Extended Application of Double Machine Learning in Corporate Financial Resilience Research: Based on Data Factor Marketization
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Literature Review
2.1.1. Policy Background of DFM Implementation in China
2.1.2. Corporate Financial Resilience
2.2. Hypothesis Development
3. Methodology
3.1. The Use of Double Machine Learning (DML)
3.2. Variables
3.2.1. Dependent Variable: Corporate Financial Resilience
3.2.2. Independent Variable: Data Factor Marketization (DFM)
3.2.3. Control Variables
3.3. Data Source
4. Empirical Results
4.1. Main Regression
4.2. Robustness Checks
4.2.1. Endogeneity Test by Instrumental Variable Method
4.2.2. Resetting the DML Model
4.3. Mechanism Effect Test
4.4. Heterogeneity Analysis
4.4.1. Firm-Level Heterogeneity
4.4.2. Industry-Level Heterogeneity
4.4.3. Regional-Level Heterogeneity
5. Findings and Discussions
5.1. Conclusions
5.2. Theoretical Contributions
5.3. Practical Contributions
5.4. Limitations and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Tang, J.; Li, C. How Does Digital Transformation Affect Corporate Resilience: A Moderation Perspective Study. Appl. Econ. 2025, 57, 121–134. [Google Scholar] [CrossRef]
- Huang, Y.; Lau, C. Can Digital Transformation Promote the Green Innovation Quality of Enterprises? Empirical Evidence from China. PLoS ONE 2024, 19, e0296058. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience Thinking: Integrating Resilience, Adaptability and Transformability. Ecol. Soc. 2010, 15, 20. [Google Scholar] [CrossRef]
- Williams, T.A.; Gruber, D.A.; Sutcliffe, K.M.; Shepherd, D.A.; Zhao, E.Y. Organizational Response to Adversity: Fusing Crisis Management and Resilience Research Streams. Acad. Manag. Ann. 2017, 11, 733–769. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, J. Tie Strength, Organizational Resilience and Enterprise Crisis Management: An Empirical Study in Pandemic Time. Int. J. Disaster Risk Reduct. 2022, 81, 103240. [Google Scholar] [CrossRef]
- Pagani, M. Digital Business Strategy and Value Creation: Framing the Dynamic Cycle of Control Points. MIS Q. 2013, 37, 617–632. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, D. Marketization of Data Elements and Enterprise Green Governance Performance: A Quasi-natural Experiment Based on Data Trading Platforms. Manag. Decis. Econ. 2024, 46, 1686–1700. [Google Scholar] [CrossRef]
- Gheibi, S.; Fay, S. The Impact of Supply Disruption Risk on a Retailer’s Pricing and Procurement Strategies in the Presence of a Substitute Product. J. Retail. 2021, 97, 359–376. [Google Scholar] [CrossRef]
- Hillman, A.J.; Withers, M.C.; Collins, B.J. Resource Dependence Theory: A Review. J. Manag. 2009, 35, 1404–1427. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Zhou, D. Double/Debiased Machine Learning for Logistic Partially Linear Model. Econom. J. 2021, 24, 559–588. [Google Scholar] [CrossRef]
- Akgün, A.E.; Keskin, H. Organisational Resilience Capacity and Firm Product Innovativeness and Performance. Int. J. Prod. Res. 2014, 52, 6918–6937. [Google Scholar] [CrossRef]
- Lengnick-Hall, C.A.; Beck, T.E.; Lengnick-Hall, M.L. Developing a Capacity for Organizational Resilience through Strategic Human Resource Management. Hum. Resour. Manag. Rev. 2011, 21, 243–255. [Google Scholar]
