The Impact of Digital Transformation on the Global Value Chain Position of the Guangdong–Hong Kong–Macao Greater Bay Area
Abstract
:1. Introduction
2. Theoretical Mechanism
2.1. The Impact of Digital Transformation on the Global Value Chain Position of the Guangdong–Hong Kong–Macao Greater Bay Area
2.2. The Mechanism of Digital Transformation on the Global Value Chain Position of the Guangdong–Hong Kong–Macao Greater Bay Area
2.2.1. Technology Innovation Transformation Capability
2.2.2. Value Addition of Exports from the Greater Bay Area
3. Data Preparation, Calculation Model Establishment, and Application
3.1. Data Preparation: Compilation of Three-Layer Nested Input–Output Tables for Guangdong–Hong Kong–Macao Greater Bay Area
3.2. Establishment of the Calculation Model
3.2.1. Prerequisite for Establishing the Calculation Model: Establishment of the Trade Decomposition Model
3.2.2. Establishing the Measurement Model: Measurement Model for the Global Value Chain Position of the Guangdong–Hong Kong–Macao Greater Bay Area
3.2.3. Application of the Measurement Model: Analysis of the Global Value Chain
Position of the Guangdong–Hong Kong–Macao Greater Bay Area
4. Empirical Model Setting, Variable Selection and Data Description
4.1. Empirical Model Setting
4.1.1. Baseline Model
4.1.2. Mediation Model
4.2. Variable Selection
4.2.1. Explained Variable
4.2.2. Core Explanatory Variables
4.2.3. Control Variables
4.2.4. Mediating Variables
4.3. Data Description
5. Analysis of Empirical Test Results
5.1. Benchmark Test
5.2. Robustness Test
5.2.1. Replace the Measurement Method of Explained Variables
5.2.2. Replace the Measurement Method of Core Explanatory Variables
5.2.3. Replace the Regression Method
5.2.4. Tailing Treatment
5.3. Endogeneity Test
5.3.1. High-Order Joint Fixed Effect Model Test
5.3.2. Instrumental Variable Method
- Instrumental variable 1
- 2.
- Instrumental variable 2
5.3.3. Omitted Variable Test
5.4. Mechanism Test
5.4.1. Technological Innovation Transformation Capability
5.4.2. Value Added by Exports from the Greater Bay Area
5.5. Heterogeneity Analysis
5.5.1. Heterogeneity of Sources of Digital Transformation
5.5.2. Heterogeneity of Cities
6. Conclusions and Recommendation
6.1. Conclusions
6.2. Recommendation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
EORA | Intermediate Demand | Final Demand | Total Output | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Value Added | |||||||||||
Total Input |
ADB | Intermediate Demand | Final Demand | Total Output | |||||
---|---|---|---|---|---|---|---|---|
Value Added | ||||||||
Total Input |
EORA-ADB | Intermediate Demand | Final Demand | Total Output | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mainland China | |||||||||||
Macao | |||||||||||
Other Regions of the World | |||||||||||
Value Added | |||||||||||
Total Input |
Interprovincial in China | Intermediate Demand | Final Demand | Export | Total Output | |||||
---|---|---|---|---|---|---|---|---|---|
Import | |||||||||
Value Added | |||||||||
Total Input |
Embedding Interprovincial China into the World | Intermediate Demand | Final Demand | Total Output | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value Added | ||||||||||||||
Total Input |
Guangdong | Intermediate Demand | Final Demand | Outflow | Export | Total Output | |||||
---|---|---|---|---|---|---|---|---|---|---|
Inflow | ||||||||||
Import | ||||||||||
Value Added | ||||||||||
Total Input |
China’s Interprovincial Embeddedness in the World | Intermediate Demand | Final Demand | Total Output | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value Added | |||||||||||||||||
Total Input |
1 | China’s 23 major trading partners are the United States, Japan, South Korea, Germany, Australia, Vietnam, Malaysia, Brazil, India, Russia, Thailand, Singapore, the United Kingdom, the Netherlands, Indonesia, France, Canada, the Philippines, Italy, Mexico, Switzerland, Spain and Poland. |
2 | The 19 sectors are: C1, agriculture; C2, mining; C3, food and tobacco manufacturing; C4, textiles, garments, and leathers and their products; C5, wood processing, paper, and paper products; C6, petroleum, chemical, and non-metallic products; C7, metals and their products, C8, electrical and machinery manufacturing; C9, transportation equipment manufacturing; C10, other manufacturing; C11, electricity, gas, water supply; C12, construction; C13, wholesale and retail trade; C14, accommodation and catering; C15, transportation services; C16 postal and telecommunications; C17, business services; C18, public services; and C19, education, health, and other services. |
References
- Hua, P. How did China Raise its Manufacturing Domestic Value added in Exports through GVC Moving up? Asian J. Econ. Bus. 2022, 3, 15–35. Available online: https://hal.science/hal-03767822 (accessed on 16 June 2024).
