysis of Differences in Digital Climate Governance Capacity
4.4. Convergence Analysis
4.4.1. Sigma Convergence Analysis
4.4.2. Beta Convergence Analysis
4.5. Dynamic Evolution of Digital Climate Governance Capabilities
4.6. Spatial Distribution of Digital Climate Governance Capacity
5. Coupled Coordination Analysis
Analysis of the Coupling and Harmonization
6. Results and Analysis of the Determinants of Digital Climate Governance
6.1. Benchmark Results
6.2. Empirical Results of Robust Analysis
7. Conclusions and Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Observations |
---|---|
Market | Effective market, calculated by market index |
Gov | Efficient government, calculated by proportion of provincial fiscal expenditure |
Internet | Digital development, measured by logarithm of the number of Internet users |
Population | The logarithm of the number of total population at the end of the year |
PGDP | The regional economic development, measured by the logarithm of GDP per capita |
Industry | Industrial structure, ratio of the added value of tertiary industry to secondary industry |
Enviro | Environmental supervision, measured by the ratio of words related to environmental protection in the local government report |
References
- Rashidi-Sabet, S.; Madhavaram, S.; Parvatiyar, A. Strategic Solutions for the Climate Change Social Dilemma: An Integrative Taxonomy, a Systematic Review, and Research Agenda. J. Bus. Res. 2022, 146, 619–635. [Google Scholar] [CrossRef]
- Aykut, S.; Schenuit, F.; Klenke, J.; D’amico, E. It’s a Performance, Not an Orchestra! Rethinking Soft Coordination in Global Climate Governance. Glob. Environ. Polit. 2022, 22, 173–196. [Google Scholar] [CrossRef]
- Stott, P. How Climate Change Affects Extreme Weather Events. Science 2016, 352, 1517–1518. [Google Scholar] [CrossRef]
- Carter, J.G.; Cavan, G.; Connelly, A.; Guy, S.; Handley, J.; Kazmierczak, A. Climate Change and the City: Building Capacity for Urban Adaptation. Prog. Plan. 2015, 95, 1–66. [Google Scholar] [CrossRef]
- Bui, B.; Houqe, M.N.; Zaman, M. Climate Governance Effects on Carbon Disclosure and Performance. Br. Account. Rev. 2020, 52, 100880. [Google Scholar] [CrossRef]
- Argyroudis, S.A.; Mitoulis, S.A.; Chatzi, E.; Baker, J.W.; Brilakis, I.; Gkoumas, K.; Linkov, I. Digital Technologies Can Enhance Climate Resilience of Critical Infrastructure. Clim. Risk Manag. 2022, 35, 100387. [Google Scholar] [CrossRef]
- Chatterjee, S.; Rana, N.; Dwivedi, Y.; Baabdullah, A. Understanding AI Adoption in Manufacturing and Production Firms Using an Integrated TAM-TOE Model. Technol. Forecast. Soc. Change 2021, 170, 120880. [Google Scholar] [CrossRef]
- Wang, W.; He, T.; Li, Z. Digital inclusive finance, economic growth and innovative development. Kybernetes 2023, 52, 3064–3084. [Google Scholar] [CrossRef]
- Cortez, F. Artificial Intelligence, Climate Change and Innovative Democratic Governance. Eur. J. Risk Regul. 2023, 14, 484–503. [Google Scholar] [CrossRef]
- George, G.; Merrill, R.K.; Schillebeeckx, S.J.D. Digital Sustainability and Entrepreneurship: How Digital Innovations Are Helping Tackle Climate Change and Sustainable Development. Entrep. Theory Pract. 2021, 45, 999–1027. [Google Scholar] [CrossRef]