- Bamiatzi, V.; Bozos, K.; Cavusgil, S.T.; Hult, G.T.M. Revisiting the Firm, Industry, and Country Effects on Profitability under Recessionary and Expansion Periods: A Multilevel Analysis. Strateg. Manag. J. 2016, 37, 1448–1471. [Google Scholar] [CrossRef]
- Meyer, A.D.; Brooks, G.R.; Goes, J.B. Environmental Jolts and Industry Revolutions: Organizational Responses to Discontinuous Change. Strateg. Manag. J. 1990, 14, 93–110. [Google Scholar]
- Deverell, E.; Olsson, E.-K. Organizational Culture Effects on Strategy and Adaptability in Crisis Management. Risk Manag. 2010, 12, 116–134. [Google Scholar] [CrossRef]
- Huang, Y.; Xiong, N.; Liu, C. Renewable Energy Technology Innovation and ESG Greenwashing: Evidence from Supervised Machine Learning Methods Using Patent Text. J. Environ. Manag. 2024, 370, 122833. [Google Scholar] [CrossRef]
- Hannila, H.; Silvola, R.; Harkonen, J.; Haapasalo, H. Data-Driven Begins with DATA.; Potential of Data Assets. J. Comput. Inf. Syst. 2022, 62, 29–38. [Google Scholar] [CrossRef]
- Basukie, J.; Wang, Y.; Li, S. Big Data Governance and Algorithmic Management in Sharing Economy Platforms: A Case of Ridesharing in Emerging Markets. Technol. Forecast. Soc. Chang. 2020, 161, 120310. [Google Scholar] [CrossRef]
- Zheng, X.; Griffith, D.A.; Ge, L.; Benoliel, U. Effects of Contract Ambiguity in Interorganizational Governance. J. Mark. 2020, 84, 147–167. [Google Scholar] [CrossRef]
- Lv, D.D.; Schotter, A.P.J. The Dark Side of Powerful Platform Owners: Aspiration Adaptations of Digital Firms. Acad. Manag. Perspect. 2024, in press. [Google Scholar] [CrossRef]
- Janssen, M.; Estevez, E. Lean Government and Platform-Based Governance—Doing More with Less. Gov. Inf. Q. 2013, 30, S1–S8. [Google Scholar] [CrossRef]
- ALqodsi, E.M. Extended Producer Responsibility in E-waste Recycling: A Secure Path to a Sustainable Future for UAE. Sustain. Dev. 2025, 33, 309–318. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Y.; Wu, D.; Yin, X. Can the Establishment of a Personal Data Protection System Promote Corporate Innovation? Res. Policy 2024, 53, 105080. [Google Scholar]
- Fossen, F.M.; Sorgner, A. New Digital Technologies and Heterogeneous Wage and Employment Dynamics in the United States: Evidence from Individual-Level Data. Technol. Forecast. Soc. Chang. 2022, 175, 121381. [Google Scholar]
- Holling, C.S. Resilience and Stability of Ecological Systems; Annual Reviews: San Mateo, CA, USA, 1973. [Google Scholar]
- Vogus, T.J.; Sutcliffe, K.M. Organizational Resilience: Towards a Theory and Research Agenda. In Proceedings of the 2007 IEEE International Conference on Systems, Man and Cybernetics, Montréal, QC, Canada, 7–10 October 2007; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2007; pp. 3418–3422. [Google Scholar]
- Kavadis, N.; Thomsen, S. Sustainable Corporate Governance: A Review of Research on Long-term Corporate Ownership and Sustainability. Corp. Gov. 2023, 31, 198–226. [Google Scholar] [CrossRef]
- Ding, W.; Levine, R.; Lin, C.; Xie, W. Corporate Immunity to the COVID-19 Pandemic. J. Financ. Econ. 2021, 141, 802–830. [Google Scholar]
- Gittell, J.H.; Cameron, K.; Lim, S.; Rivas, V. Relationships, Layoffs, and Organizational Resilience: Airline Industry Responses to September 11. J. Appl. Behav. Sci. 2006, 42, 300–329. [Google Scholar] [CrossRef]