- Gopalan, S.; Reddy, K.; Sasidharan, S. Does digitalization spur global value chain participation? Firm-level evidence from emerging markets. Inf. Econ. Policy 2022, 59, 100972. [Google Scholar] [CrossRef]
- Ha, L.T. Impacts of digital business on global value chain participation in European countries. AI Soc. 2022, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Xie, W.; Jia, P. Value Chain Digitalization, Global Value Chain Embeddedness, and Distributed Innovation in Value Chains. Sustainability 2024, 16, 2845. [Google Scholar] [CrossRef]
- Brun, L.; Gereffi, G.; Zhan, J. The “lightness” of Industry 4.0 lead firms: Implications for global value chains. In Transforming Industrial Policy for the Digital Age; Edward Elgar Publishing: Cheltenham, UK, 2019; pp. 37–67. [Google Scholar]
- Denicolai, S.; Zucchella, A.; Magnani, G. Internationalization, digitalization, and sustainability: Are SMEs ready? A survey on synergies and substituting effects among growth paths. Technol. Forecast. Soc. Change 2021, 166, 120650. [Google Scholar] [CrossRef]
- Humphrey, J. Value chain governance in the age of platforms. IDE Discuss. Pap. 2018, 714, 1–20. [Google Scholar]
- Coe, N.M.; Yang, C. Mobile gaming production networks, platform business groups, and the market power of China’s Tencent. Ann. Am. Assoc. Geogr. 2022, 112, 307–330. [Google Scholar] [CrossRef]
- Grabher, G.; van Tuijl, E. Uber-production: From global networks to digital platforms. Environ. Plan. A Econ. Space 2020, 52, 1005–1016. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Li, X.; Chen, T.; Lang, W. Deciphering the spatial structure of China’s megacity region: A new bay area—The Guangdong-Hong Kong-Macao Greater Bay Area in the making. Cities 2020, 105, 102168. [Google Scholar] [CrossRef]
- Deng, H.; Li, H. Characteristics of the spatiotemporal changes in urban agglomeration in the Guangdong–Hong Kong–Macao Greater Bay Area, China. J. Urban Plan. Dev. 2021, 147, 04021042. [Google Scholar] [CrossRef]
- Banga, K. Digital Technologies and “Value” Capture in Global Value Chains: Empirical Evidence from Indian Manufacturing Firms; WIDER Working Paper No. 2019/43; United Nations University, World Institute for Development Economics Research: Helsinki, Finland, 2019. [Google Scholar]
- Qiu, Y. The Reconfiguration of Global Value Chains in the Digital Economy: Recent Trends and China’s New Agenda. In China’s New Development Strategies; Palgrave Macmillan: Singapore, 2022; Volume 108, pp. 267–294. [Google Scholar]
- Zhang, Q. The Impact of Digitalization on the Upgrading of China’s Manufacturing Sector’s Global Value Chains. J. Knowl. Econ. 2024, 1–24. [Google Scholar] [CrossRef]
- Guo, X.; Xu, D.; Zhu, K. Measuring digitalization effects in China: A global value chain perspective. China Econ. Rev. 2023, 81, 102021. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, K.; Zheng, P. The impact of industrial digitization on the global value chains position: Evidence from China’s industry sectors. Econ. Anal. Policy 2024, 82, 147–162. [Google Scholar] [CrossRef]
- Liang, S.; Tan, Q. Can the digital economy accelerates China’s export technology upgrading? Based on the perspective of export technology complexity. Technol. Forecast. Soc. Change 2024, 199, 123052. [Google Scholar] [CrossRef]
- Gniniguè, M.; Wonyra, K.O.; Tchagnao, A.-F.; Bayale, N. Participation of developing countries in global value chains: What role for information and communication technologies? Telecommun. Policy 2023, 47, 102508. [Google Scholar] [CrossRef]