- Balland, P.A.; Jara-Figueroa, C.; Petralia, S.G.; Steijn, M.P.; Rigby, D.L.; Hidalgo, C.A. Complex Economic Activities Concentrate in Large Cities. Nat. Hum. Behav. 2020, 4, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, P.; Andamon, M.M.; Paolini, R. Investigating Thermal Comfort and Energy Impact through Microclimate Monitoring: A Citizen Science Approach. Energy Build. 2020, 229, 110526. [Google Scholar] [CrossRef]
- Li, Y.; Lan, S.; Ryberg, M.; Pérez–Ramírez, J.; Wang, X. A Quantitative Roadmap for China Towards Carbon Neutrality in 2060 Using Methanol and Ammonia as Energy Carriers. iScience 2021, 24, 102513. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Li, Y. Carbon Finance and Carbon Market in China: Progress and Challenges. J. Clean. Prod. 2019, 214, 536–549. [Google Scholar] [CrossRef]
- Kanemoto, K.; Moran, D. Carbon-Footprint Accounting for the Next Phase of Globalization: Status and Opportunities. One Earth 2019, 1, 35–38. [Google Scholar] [CrossRef]
- Liang, F.; Yu, W.; An, D.; Yang, Q.; Fu, X.; Zhao, W. A Survey on Big Data Market: Pricing, Trading and Protection. IEEE Access 2018, 6, 15132–15154. [Google Scholar] [CrossRef]
- Engvall, T.S.; Flak, L.S. The State of Information Infrastructure for Global Climate Governance. Transform. Gov. People Process Policy 2022, 16, 436–448. [Google Scholar] [CrossRef]
- Leiter, A.; Petersmann, M. Tech-Based Prototypes in Climate Governance: On Scalability, Replicability, and Representation. Law Critique 2022, 33, 319–333. [Google Scholar] [CrossRef]
- Kloppenburg, S.; Gupta, A.; Kruk, S.R.; Makris, S.; Bergsvik, R.; Korenhof, P.; Toonen, H.M. Scrutinizing environmental governance in a digital age: New ways of seeing, participating, and intervening. One Earth 2022, 5, 232–241. [Google Scholar] [CrossRef]
- Kirton, J.; Warren, B. From Silos to Synergies: G20 Governance of the SDGs, Climate Change & Digitalization. Int. Organ. Res. J. 2020, 16, 20–54. [Google Scholar]
- Leal Filho, W.; Tripathi, S.K.; Andrade Guerra, J.B.S.O.D.; Giné-Garriga, R.; Orlovic Lovren, V.; Willats, J. Using the Sustainable Development Goals Towards a Better Understanding of Sustainability Challenges. Int. J. Sustain. Dev. World Ecol. 2019, 26, 179–190. [Google Scholar] [CrossRef]
- Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gómez-Morales, A.; Garcia-Segura, S. Digitalization to Achieve Sustainable Development Goals: Steps Towards a Smart Green Planet. Sci. Total Environ. 2021, 794, 148539. [Google Scholar] [CrossRef]
- Chuard, P.; Garard, J.; Schulz, K.; Kumarasinghe, N.; Rolnick, D.; Matthews, D. A Portrait of the Different Configurations Between Digitally-Enabled Innovations and Climate Governance. Earth Syst. Gov. 2022, 13, 100147. [Google Scholar] [CrossRef]
- Mendes, V. Climate smart cities? Technologies of climate governance in Brazil. Urban Gov. 2022, 2, 270–281. [Google Scholar] [CrossRef]
- Bravo, S.; Doherty-Bigara, J.; Duarte, D.R. Toward Enhanced Climate Ambition: Transparency and Digital Governance in Latin America and the Caribbean. Available online: https://publications.iadb.org/en/toward-enhanced-climate-ambition-transparency-and-digital-governance-latin-america-and-caribbean (accessed on 9 April 2024).