- Ortiz-de-Mandojana, N.; Bansal, P. The Long-term Benefits of Organizational Resilience through Sustainable Business Practices. Strateg. Manag. J. 2016, 37, 1615–1631. [Google Scholar] [CrossRef]
- Lins, K.V.; Servaes, H.; Tamayo, A. Social Capital, Trust, and Firm Performance: The Value of Corporate Social Responsibility during the Financial Crisis. J. Financ. 2017, 72, 1785–1824. [Google Scholar] [CrossRef]
- Pal, R.; Torstensson, H.; Mattila, H. Antecedents of Organizational Resilience in Economic Crises—An Empirical Study of Swedish Textile and Clothing SMEs. Int. J. Prod. Econ. 2014, 147, 410–428. [Google Scholar]
- Erol, O.; Sauser, B.J.; Mansouri, M. A Framework for Investigation into Extended Enterprise Resilience. Enterp. Inf. Syst. 2010, 4, 111–136. [Google Scholar] [CrossRef]
- Dong, H.; Xing, G. Enhancing Organisational Resilience of ‘Gazelle Enterprises’ through Network Embeddedness and Knowledge Search: The Moderating Effect of Digital Transformation. Technol. Anal. Strateg. Manag. 2024, 36, 4628–4642. [Google Scholar] [CrossRef]
- Napier, E.; Liu, S.Y.; Liu, J. Adaptive Strength: Unveiling a Multilevel Dynamic Process Model for Organizational Resilience. J. Bus. Res. 2024, 171, 114334. [Google Scholar]
- Yang, X.; Yao, Y.; Tian, K.; Jiang, W.; Xing, Q.; Yang, J.; Liu, C. Disaster Response Strategies of Governments and Social Organizations: From the Perspective of Infrastructure Damage and Asymmetric Resource Dependence. Heliyon 2023, 9, e20432. [Google Scholar] [PubMed]
- Malatesta, D.; Smith, C.R. Lessons from Resource Dependence Theory for Contemporary Public and Nonprofit Management. Public Adm. Rev. 2014, 74, 14–25. [Google Scholar] [CrossRef]
- Pfeffer, J. A Resource Dependence Perspective on Intercorporate Relations. Intercorporate Relat. Struct. Anal. Bus. 1987, 1, 25–55. [Google Scholar]
- Drees, J.M.; Heugens, P.P.M.A.R. Synthesizing and Extending Resource Dependence Theory: A Meta-Analysis. J. Manag. 2013, 39, 1666–1698. [Google Scholar] [CrossRef]
- McIvor, R. How the Transaction Cost and Resource-Based Theories of the Firm Inform Outsourcing Evaluation. J. Oper. Manag. 2009, 27, 45–63. [Google Scholar] [CrossRef]
- Holland, J. Private Voluntary Disclosure, Financial Intermediation and Market Efficiency. Bus. Financ. Acc. 1998, 25, 29–68. [Google Scholar] [CrossRef]
- Chen, F.; Hope, O.-K.; Li, Q.; Wang, X. Financial Reporting Quality and Investment Efficiency of Private Firms in Emerging Markets. Account. Rev. 2011, 86, 1255–1288. [Google Scholar]
- Strauch, M.; Pidun, U.; zu Knyphausen-Aufsess, D. Process Matters–How Strategic Decision-Making Process Characteristics Impact Capital Allocation Efficiency. Long Range Plan. 2019, 52, 202–220. [Google Scholar]
- Yang, J.; Jiang, Y.; Chen, H.; Gan, S. Digital Finance and Chinese Corporate Labor Investment Efficiency: The Perspective of Financing Constraints and Human Capital Structure. Front. Psychol. 2022, 13, 962806. [Google Scholar]
- Obrenovic, B.; Du, J.; Godinic, D.; Tsoy, D.; Khan, M.A.S.; Jakhongirov, I. Sustaining Enterprise Operations and Productivity during the COVID-19 Pandemic: “Enterprise Effectiveness and Sustainability Model”. Sustainability 2020, 12, 5981. [Google Scholar] [CrossRef]
- Choi, T.Y.; Krause, D.R. The Supply Base and Its Complexity: Implications for Transaction Costs, Risks, Responsiveness, and Innovation. J. Oper. Manag. 2006, 24, 637–652. [Google Scholar]