- Kan, D.; Lyu, L.; Huang, W.; Yao, W. Digital economy and the upgrading of the global value chain of China’s service industry. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 1279–1296. [Google Scholar] [CrossRef]
- Szalavetz, A. Digital transformation–enabling factory economy actors’ entrepreneurial integration in global value chains? Post-Communist Econ. 2020, 32, 771–792. [Google Scholar] [CrossRef]
- Zhen, Y.; Jin, C.; Jizhen, L.I. Global Value Chains in the Era of Digital Economy: Trends, Risks and Countermeasures. Front. Econ. China 2022, 17, 1–23. [Google Scholar]
- Liu, Y.; Tang, T.; Ah, R.; Luo, L. Has digital technology promoted the restructuring of global value chains? Evidence from China. Econ. Anal. Policy 2024, 81, 269–280. [Google Scholar] [CrossRef]
- Zhenghui, L.; Lai, Q.; He, J. Does digital technology enhance the global value chain position? Borsa Istanb. Rev. 2024; in press. [Google Scholar]
- Junyan, Q.I.; Yida, R.E.N. Digital Economy Development, Institutional Quality and Upstreamness of Global Value Chains. Front. Econ. China 2022, 17, 24–57. [Google Scholar]
- Hummels, D.; Ishii, J.; Yi, K. The Nature and Growth of Vertical Specialization in World Trade. J. Int. Econ. 2001, 54, 75–96. [Google Scholar] [CrossRef]
- Schott, P.K. Across-product versus within-product specialization in international trade. Q. J. Econ. 2004, 119, 647–678. [Google Scholar] [CrossRef]
- Hausmann, R.; Rodrik, D. Economic development as self-discovery. J. Dev. Econ. 2003, 72, 603–633. [Google Scholar] [CrossRef]
- Hausmann, R.; Hwang, J.; Rodrik, D. What you export matters. J. Econ. Growth 2007, 12, 1–25. [Google Scholar] [CrossRef]
- Koopman, R.; Powers, W.; Wang, Z.; Wei, S.J. Give Credit Where Credit Is Due: Tracing Value Added in Global Production Chains; NBER Working Paper 16426; National Bureau of Economic Research: Cambridge, MA, USA, 2010. [Google Scholar]
- Antras, P.; Chor, D.; Fally, T.; Hillberry, R. Measuring the Upstreamness of Production and Trade Flows. Am. Econ. Rev. 2012, 102, 412–416. [Google Scholar] [CrossRef]
- Antras, P.; Chor, D. Organizing the Global Value Chain. Econometrica 2013, 81, 2127–2204. [Google Scholar]
- Chor, D.; Manova, K.; Yu, Z.H. Growing Like China: Firm Performance and Global Production Line Position. J. Int. Econ. 2021, 130, 103445. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, S.J.; Yu, X.D.; Zhu, K.F. Characterizing Global Value Chains: Production Length and Upstreamness; NBER Working Paper 23261; National Bureau of Economic Research: Cambridge, MA, USA, 2017. [Google Scholar]
- Wang, Z.; Wei, S.J.; Zhu, K. Quantifying International Production Sharing at the Bilateral and Sector Levels; National Bureau of Economic Research: Cambridge, MA, USA, 2013. [Google Scholar] [CrossRef]
- Szalavetz, A. Artificial intelligence-based development strategy in dependent market economies–any room amidst big power rivalry? Cent. Eur. Bus. Rev. 2019, 8, 40–54. [Google Scholar] [CrossRef]
- Sturgeon, T.J. Upgrading strategies for the digital economy. Glob. Strategy J. 2021, 11, 34–57. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, S.J.; Yu, X.D. Measures of Participation in Global Value Chains and Global Business Cycles; NBER Working Paper 23222; National Bureau of Economic Research: Cambridge, MA, USA, 2017. [Google Scholar]
