2D Spintronics for Neuromorphic Computing with Scalability and Energy Efficiency
Abstract
:1. Introduction
2. Fundamentals of Neuromorphic Computing
3. Overview of 2D Spintronic Materials
4. Spintronic Device Architectures for Neuromorphic Computing
4.1. MTJs and Spin Valves
4.2. Skyrmion-Based Devices
5. Scalability and Energy Efficiency
6. Applications in Neuromorphic Computing
7. Challenges and Future Outlooks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Wang, L.; Wu, Y.; Gao, H.; Wu, Y.; Qin, G.; Wu, Z.; Han, Y.; Xu, S.; Han, T.; et al. Probing the electronic states and impurity effects in black phosphorus vertical heterostructures. 2D Mater. 2016, 3, 015012. [Google Scholar] [CrossRef]
- Wu, Y.; Yin, G.; Pan, L.; Grutter, A.J.; Pan, Q.; Lee, A.; Gilbert, D.A.; Borchers, J.A.; Ratcliff, W.; Li, A.; et al. Large exchange splitting in monolayer graphene magnetized by an antiferromagnet. Nat. Electron. 2020, 3, 604–611. [Google Scholar]
- Wu, Y.; He, J.J.; Han, T.; Xu, S.; Wu, Z.; Lin, J.; Zhang, T.; He, Y.; Wang, N. Induced ising spin-orbit interaction in metallic thin films on monolayer WSe2. Phys. Rev. B 2019, 99, 121406. [Google Scholar]
- Han, T.; Shen, J.; Yuan, N.F.Q.; Lin, J.; Wu, Z.; Wu, Y.; Xu, S.; An, L.; Long, G.; Wang, Y.; et al. Investigation of the two-gap superconductivity in a few-layer NbSe2-graphene heterojunction. Phys. Rev. B 2018, 97, 060505. [Google Scholar] [CrossRef]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Meng, P.; Chen, J.; Liu, H.; Bian, R.; Zhu, C.; Liu, F.; Liu, Z. 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 2021, 31, 2005443. [Google Scholar]
- Wang, C.-H.; Wang, C.; Meng, F.; Wang, P.; Wang, S.; Liang, S.-J.; Miao, F. 2D layered materials for memristive and neuromorphic applications. Adv. Electron. Mater. 2020, 6, 1901107. [Google Scholar]
- Zhang, Z.; Yang, D.; Li, H.; Li, C.; Wang, Z.; Sun, L.; Yang, H. 2D materials and van der Waals heterojunctions for neuromorphic computing. Neuromorphic Comput. Eng. 2022, 2, 032004. [Google Scholar] [CrossRef]
- Yao, Y.; Cheng, H.; Zhang, B.; Yin, J.; Zhu, D.; Cai, W.; Li, S.; Zhao, W. Tunneling magnetoresistance materials and devices for neuromorphic computing. Mater. Futur. 2023, 2, 032302. [Google Scholar]
- Chen, M.-C.; Sengupta, A.; Roy, K. Magnetic skyrmion as a spintronic deep learning spiking neuron processor. IEEE Trans. Magn. 2018, 54, 1–7. [Google Scholar]
- Ma, Y.; Chen, M.; Aguirre, F.; Yan, Y.; Pazos, S.; Liu, C.; Wang, H.; Yang, T.; Wang, B.; Gong, C. Van der Waals engineering of one-transistor-one-ferroelectric-memristor architecture for an energy-efficient neuromorphic array. Nano Lett. 2025, 25, 2528–2537. [Google Scholar] [PubMed]
- Rehman, M.M.; Samad, Y.A.; Gul, J.Z.; Saqib, M.; Khan, M.; Shaukat, R.A.; Chang, R.; Shi, Y.; Kim, W.Y. 2D materials-memristive devices nexus: From status quo to impending applications. Prog. Mater. Sci. 2025, 152, 101471. [Google Scholar]