- Knaus, M.C. Double Machine Learning-Based Programme Evaluation under Unconfoundedness. Econom. J. 2022, 25, 602–627. [Google Scholar]
- Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W.; Robins, J. Double/Debiased Machine Learning for Treatment and Structural Parameters. Econom. J. 2018, 21, C1–C68. [Google Scholar] [CrossRef]
- Ling, S.; Jin, S.; Wang, H.; Zhang, Z.; Feng, Y. Transportation Infrastructure Upgrading and Green Development Efficiency: Empirical Analysis with Double Machine Learning Method. J. Environ. Manag. 2024, 358, 120922. [Google Scholar]
- Wang, L.; Shao, J. The Energy Saving Effects of Digital Infrastructure Construction: Empirical Evidence from Chinese Industry. Energy 2024, 294, 130778. [Google Scholar]
- Farbmacher, H.; Huber, M.; Lafférs, L.; Langen, H.; Spindler, M. Causal Mediation Analysis with Double Machine Learning. Econom. J. 2022, 25, 277–300. [Google Scholar]
- Fee, C.E.; Hadlock, C.J.; Pierce, J.R. Investment, Financing Constraints, and Internal Capital Markets: Evidence from the Advertising Expenditures of Multinational Firms. Rev. Financ. Stud. 2009, 22, 2361–2392. [Google Scholar]
- Kurrahman, T.; Tsai, F.M.; Sethanan, K.; Chen, C.; Tseng, M. Assessing a Hierarchical Structure for Circular Supply Chain Management Performance: Improving Firms’ Eco-innovation and Technological Performance. Bus. Strat. Environ. 2025, 34, 2035–2064. [Google Scholar] [CrossRef]
- Song, J.; Wang, R.; Cavusgil, S.T. State Ownership and Market Orientation in China’s Public Firms: An Agency Theory Perspective. Int. Bus. Rev. 2015, 24, 690–699. [Google Scholar]
- Edelman, L.B.; Suchman, M.C. The Legal Environments of Organizations. Annu. Rev. Sociol. 1997, 23, 479–515. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Pei, Z. Machine Learning for High-Entropy Alloys: Progress, Challenges and Opportunities. Prog. Mater. Sci. 2023, 131, 101018. [Google Scholar]
- Hair, J.F., Jr.; Fávero, L.P.; Junior, W.T.; Duarte, A. Deterministic and Stochastic Machine Learning Classification Models: A Comparative Study Applied to Companies’ Capital Structures. Mathematics 2025, 13, 411. [Google Scholar] [CrossRef]
Algorithm: Double Machine Learning (DML) |
---|
1: Input: Data // Response, treatment, and control variables;initial ML estimators //For nuisance parameter estimation; sample split number;test interval; learning rate // For gradient updates; |
2: for to do//Cross-fitting iterations |
3: Split sample into and // Create training and testing folds |
4: for each do // Train on complementary sample |
Train first stage models: // Estimate nuisance functions using machine learning methods |
_train |
← ML_train |
5: end for |
6: for each do // Compute estimates on test fold |
7: if sample size > threshold then Compute residuals: // Calculate orthogonal residuals |
// Treatment residual |
// Outcome residual |
8: end if |
9: Set: // Compute influence function |
// Orthogonalized score |
10: end for |
11: if convergence check then estimate local parameters: // Verify estimation quality. Calculate local parameter estimates and variance |
12: end if |
13: for each parameter update do Update ML models: // Improve ML models. // Gradient descent updates |
// Update first stage |
// Update second stage |