- Oster, E. Unobservable selection and coefficient stability: Theory and evidence. J. Bus. Econ. Stat. 2019, 37, 187–204. [Google Scholar] [CrossRef]
Intermediate Demand | Final Demand | X | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRD | MO | HK | GD | CP | TWN | W | ROW | PRD | MO | HK | GD | CP | TWN | W | ROW | ||||||||||||||||||||||||||||||||||||
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | ||||||||||||||||||||||||||||||||||||
Intermediate Input | PRD | ||||||||||||||||||||||||||||||||||||||||||||||||||
… | |||||||||||||||||||||||||||||||||||||||||||||||||||
MO | |||||||||||||||||||||||||||||||||||||||||||||||||||
… | |||||||||||||||||||||||||||||||||||||||||||||||||||
HK | |||||||||||||||||||||||||||||||||||||||||||||||||||
… | |||||||||||||||||||||||||||||||||||||||||||||||||||
GD | |||||||||||||||||||||||||||||||||||||||||||||||||||
… | |||||||||||||||||||||||||||||||||||||||||||||||||||
CP | |||||||||||||||||||||||||||||||||||||||||||||||||||
… | |||||||||||||||||||||||||||||||||||||||||||||||||||
TWN | |||||||||||||||||||||||||||||||||||||||||||||||||||
… | |||||||||||||||||||||||||||||||||||||||||||||||||||
W | |||||||||||||||||||||||||||||||||||||||||||||||||||
… | |||||||||||||||||||||||||||||||||||||||||||||||||||
ROW | |||||||||||||||||||||||||||||||||||||||||||||||||||
… | |||||||||||||||||||||||||||||||||||||||||||||||||||
VA | |||||||||||||||||||||||||||||||||||||||||||||||||||
X |
Sources of Added Value | Code | General Term |
---|---|---|
Added Value of City in the Greater Bay Area | , , , , , | |
Inbound Added Value | , , | |
Double-Counted Portion | , , |
Variables | (1) lnGVC_POS | (2) lnGVC_POS | (3) lnGVC_POS | (4) lnGVC_POS |
---|---|---|---|---|
lnDIG | 0.0276 *** | 0.0165 *** | 0.0351 *** | 0.0160 *** |
(0.0043) | (0.0058) | (0.0042) | (0.0057) | |
lnGDP | −0.0131 | 0.0461 | ||
(0.0180) | (0.0965) | |||
lnIM | −0.0503 *** | 0.1934 *** | ||
(0.0124) | (0.0513) | |||
lnEX | −0.0183 * | −0.2292 *** | ||
(0.0098) | (0.0693) | |||
lnEMP | −0.0158 | −0.0192 | ||
(0.0191) | (0.0155) | |||
ConstantTerm | −0.3028 *** | −0.2271 *** | −0.0616 | −0.4034 |
(0.0113) | (0.0280) | (0.1591) | (0.8680) | |
Time Fixed Effects | No | Yes | No | Yes |
City Fixed Effects | No | Yes | No | Yes |
Industry Fixed Effects | No | Yes | No | Yes |
N | 627 | 627 | 627 | 627 |
r2 | 0.0610 | 0.6926 | 0.1989 | 0.7019 |
F | 40.6004 | 43.2474 | 30.8299 | 39.7516 |
Methods | (1) Replace the Explained Variable | (2) Replace the Core Explanatory Variable | (3) Replace the Regression Method | (4) Tailing Treatment |
---|---|---|---|---|
lnDIG | 0.0136 ** | 0.0152 *** | 0.0156 *** | |
(0.0060) | (0.0057) | (0.0057) | ||
lnDIG_NEW | 0.0117 * | |||
(0.0068) | ||||
Anderson Canon. Corr. LM Statistic | ||||
Cragg–Donald Wald F Statistic | ||||
Constant Term | 0.7521 | −0.3734 | −0.3744 | −0.4817 |
(0.9153) | (0.8723) | (0.8980) | (0.8564) | |
Time Fixed Effects | Yes | Yes | Yes | Yes |
City Fixed Effects | Yes | Yes | Yes | Yes |
Industry Fixed Effects | Yes | Yes | Yes | Yes |
Time × City Fixed Effects | No | No | No | No |
Time × Industry Fixed Effects | No | No | No | No |
N | 627 | 627 | 627 | 627 |
r2 | 0.3270 | 0.6994 | 0.7147 | 0.7045 |
F | 8.2048 | 39.2911 | 42.2952 | 40.2526 |
Methods | High-Order Joint Fixation Effect | Instrumental Variable Method | |||
---|---|---|---|---|---|
First Step | Second Step | First Step | Second Step | ||
(1) | (2) | (3) | (4) | (5) | |
IV1 | 0.0000 *** | ||||
(0.0000) | |||||
lnDIG | 0.0176 *** | 0.0552 * | 0.0238 *** | ||