- Hadke, S.; Kang, M.-A.; Sangwan, V.K.; Hersam, M.C. Two-dimensional materials for brain-inspired computing hardware. Chem. Rev. 2025, 125, 835–932. [Google Scholar] [PubMed]
- Li, S.; Zhang, Z.; Mao, R.; Xiao, J.; Chang, L.; Zhou, J. A fast and energy-efficient snn processor with adaptive clock/event-driven computation scheme and online learning. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1543–1552. [Google Scholar]
- Yang, S.; Shin, J.; Kim, T.; Moon, K.-W.; Kim, J.; Jang, G.; Hyeon, D.S.; Yang, J.; Hwang, C.; Jeong, Y.; et al. Integrated neuromorphic computing networks by artificial spin synapses and spin neurons. NPG Asia Mater. 2021, 13, 11. [Google Scholar]
- Zhou, J.; Chen, J. Prospect of spintronics in neuromorphic computing. Adv. Electron. Mater. 2021, 7, 2100465. [Google Scholar]
- Sosa, L.; Wi, M.; Barrera, M.; Nasrullah, I.; Wu, Y. Simulating pattern recognition using non-volatile synapses: MRAM, ferroelectrics and magnetic skyrmions. arXiv 2025, arXiv:2501.03450. [Google Scholar]
- Chen, B.; Zeng, M.; Khoo, K.H.; Das, D.; Fong, X.; Fukami, S.; Li, S.; Zhao, W.; Parkin, S.S.P.; Piramanayagam, S.N.; et al. Spintronic devices for high-density memory and neuromorphic computing—A review. Mater. Today 2023, 70, 193–217. [Google Scholar]
- Lin, X.; Yang, W.; Wang, K.L.; Zhao, W. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2019, 2, 274–283. [Google Scholar]
- Zhong, H.; Plummer, D.Z.; Lu, P.; Li, Y.; Leger, P.; Wu, Y. Integrating 2D magnets for quantum devices: From materials and characterization to future technology. Mater. Quantum Technol. 2024, 5, 012001. [Google Scholar]
- Zhang, B.; Lu, P.; Tabrizian, R.; Feng, P.X.-L.; Wu, Y. 2D magnetic heterostructures: Spintronics and quantum future. Npj Spintron. 2024, 2, 6. [Google Scholar] [CrossRef]
- Verma, G.; Nisar, A.; Dhull, S.; Kaushik, B.K. Neuromorphic accelerator for spiking neural network using sot-mram crossbar array. IEEE Trans. Electron Devices 2023, 70, 6012–6020. [Google Scholar] [CrossRef]
- Verma, G.; Soni, S.; Nisar, A.; Kaushik, B.K. Multi-bit mram based high performance neuromorphic accelerator for image classification. Neuromorphic Comput. Eng. 2024, 4, 014008. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, W.; Yang, L.; Wang, J.; Li, J.; Li, L.; Gao, Y.; Zhang, L.; Du, J.; Shu, H.; et al. Strong intrinsic room-temperature ferromagnetism in freestanding non-van der Waals ultrathin 2D crystals. Nat. Commun. 2021, 12, 5688. [Google Scholar] [CrossRef]
- Liu, R.; Liu, T.; Liu, W.; Luo, B.; Li, Y.; Fan, X.; Zhang, X.; Cui, W.; Teng, Y. Semisynbio: A new era for neuromorphic computing. Synth. Syst. Biotechnol. 2024, 9, 594–599. [Google Scholar] [CrossRef]
- Wu, Y.; Sofer, Z.; Karuppasamy, M.; Wang, W. Room-temperature ferroelectric control of 2D layered magnetism. IEEE Trans. Magn. 2024. Available online: https://ieeexplore.ieee.org/document/10677540 (accessed on 20 March 2025).