14: end for |
15: if then Aggregate estimates: // Final aggregation. Combine estimates across folds |
// Average treatment effect |
// Standard error |
16: end if |
17: end for |
18: if asymptotic_normality_check then Verify conditions: // Verify theoretical properties. Check asymptotic behavior |
// Main term |
// Remainder |
19: end if |
20: Return // Final estimates with standard errors |
Variables | Definition | |
---|---|---|
Dependent Variable | Financial resilience measure combining three-year sales growth stability and stock return volatility through entropy method | |
Independent Variable | Binary indicator (1 = data exchange platform exists in company’s city; 0 = otherwise) | |
Control Variables | Natural logarithms of total assets | |
Total liabilities divided by total assets (leverage ratio) | ||
Net profit divided by average shareholders’ equity (return on equity) | ||
Operating cash flow divided by total assets (cash flow ratio) | ||
Net fixed assets divided by total assets (asset tangibility) | ||
Natural logarithm of board size | ||
Proportion of independent directors on board | ||
Percentage of shares held by top five shareholders | ||
Natural logarithm of firm age in years | ||
State ownership dummy (1 = state-owned; 0 = otherwise) | ||
Net profit divided by average total assets (return on assets) | ||
Market value plus debt divided by book value of assets | ||
Inventory divided by total assets (inventory intensity) | ||
Fixed assets divided by total assets (capital intensity) | ||
Percentage of shares held by executives (managerial ownership) | ||
Percentage of shares held by institutional investors | ||
Administrative expenses divided by operating income | ||
Other receivables divided by total assets |
Variables | N | Mean | SD | Min | Median | Max |
---|---|---|---|---|---|---|
33,507 | 1.49 | 0.18 | 0.20 | 1.49 | 1.89 | |
33,507 | 0.32 | 0.47 | 0.00 | 0.00 | 1.00 | |
33,507 | 22.20 | 1.33 | 14.94 | 22.00 | 28.64 | |
33,507 | 0.41 | 0.21 | 0.01 | 0.40 | 1.96 | |
33,507 | 0.04 | 0.08 | −1.32 | 0.04 | 1.28 | |
33,507 | 0.06 | 0.22 | −14.82 | 0.08 | 2.38 | |
33,507 | 0.66 | 0.54 | −0.05 | 0.55 | 12.37 | |
33,507 | 0.05 | 0.07 | −0.89 | 0.05 | 0.88 | |
33,507 | 0.14 | 0.13 | 0.00 | 0.11 | 0.94 | |
33,507 | 0.21 | 0.16 | 0.00 | 0.17 | 0.97 | |
33,507 | 2.12 | 0.20 | 1.10 | 2.20 | 2.89 | |
33,507 | 0.38 | 0.06 | 0.00 | 0.36 | 0.80 | |
33,507 | 0.30 | 0.46 | 0.00 | 0.00 | 1.00 | |
33,507 | 0.54 | 0.16 | 0.01 | 0.54 | 0.99 | |
33,507 | 2.09 | 4.59 | 0.62 | 1.59 | 715.94 | |
33,507 | 0.36 | 0.48 | 0.00 | 0.00 | 1.00 | |
33,507 | 2.92 | 0.34 | 0.69 | 2.94 | 4.17 | |
33,507 | 0.44 | 0.25 | 0.00 | 0.45 | 1.01 | |
33,507 | 15.01 | 20.38 | 0.00 | 1.66 | 89.99 | |
33,507 | 0.01 | 0.03 | 0.00 | 0.01 | 0.80 |
(1) | (2) | (3) | |
---|---|---|---|
0.0169 *** (0.0027) | 0.0166 *** (0.0028) | 0.0191 *** (0.0027) | |
Control Variables | YES | YES | YES |
Squared Control Variables | NO | YES | YES |
Year FE | NO | NO | YES |
Firm FE | NO | NO | YES |
Adj. R2 | 0.213 | 0.248 | 0.275 |
AIC | 15,824 | 15,241 | 14,936 |
N | 33,507 | 33,507 | 33,507 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
0.0330 *** (0.0001) | 0.0323 *** (0.0001) | 0.0430 *** (0.0002) | 0.0417 *** (0.0140) | 0.0413 *** (0.0137) | 0.0427 *** (0.0198) | |
Control Variables | YES | NO | YES | YES | NO | YES |