(0.0058) | (0.0321) | (0.0068) | |||
IV2 | 0.7708 *** | ||||
(0.0227) | |||||
Anderson Canon. Corr. LM Statistic | 19.963 | 415.104 | |||
(0.0000) | (0.0000) | ||||
Cragg–Donald Wald F Statistic | 19.395 | 1157.772 | |||
(16.38) | (16.38) | ||||
Constant Term | 0.4289 | 1.5998 | −0.7331 | −7.3215 ** | −0.3879 |
(31.5896) | (5.7666) | (0.8168) | (3.6253) | (0.8441) | |
Time Fixed Effects | Yes | Yes | Yes | Yes | Yes |
City Fixed Effects | Yes | Yes | Yes | Yes | Yes |
Industry Fixed Effects | Yes | Yes | Yes | Yes | Yes |
Time × City Fixed Effects | Yes | No | No | No | No |
Time × Industry Fixed Effects | Yes | No | No | No | No |
N | 627 | 513 | 513 | 627 | 627 |
r2 | 0.7496 | 0.8581 | 0.7301 | 0.9354 | 0.7009 |
F | 18.5511 | 87.7588 | 39.5495 | 244.4585 | 39.7309 |
Coefficient | R2 | ||||
---|---|---|---|---|---|
Uncontrolled | Controlled | Uncontrolled | Controlled | δ | |
GVC_POS | 0.02755 | 0.03506 | 0.061 | 0.199 | −5.98071 |
Mechanism | Benchmark Test | Technological Innovation Transformation Capability | Value Added by Exports from the Greater Bay Area | ||
---|---|---|---|---|---|
(1) lnGVC_POS | (2) lnTECH | (3) lnGVC_POS | (4) lnTECH | (5) lnGVC_POS | |
lnDIG | 0.0160 *** | 0.5368 *** | 0.0151 *** | 0.2053 *** | 0.0106 ** |
(0.0057) | (0.0815) | (0.0057) | (0.0708) | (0.0051) | |
lnTECH | 0.0068 ** | ||||
(0.0028) | |||||
lnVA | 0.0337 *** | ||||
(0.0029) | |||||
Constant Term | −0.4034 | 11.9465 | −0.3807 | 1.1003 | −0.3659 |
(0.8680) | (12.3131) | (0.8326) | (10.7063) | (0.7662) | |
Time Fixed Effects | Yes | Yes | Yes | Yes | Yes |
City Fixed Effects | Yes | Yes | Yes | Yes | Yes |
Industry Fixed Effects | Yes | Yes | Yes | Yes | Yes |
N | 627 | 623 | 623 | 626 | 626 |
r2 | 0.7019 | 0.8032 | 0.7259 | 0.6968 | 0.7664 |
F | 39.7516 | 68.4440 | 43.1166 | 38.7353 | 53.6886 |
Category | Heterogeneity of Sources of Digital Transformation | Heterogeneity of City | ||
---|---|---|---|---|
(1) lnGVC_POS | (2) lnGVC_POS | (3) lnGVC_POS | (4) lnGVC_POS | |
lnDIG | 0.0117 * | |||
(0.0061) | ||||
lnCDIG | 0.0216 *** | |||
(0.0063) | ||||
lnNDIG | 0.0181 ** | |||
(0.0080) | ||||
lnGDIG | 0.0125 | |||
(0.0080) | ||||
lnDIG × CITY | 0.0147 ** | |||
(0.0070) | ||||
Constant Term | −0.4504 | −0.3917 | −0.4139 | −0.4142 |
(0.8652) | (0.8701) | (0.8720) | (0.8655) | |
Time Fixed Effects | Yes | Yes | Yes | Yes |
City Fixed Effects | Yes | Yes | Yes | Yes |
Industry Fixed Effects | Yes | Yes | Yes | Yes |
N | 627 | 627 | 627 | 627 |
r2 | 0.7038 | 0.7005 | 0.6992 | 0.7041 |
F | 40.1155 | 39.5027 | 39.2429 | 38.9943 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Tan, M. The Impact of Digital Transformation on the Global Value Chain Position of the Guangdong–Hong Kong–Macao Greater Bay Area. Systems 2024, 12, 223. https://doi.org/10.3390/systems12060223
Li X, Tan M. The Impact of Digital Transformation on the Global Value Chain Position of the Guangdong–Hong Kong–Macao Greater Bay Area. Systems. 2024; 12(6):223. https://doi.org/10.3390/systems12060223
Chicago/Turabian StyleLi, Xiumin, and Minshan Tan. 2024. "The Impact of Digital Transformation on the Global Value Chain Position of the Guangdong–Hong Kong–Macao Greater Bay Area" Systems 12, no. 6: 223. https://doi.org/10.3390/systems12060223
APA StyleLi, X., & Tan, M. (2024). The Impact of Digital Transformation on the Global Value Chain Position of the Guangdong–Hong Kong–Macao Greater Bay Area. Systems, 12(6), 223. https://doi.org/10.3390/systems12060223