- Zhang, G.; Guo, F.; Wu, H.; Wen, X.; Yang, L.; Jin, W.; Zhang, W.; Chang, H. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat. Commun. 2022, 13, 5067. [Google Scholar] [CrossRef] [PubMed]
- Burch, K.S.; Mandrus, D.; Park, J.G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52. [Google Scholar] [CrossRef]
- Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H.C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H.R.; Phan, M.-H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293. [Google Scholar] [CrossRef]
- Leger, P.A.; Ramesh, A.; Ulloa, T.; Wu, Y. Machine learning enabled fast optical identification and characterization of 2D materials. Sci. Rep. 2024, 14, 27808. [Google Scholar] [CrossRef]
- Zhang, W.; Wong, P.K.J.; Zhu, R.; Wee, A.T.S. Van der Waals magnets: Wonder building blocks for two-dimensional spintronics? InfoMat 2019, 1, 479–495. [Google Scholar] [CrossRef]
- Wang, K.L.; Wu, Y.; Eckberg, C.; Yin, G.; Pan, Q. Topological quantum materials. MRS Bull. 2020, 45, 373–379. [Google Scholar]
- Vilà, M.; Hsu, C.; Garcia, J.H.; Benítez, L.A.; Waintal, X.; Valenzuela, S.O.; Pereira, V.M.; Roche, S. Low-symmetry topological materials for large charge-to-spin interconversion: The case of transition metal dichalcogenide monolayers. Phys. Rev. Res. 2020, 3, 043230. [Google Scholar]
- Yasuda, K.; Tsukazaki, A.; Yoshimi, R.; Kondou, K.; Takahashi, K.; Takahashi, K.; Otani, Y.; Kawasaki, M.; Kawasaki, M.; Tokura, Y.; et al. Current-nonlinear hall effect and spin-orbit torque magnetization switching in a magnetic topological insulator. Phys. Rev. Lett. 2016, 119, 137204. [Google Scholar] [CrossRef] [PubMed]
- Binda, F.; Avci, C.O.; Alvarado, S.F.; Noël, P.; Lambert, C.-H.; Gambardella, P. Spin-orbit torques and magnetotransport properties of α − Sn and β − Sn heterostructures. Phys. Rev. B 2021, 103, 224428. [Google Scholar]
- Wang, Y.; Deorani, P.; Banerjee, K.; Koirala, N.; Brahlek, M.J.; Oh, S.; Yang, H. Topological surface states originated spin-orbit torques in Bi2Se3. Phys. Rev. Lett. 2015, 114, 257202. [Google Scholar] [CrossRef]
- Singh, D.K.; Gupta, G. Brain-inspired computing: Can 2D materials bridge the gap between biological and artificial neural networks? Mater. Adv. 2024, 5, 3158–3172. [Google Scholar]
- Merkel, C.E. Synaptic scaling and optimal bias adjustments for power reduction in neuromorphic systems. In Proceedings of the 2023 IEEE 66th International Midwest Symposium on Circuits and Systems (MWSCAS), Tempe, AZ, USA, 6–9 August 2023; pp. 748–752. [Google Scholar]
- Gupta, S.; Vadde, V.; Muralidharan, B.; Sharma, A. A comprehensive convolutional neural network architecture design using magnetic skyrmion and domain wall. arXiv 2024, arXiv:2407.08469. [Google Scholar]
- Wu, Y.; Zhang, S.; Zhang, J.; Wang, W.; Zhu, Y.L.; Hu, J.; Yin, G.; Wong, K.; Fang, C.; Wan, C.; et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat. Commun. 2020, 11, 3860. [Google Scholar] [CrossRef]
- Marfoua, B.; Hong, J. Highly efficient spin-orbit torque generation in bilayer WTe2/Fe3GaTe2 heterostructure. Mater. Today Phys. 2024, 42, 101378. [Google Scholar] [CrossRef]
- Shin, I.; Cho, W.J.; An, E.-S.; Park, S.; Jeong, H.-W.; Jang, S.; Baek, W.J.; Park, S.Y.; Yang, D.-H.; Seo, J.H. Spin–orbit torque switching in an all-van der Waals heterostructure. Adv. Mater. 2022, 34, 2101730. [Google Scholar]