- Bompard, E.; Ciocia, A.; Grosso, D.; Huang, T.; Spertino, F.; Jafari, M.; Botterud, A. Assessing the Role of Fluctuating Renewables in Energy Transition: Methodologies and Tools. Appl. Energy 2022, 314, 118968. [Google Scholar] [CrossRef]
- Marquardt, J. Conceptualizing Power in Multi-Level Climate Governance. J. Clean. Prod. 2017, 154, 167–175. [Google Scholar] [CrossRef]
- Malodia, S.; Dhir, A.; Mishra, M.; Bhatti, Z.A. Future of e-Government: An Integrated Conceptual Framework. Technol. Forecast. Soc. Change 2021, 173, 121102. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Kar, A.K.; Baabdullah, A.M.; Grover, P.; Abbas, R.; Wade, M. Climate Change and COP26: Are Digital Technologies and Information Management Part of the Problem or the Solution? An Editorial Reflection and Call to Action. Int. J. Inf. Manag. 2022, 63, 102456. [Google Scholar] [CrossRef]
- Vazhenina, L.; Magaril, E.; Mayburov, I. Digital Management of Resource Efficiency of Fuel and Energy Companies in a Circular Economy. Energies 2023, 16, 3498. [Google Scholar] [CrossRef]
- Lee, C.C.; Zhong, Q.; Wen, H.; Song, Q. Blessing or Curse: How Does Sustainable Development Policy Affect Total Factor Productivity of Energy-Intensive Enterprises? Socio-Econ. Plan. Sci. 2023, 89, 101709. [Google Scholar] [CrossRef]
- Pilone, E.; Moreno, V.C.; Cozzani, V.; Demichela, M. Climate Change and NaTech Events: A Step Towards Local-Scale Awareness and Preparedness. Saf. Sci. 2021, 139, 105264. [Google Scholar] [CrossRef]
- Bhola, V.; Hertelendy, A.; Hart, A.; Adnan, S.B.; Ciottone, G. Escalating Costs of Billion-Dollar Disasters in the US: Climate Change Necessitates Disaster Risk Reduction. J. Clim. Change Health 2023, 10, 100201. [Google Scholar] [CrossRef]
- Bracking, S.; Leffel, B. Climate Finance Governance: Fit for Purpose? Wiley Interdiscip. Rev. Clim. Change 2021, 12, e709. [Google Scholar]
- Bowman, M.; Minas, S. Resilience Through Interlinkage: The Green Climate Fund and Climate Finance Governance. Clim. Policy 2019, 19, 342–353. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Ahmed, M.Y.; Owusu, P.A. Advancing COP26 Climate Goals: Leveraging Energy Innovation, Governance Readiness, and Socio-Economic Factors for Enhanced Climate Resilience and Sustainability. J. Clean. Prod. 2023, 431, 139757. [Google Scholar] [CrossRef]
- Pan, S.L.; Carter, L.; Tim, Y.; Sandeep, M.S. Digital Sustainability, Climate Change, and Information Systems Solutions: Opportunities for Future Research. Int. J. Inf. Manag. 2022, 63, 102444. [Google Scholar] [CrossRef]
- Fuhr, H.; Hickmann, T.; Kern, K. The Role of Cities in Multi-Level Climate Governance: Local Climate Policies and the 1.5°C Target. Curr. Opin. Environ. Sustain. 2018, 30, 1–6. [Google Scholar] [CrossRef]
- Weng, Q.; Xu, H. A Review of China’s Carbon Trading Market. Renew. Sustain. Energy Rev. 2018, 91, 613–619. [Google Scholar] [CrossRef]
- Newell, P.; Bulkeley, H.; Turner, K.; Shaw, C.; Caney, S.; Shove, E.; Pidgeon, N. Governance Traps in Climate Change Politics: Re-Framing the Debate in Terms of Responsibilities and Rights. Wiley Interdiscip. Rev. Clim. Change 2015, 6, 535–540. [Google Scholar] [CrossRef]
- Soundararajan, V.; Sahasranamam, S.; Khan, Z.; Jain, T. Multinational Enterprises and the Governance of Sustainability Practices in Emerging Market Supply Chains: An Agile Governance Perspective. J. World Bus. 2021, 56, 101149. [Google Scholar] [CrossRef]