Squared Control Variables | NO | YES | YES | NO | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
Firm FE | YES | YES | YES | YES | YES | YES |
N | 33,507 | 33,507 | 33,507 | 33,507 | 33,507 | 33,507 |
(1) | (2) | (3) | (4) | (4) | (5) | |
---|---|---|---|---|---|---|
0.0230 *** (0.0040) | 0.0249 *** (0.0024) | 0.0495 *** (0.0010) | 0.0258 *** (0.0009) | 1.3243 ** (0.6258) | 1.7153 * (0.8778) | |
Control Variables | YES | YES | YES | YES | YES | YES |
Squared Control Variables | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
Firm FE | YES | YES | YES | YES | YES | YES |
N | 33,507 | 33,507 | 33,507 | 33,507 | 33,507 | 33,507 |
(1) Aggregate Effect | (2) Direct Effect | (3) Indirect Effect | |
---|---|---|---|
0.0437 *** | 0.0429 *** | 0.0018 * | |
0.0437 *** | 0.0441 *** | 0.0015 * | |
0.0437 *** | 0.0394 *** | 0.0020 * |
(1) Big | (2) Medium | (3) Small | (4) State-Owned | (5) Private | |
---|---|---|---|---|---|
0.026 *** (0.0049) | 0.031 *** (0.0036) | 0.041 *** (0.0026) | 0.034 *** (0.0031) | 0.044 *** (0.0028) | |
Control Variables | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES |
Firm FE | YES | YES | YES | YES | YES |
N | 10,357 | 10,357 | 10,357 | 10,692 | 20,379 |
Group | Difference in Coefficients | T-Value | p-Value |
---|---|---|---|
Big vs. Medium | −0.0054 | −0.8881 | 0.3754 |
Medium vs. Small | −0.0093 | −0.2093 | 0.0362 *** |
Small vs. Big | −0.0147 | −2.6500 | 0.0081 *** |
State-owned vs. Private | 0.0105 | 2.5615 | 0.0119 *** |
(1) Low Monopoly | (2) High Monopoly | (3) High Tech | (4) Ordinary | |
---|---|---|---|---|
0.0397 *** (0.003) | 0.0391 *** (0.002) | 0.0409 *** (0.003) | 0.0271 *** (0.003) | |
Control Variables | YES | YES | YES | YES |
Squared Control Variables | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Firm FE | 17,690 | 13,381 | 19,158 | 11,913 |
Group | Difference in Coefficients | T-Value | p-Value |
---|---|---|---|
Low monopoly vs. High monopoly | −0.0137 | −2.0451 | 0.0067 *** |
High tech vs. Ordinary | 0.0138 | 3.2527 | 0.0011 *** |
(1) Eastern Region | (2) Central Region | (3) Western Region | |
---|---|---|---|
0.0197 *** (0.0057) | 0.0121 * (0.0071) | 0.0392 *** (0.0026) | |
Control Variables | YES | YES | YES |
Squared Control Variables | YES | YES | YES |
Year FE | YES | YES | YES |
Firm FE | 4433 | 4230 | 22,408 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, F.; Huang, Y.; Liu, C. Extended Application of Double Machine Learning in Corporate Financial Resilience Research: Based on Data Factor Marketization. Systems 2025, 13, 292. https://doi.org/10.3390/systems13040292
Song F, Huang Y, Liu C. Extended Application of Double Machine Learning in Corporate Financial Resilience Research: Based on Data Factor Marketization. Systems. 2025; 13(4):292. https://doi.org/10.3390/systems13040292
Chicago/Turabian StyleSong, Fangzhou, Yang Huang, and Chengkun Liu. 2025. "Extended Application of Double Machine Learning in Corporate Financial Resilience Research: Based on Data Factor Marketization" Systems 13, no. 4: 292. https://doi.org/10.3390/systems13040292
APA StyleSong, F., Huang, Y., & Liu, C. (2025). Extended Application of Double Machine Learning in Corporate Financial Resilience Research: Based on Data Factor Marketization. Systems, 13(4), 292. https://doi.org/10.3390/systems13040292