- Wang, H.; Wu, H.; Zhang, J.; Liu, Y.; Chen, D.; Pandey, C.; Yin, J.; Wei, D.; Lei, N.; Shi, S. Room temperature energy-efficient spin-orbit torque switching in two-dimensional van der Waals Fe3GeTe2 induced by topological insulators. Nat. Commun. 2023, 14, 5173. [Google Scholar] [PubMed]
- Mathon, J.; Umerski, A. Theory of tunneling magnetoresistance in a disordered Fe/MgO/Fe(001) junction. Phys. Rev. B 2006, 74, 140404. [Google Scholar]
- Jia, X.; Xia, K.; Bauer, G.E.W. Thermal spin transfer in fe-mgo-fe tunnel junctions. Phys. Rev. Lett. 2011, 107, 176603. [Google Scholar] [PubMed]
- Li, X.; Lu, J.; Zhang, J.; You, L.; Su, Y.; Tsymbal, E.Y. Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes. Nano Lett. 2019, 19, 5133–5139. [Google Scholar] [PubMed]
- Li, D. Large magnetoresistance and efficient spin injection in ferromagnet/graphene/Fe3GeTe2 van der Waals magnetic tunnel junctions. J. Phys. Chem. C 2021, 125, 16228–16234. [Google Scholar]
- Zhang, L.; Li, T.; Li, J.; Jiang, Y.; Yuan, J.; Li, H. Perfect spin filtering effect on Fe3GeTe2-based van der Waals magnetic tunnel junctions. J. Phys. Chem. C 2020, 124, 27429–27435. [Google Scholar]
- Li, X.; Zhu, M.; Wang, Y.; Zheng, F.; Dong, J.; Zhou, Y.; You, L.; Zhang, J. Tremendous tunneling magnetoresistance effects based on van der Waals room-temperature ferromagnet Fe3GaTe2 with highly spin-polarized Fermi surfaces. Appl. Phys. Lett. 2023, 122, 082404. [Google Scholar]
- Tehrani, S.; Slaughter, J.M.; Deherrera, M.; Engel, B.N.; Rizzo, N.D.; Salter, J.; Durlam, M.; Dave, R.W.; Janesky, J.; Butcher, B.; et al. Magnetoresistive random access memory using magnetic tunnel junctions. Proc. IEEE 2003, 91, 703–714. [Google Scholar]
- Hu, J.-M.; Li, Z.; Chen, L.-Q.; Nan, C.-W. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun. 2011, 2, 553. [Google Scholar]
- Cao, Q.; Lü, W.; Wang, X.R.; Guan, X.; Wang, L.; Yan, S.; Wu, T.; Wang, X. Nonvolatile multistates memories for high-density data storage. ACS Appl. Mater. Interfaces 2020, 12, 42449–42471. [Google Scholar] [PubMed]
- Indiveri, G.; Chicca, E.; Douglas, R. A vlsi array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 2006, 17, 211–221. [Google Scholar] [PubMed]
- Younis, M.; Abdullah, M.; Dai, S.; Iqbal, M.A.; Tang, W.; Sohail, M.T.; Atiq, S.; Chang, H.; Zeng, Y.-J. Magnetoresistance in 2D magnetic materials: From fundamentals to applications. Adv. Funct. Mater. 2025, 35, 2417282. [Google Scholar] [CrossRef]
- Lim, C.K.; Devolder, T.; Chappert, C.; Grollier, J.; Cros, V.; Vaurès, A.; Fert, A.; Faini, G. Domain wall displacement induced by subnanosecond pulsed current. Appl. Phys. Lett. 2004, 84, 2820–2822. [Google Scholar]
- Al Bahri, M. Controlling domain wall thermal stability switching in magnetic nanowires for storage memory nanodevices. J. Magn. Magn. Mater. 2022, 543, 168611. [Google Scholar]
- Ababei, R.V.; Ellis, M.O.A.; Vidamour, I.T.; Devadasan, D.S.; Allwood, D.A.; Vasilaki, E.; Hayward, T.J. Neuromorphic computation with a single magnetic domain wall. Sci. Rep. 2021, 11, 15587. [Google Scholar] [CrossRef] [PubMed]
- Lequeux, S.; Sampaio, J.; Cros, V.; Yakushiji, K.; Fukushima, A.; Matsumoto, R.; Kubota, H.; Yuasa, S.; Grollier, J. A magnetic synapse: Multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 2016, 6, 31510. [Google Scholar] [CrossRef] [PubMed]