- Galindo-Pérez-de-Azpillaga, L.; Foronda-Robles, C. Digital governance and information technologies in local action groups (LAGs). Cogent Soc. Sci. 2018, 4, 1528730. [Google Scholar] [CrossRef]
- Bui, T.D.; Tsai, F.M.; Tseng, M.L.; Tan, R.R.; Yu, K.D.S.; Lim, M.K. Sustainable Supply Chain Management Towards Disruption and Organizational Ambidexterity: A Data Driven Analysis. Sustain. Prod. Consum. 2021, 26, 373–410. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Tian, L.; Hou, Y. Government digital initiatives and firm digital innovation: Evidence from China. Technovation 2023, 119, 102545. [Google Scholar] [CrossRef]
- Yifan, G.; Bei, L. Influencing factors and multiple paths of construction ability of digital government: Qualitative comparative analysis based on 31 Chinese provinces. Procedia Comput. Sci. 2022, 199, 1213–1220. [Google Scholar] [CrossRef]
- Wen, H.; Liang, W.; Lee, C.C. China’s Progress Toward Sustainable Development in Pursuit of Carbon Neutrality: Regional Differences and Dynamic Evolution. Environ. Impact Assess. Rev. 2023, 98, 106959. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Li, E.Y.; Meng, Z.; Song, Y. Environmental Regulation, Green Technological Innovation, and Eco-Efficiency: The Case of Yangtze River Economic Belt in China. Technol. Forecast. Soc. Change 2020, 155, 119993. [Google Scholar] [CrossRef]
- Razzaq, A.; Sharif, A.; Ozturk, I.; Skare, M. Asymmetric Influence of Digital Finance, and Renewable Energy Technology Innovation on Green Growth in China. Renew. Energy 2023, 202, 310–319. [Google Scholar] [CrossRef]
- Wen, H.; Hu, K.; Nghiem, X.H.; Acheampong, A.O. Urban Climate Adaptability and Green Total-Factor Productivity: Evidence from Double Dual Machine Learning and Differences-in-Differences Techniques. J. Environ. Manag. 2024, 350, 119588. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Huang, J.; Wang, J. Unleashing the Potential: Exploring the Nexus Between Low-Carbon Digital Economy and Regional Economic-Social Development in China. J. Clean. Prod. 2023, 413, 137552. [Google Scholar] [CrossRef]
- Yang, L.; Lin, Y.; Zhu, J.; Yang, K. Dynamic Coupling Coordination and Spatial–Temporal Analysis of Digital Economy and Carbon Environment Governance from Provinces in China. Ecol. Indic. 2023, 156, 111091. [Google Scholar] [CrossRef]
- Held, D.; Roger, C. Three Models of Global Climate Governance: From Kyoto to Paris and Beyond. Glob. Policy 2018, 9, 527–537. [Google Scholar] [CrossRef]
- Malik, I.; Prianto, A.L.; Roni, N.I.; Yama, A.; Baharuddin, T. Multi-level governance and digitalization in climate change: A bibliometric analysis. In International Conference on Digital Technologies and Applications; Springer Nature: Cham, Switzerland, 2023; pp. 95–104. [Google Scholar]
- Engvall, T.; Flak, L.S.; Sæbø, Ø. Sharing, Cooperation or Collective Action? A Research Agenda for Online Interaction in Digital Global Governance. In International Conference on Electronic Participation; Springer Nature: Cham, Switzerland, 2022; pp. 91–106. [Google Scholar]
First-Level Indicators | Second-Level Indicators | Properties |
---|---|---|
Digital climate infrastructure | Number of Internet access ports Optical cable line length GPS measuring points Postal and telecommunications business volume | + |
+ | ||
+ | ||
+ | ||
Digital infrastructure resources | Employments in the information software industry Digital transformation index of listed companies Employments in scientific research industries | + |
+ | ||
+ | ||
Climate monitoring facilities | Number of ground observation stations Number of automatic weather stations Number of satellite image receiving sites | + |
+ | ||
+ | ||
Climate governance | Environmental protection fiscal expenditure Meteorological affairs expenditure Investment in ecological construction Energy industry investment | + |
+ | ||
+ | ||
+ |
Year | G | Between | Overlap | Within | |||
---|---|---|---|---|---|---|---|
G | Contribution | G | Contribution | G | Contribution | ||
2007 | 0.221 | 0.094 | 42.458 | 0.068 | 31.024 | 0.058 | 26.518 |
2008 | 0.229 | 0.096 | 41.893 | 0.073 | 32.025 | 0.060 | 26.083 |
2009 | 0.231 | 0.098 | 42.642 | 0.071 | 30.677 | 0.062 | 26.681 |
2010 | 0.233 | 0.089 | 38.125 | 0.079 | 33.788 | 0.065 | 28.087 |
2011 | 0.232 | 0.067 | 28.770 | 0.098 | 42.077 | 0.068 | 29.153 |
2012 | 0.235 | 0.072 | 30.759 | 0.095 | 40.684 | 0.067 | 28.557 |
2013 | 0.246 | 0.073 | 29.677 | 0.102 | 41.530 | 0.071 | 28.792 |
2014 | 0.246 | 0.072 | 29.323 | 0.103 | 42.100 | 0.070 | 28.577 |
2015 | 0.247 | 0.088 | 35.594 | 0.090 | 36.540 | 0.069 | 27.867 |
2016 | 0.251 | 0.099 | 39.273 | 0.084 | 33.365 | 0.069 | 27.362 |
2017 | 0.264 | 0.110 | 41.676 | 0.083 | 31.538 | 0.071 | 26.786 |
2018 | 0.251 | 0.092 | 36.512 | 0.090 | 35.708 | 0.070 | 27.780 |
2019 | 0.249 | 0.092 | 37.149 | 0.087 | 34.944 | 0.069 | 27.908 |
2020 | 0.249 | 0.086 | 34.356 | 0.093 | 37.379 | 0.070 | 28.265 |
2021 | 0.249 | 0.083 | 33.542 | 0.095 | 38.040 | 0.071 | 28.418 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
All | East | Central | West | Northeast | Subsample1 | Subsample2 | |
DCG | 0.101 *** | 0.0799 ** | 0.278 *** | 0.134 *** | 0.768 ** | 0.439 *** | 0.067 |
(−0.019) | (−0.031) | (−0.0791) | (−0.0326) | (−0.306) | (0.057) | (0.0508) | |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 420 | 140 | 84 | 154 | 42 | 210 | 180 |
R-squared | 0.511 | 0.567 | 0.612 | 0.711 | 0.666 | 0.498 | 0.649 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
All | East | Central | West | Northeast | |
DCG | 0.103 *** | 0.0676 ** | 0.232 *** | 0.118 *** | 0.393 ** |
(−0.018) | −0.026 | (−0.068) | (−0.0302) | (−0.148) | |
Year FE | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes |
Observations | 420 | 140 | 84 | 154 | 42 |
R-squared | 0.505 | 0.556 | 0.569 | 0.700 | 0.634 |
Regions | State | S1 | S2 | S3 | S4 |
---|---|---|---|---|---|
Nationwide | S1 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
S2 | 0.6667 | 0.0000 | 0.3333 | 0.0000 | |
S3 | 0.0000 | 0.0000 | 0.5000 | 0.5000 | |
S4 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | |
East | S1 | 0.8857 | 0.1143 | 0.0000 | 0.0000 |
S2 | 0.0000 | 0.5833 | 0.4176 | 0.0000 | |
S3 | 0.0286 | 0.0857 | 0.6857 | 0.2000 | |
S4 | 0.0556 | 0.0556 | 0.0000 | 0.8889 | |
Central | S1 | 0.7000 | 0.3000 | 0.0000 | 0.0000 |
S2 | 0.0000 | 0.6957 | 0.3043 | 0.0000 | |
S3 | 0.0303 | 0.0303 | 0.7879 | 0.1515 | |
S4 | 0.0909 | 0.0909 | 0.0455 | 0.7727 | |
West | S1 | 0.8621 | 0.1379 | 0.0000 | 0.0000 |
S2 | 0.0000 | 0.8125 | 0.1667 | 0.0208 | |
S3 | 0.0385 | 0.0000 | 0.7308 | 0.2308 | |
S4 | 0.1935 | 0.0323 | 0.0000 | 0.7742 | |
North East | S1 | 0.8889 | 0.1111 | 0.0000 | 0.0000 |
S2 | 0.0000 | 0.7333 | 0.2667 | 0.0000 | |