- Cubukcu, M.; Boulle, O.; Mikuszeit, N.; Hamelin, C.; Brächer, T.; Lamard, N.; Cyrille, M.-C.; Buda-Prejbeanu, L.; Garello, K.; Miron, I.M.; et al. Ultra-fast perpendicular spin-orbit torque MRAM. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Zhang, M.D.C.D.; Zhao, Z.; Li, M.; Wang, J.-P. Field-free spin-orbit torque switching of composite perpendicular CoFeB/Gd/CoFeB layers utilized for three-terminal magnetic tunnel junctions. Appl. Phys. Lett. 2017, 111, 012402. [Google Scholar] [CrossRef]
- Li, Z.; Shi, Y.; Chi, K.; Zhang, W.; Feng, X.; Xing, Y.; Meng, H.; Liu, B. Field-free spin-orbit torque induced magnetization reversal in a composite free layer with interlayer exchange coupling. Appl. Phys. Lett. 2021, 118, 132402. [Google Scholar]
- Lone, A.H.; Amara, S.; Fariborzi, H. Voltage-controlled domain wall motion-based neuron and stochastic magnetic tunnel junction synapse for neuromorphic computing applications. IEEE J. Explor. Solid-State Comput. Devices Circuits 2022, 8, 1–9. [Google Scholar]
- Liu, S.; Bennett, C.H.; Friedman, J.S.; Marinella, M.J.; Paydarfar, D.; Incorvia, J.A.C. Controllable reset behavior in domain wall-magnetic tunnel junction artificial neurons for task-adaptable computation. IEEE Magn. Lett. 2021, 12, 1–5. [Google Scholar]
- Lone, A.H.; Li, H.; El-Atab, N.; Setti, G.; Fariborzi, H. Voltage-gated domain wall magnetic tunnel junction for neuromorphic computing applications. IEEE Trans. Electron Devices 2023, 70, 6293–6300. [Google Scholar]
- Sengupta, A.; Roy, K. A vision for all-spin neural networks: A device to system perspective. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 2267–2277. [Google Scholar]
- Marrows, C.H.; Barker, J.; Moore, T.A.; Moorsom, T. Neuromorphic computing with spintronics. Npj Spintron. 2024, 2, 12. [Google Scholar]
- Heinze, S.; von Bergmann, K.; Menzel, M.; Brede, J.; Kubetzka, A.; Wiesendanger, R.; Bihlmayer, G.; Blügel, S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 2011, 7, 713–718. [Google Scholar]
- Wu, Y. Magnetic whirlpools creep and flow in response to emergent electrodynamics. Nature 2024, 633, 527–528. [Google Scholar]
- Albert, F.; Reyren, N.; Cros, V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater. 2017, 2, 17031. [Google Scholar]
- Wu, Y.; Francisco, B.; Chen, Z.; Wang, W.; Zhang, Y.; Wan, C.; Han, X.; Chi, H.; Hou, Y.; Lodesani, A.; et al. A van der Waals interface hosting two groups of magnetic skyrmions. Adv. Mater. 2022, 34, 2110583. [Google Scholar]
- Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion lattice in a chiral magnet. Science 2009, 323, 915–919. [Google Scholar]
- Yu, X.Z.; Kanazawa, N.; Onose, Y.; Kimoto, K.; Zhang, W.Z.; Ishiwata, S.; Matsui, Y.; Tokura, Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. NAture Mater. 2011, 10, 106–109. [Google Scholar]
- Woo, S.; Litzius, K.; Krüger, B.; Im, M.-Y.; Caretta, L.; Richter, K.; Mann, M.; Krone, A.; Reeve, R.; Weigand, M.; et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 2016, 15, 501–506. [Google Scholar] [PubMed]
- Jiang, W.; Zhang, X.; Yu, G.; Zhang, W.; Wang, X.; Jungfleisch, M.B.; Pearson, J.E.; Cheng, X.; Heinonen, O.; Wang, K.L.; et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 2016, 13, 162–169. [Google Scholar]
- Tokunaga, Y.; Yu, X.Z.; White, J.S.; Rønnow, H.M.; Morikawa, D.; Taguchi, Y.; Tokura, Y. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 2015, 6, 7638. [Google Scholar] [PubMed]