S3 | 0.0000 | 0.1333 | 0.8000 | 0.0667 | |
S4 | 0.2500 | 0.0000 | 0.0000 | 0.7500 |
Coordination Level | Coordination Degree | Coordination Condition | Coordination Stage |
---|---|---|---|
1 | (0.0, 0.1] | Extreme Disorder | Decline period |
2 | (0.1, 0.2] | Severe Disorder | |
3 | (0.2, 0.3] | Moderate Disorder Mildly dysfunctional | Acceptable Disorder Period |
4 | (0.3, 0.4] | ||
5 | (0.4, 0.5] | Nearly dysfunctional Barely coordinated | Transition period |
6 | (0.5, 0.6] | ||
7 | (0.6, 0.7] | Elementary coordination Intermediate coordination | Developmental period |
8 | (0.7, 0.8] | ||
9 | (0.8, 0.9] | Good coordination Quality coordination | High degree of harmonization |
10 | (0.9, 1.0] |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Gov | 0.0584 *** | 0.0670 * | 0.0618 *** | 0.0670 ** | ||
(3.66) | (1.99) | (3.98) | (2.24) | |||
Market | 0.0236 ** | 0.0377 *** | 0.0259 *** | 0.0377 *** | ||
(2.40) | (3.07) | (2.69) | (3.21) | |||
Internet | −0.0182 | −0.0435 | 0.0221 | −0.0212 | −0.0074 | −0.0307 |
(−0.80) | (−1.61) | (0.93) | (−0.74) | (−0.31) | (−1.11) | |
Population | 0.2189 *** | 0.4179 | 0.1300 *** | 0.2662 | 0.1857 *** | 0.3843 |
(7.62) | (1.39) | (4.36) | (0.93) | (6.03) | (1.32) | |
PGDP | 0.2046 *** | 0.2394 *** | 0.1007 ** | 0.1576 ** | 0.1475 *** | 0.1690 *** |
(4.71) | (4.62) | (2.08) | (2.55) | (2.91) | (2.85) | |
Industry | 0.0560 *** | 0.0677 | 0.0592 *** | 0.0777 ** | 0.0532 *** | 0.0522 |
(2.97) | (1.53) | (3.32) | (2.13) | (3.14) | (1.33) | |
Enviro | 0.1826 ** | 0.1362 | 0.2050 ** | 0.1247 | 0.1781 ** | 0.1256 |
(2.10) | (1.47) | (2.37) | (1.56) | (2.19) | (1.59) | |
Year FE | No | Yes | No | Yes | No | Yes |
Region FE | Yes | Yes | Yes | Yes | Yes | Yes |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 450 | 450 | 450 | 450 | 450 | 450 |
R-squard | 0.677 | 0.682 | 0.681 | 0.693 | 0.701 | 0.709 |
Variables | Driscoll-Kraay Standard Errors | Alternative Explaining Variable | Decentralization | ||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
Gov | 0.0670 *** | 0.0625 *** | 0.0678 ** | ||
(5.84) | (3.98) | (2.24) | |||
Market | 0.0377 ** | 0.0486 *** | 0.0705 *** | ||
(2.85) | (2.69) | (3.21) | |||
Govout | 0.0335 *** | 0.0445 *** | |||
(2.62) | (3.00) | ||||
Year FE | Yes | No | Yes | No | Yes |
Region FE | Yes | Yes | Yes | Yes | Yes |
Controls | Yes | Yes | Yes | Yes | Yes |
Observations | 450 | 450 | 450 | 450 | 450 |
R-squard | 0.709 | 0.885 | 0.887 | 0.701 | 0.709 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, H.; Hu, K.; Zhou, F. Progress in Digital Climate Governance in China: Statistical Measurement, Regional Differences, and Dynamic Evolution. Systems 2024, 12, 181. https://doi.org/10.3390/systems12050181
Wen H, Hu K, Zhou F. Progress in Digital Climate Governance in China: Statistical Measurement, Regional Differences, and Dynamic Evolution. Systems. 2024; 12(5):181. https://doi.org/10.3390/systems12050181
Chicago/Turabian StyleWen, Huwei, Keyu Hu, and Fengxiu Zhou. 2024. "Progress in Digital Climate Governance in China: Statistical Measurement, Regional Differences, and Dynamic Evolution" Systems 12, no. 5: 181. https://doi.org/10.3390/systems12050181
APA StyleWen, H., Hu, K., & Zhou, F. (2024). Progress in Digital Climate Governance in China: Statistical Measurement, Regional Differences, and Dynamic Evolution. Systems, 12(5), 181. https://doi.org/10.3390/systems12050181