- Caretta, L.; Mann, M.; Büttner, F.; Ueda, K.; Pfau, B.; Günther, C.M.; Hessing, P.; Churikova, A.; Klose, C.; Schneider, M.; et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 2018, 13, 1154–1160. [Google Scholar]
- Mi, S.; Guo, J.; Hu, G.; Wang, G.; Li, S.; Gong, Z.; Jin, S.; Xu, R.; Pang, F.; Ji, W.; et al. Real-space topology-engineering of skyrmionic spin textures in a van der Waals ferromagnet Fe3GaTe2. Nano Lett. 2024, 24, 13094–13102. [Google Scholar]
- Lone, A.H.; Ganguly, A.; Amara, S.; Das, G.; Fariborzi, H. Skyrmion-magnetic tunnel junction synapse with long-term and short-term plasticity for neuromorphic computing. IEEE Trans. Electron Devices 2022, 70, 371–378. [Google Scholar]
- Yu, Z.; Shen, M.; Zeng, Z.; Liang, S.; Liu, Y.; Chen, M.L.; Zhang, Z.; Lu, Z.; You, L.; Yang, X.; et al. Voltage-controlled skyrmion-based nanodevices for neuromorphic computing using a synthetic antiferromagnet. Nanoscale Adv. 2020, 2, 1309–1317. [Google Scholar]
- Bindal, N.; Raj, R.K.; Rajib, M.M.; Atulasimha, J.; Kaushik, B.K. Antiferromagnetic skyrmion based energy-efficient leaky integrate and fire neuron device. J. Phys. D Appl. Phys. 2022, 36, 165201. [Google Scholar]
- Bindal, N.; Raj, R.K.; Kaushik, B.K. Antiferromagnetic skyrmion based shape-configured leaky-integrate-fire neuron device. J. Phys. D Appl. Phys. 2022, 55, 345007. [Google Scholar]
- Lone, A.H.; Ganguly, A.; Li, H.; El-Atab, N.; Setti, G.; Das, G.; Fariborzi, H. Controlling the skyrmion density and size for quantized convolutional neural network. IEEE Access 2023, 12, 149850–149860. [Google Scholar]
- Yu, Z.; Shen, M.; Zeng, Z.; Liang, S.; Liu, Y.; Chen, M.L.; Zhang, Z.; Lu, Z.; Zhang, Y.; Xiong, R. Voltage-controlled skyrmion-based artificial synapse in a synthetic antiferromagnet. arXiv 2019, arXiv:1906.09758. [Google Scholar]
- Raab, K.; Brems, M.A.; Beneke, G.; Dohi, T.; Rothörl, J.; Kammerbauer, F.; Mentink, J.H.; Kläui, M. Brownian reservoir computing realized using geometrically confined skyrmion dynamics. Nat. Commun. 2022, 13, 6982. [Google Scholar] [PubMed]
- Joksas, D.; AlMutairi, A.; Lee, O.; Cubukcu, M.; Lombardo, A.; Kurebayashi, H.; Kenyon, A.J.; Mehonic, A. Memristive, spintronic, and 2D-materials-based devices to improve and complement computing hardware. Adv. Intell. Syst. 2022, 4, 2200068. [Google Scholar]
- Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.D.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 2010, 9, 721–724. [Google Scholar] [PubMed]
- Yuasa, S.; Djayaprawira, D.D. Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier. J. Phys. D Appl. Phys. 2007, 40, R337. [Google Scholar]
- Miron, I.M.; Garello, K.; Gaudin, G.; Zermatten, P.-J.; Costache, M.V.; Auffret, S.; Bandiera, S.; Rodmacq, B.; Schuhl, A.; Gambardella, P. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 2011, 476, 189–193. [Google Scholar]
- Khang, N.H.D.; Nakano, S.; Shirokura, T.; Miyamoto, Y.; Hai, P.N. Ultralow power spin–orbit torque magnetization switching induced by a non-epitaxial topological insulator on si substrates. Sci. Rep. 2020, 10, 12185. [Google Scholar]
- Ghising, P.; Biswas, C.; Lee, Y.H. Graphene spin valves or spin logic devices. Adv. Mater. 2023, 35, 2209137. [Google Scholar]
- Wang, C.-P.; Cheng, S.-H.; Hsueh, W.-J. High spin current density in gate-tunable spin-valves based on graphene nanoribbons. Sci. Rep. 2023, 13, 9234. [Google Scholar]
- Jiang, W.; Upadhyaya, P.; Zhang, W.; Yu, G.; Jungfleisch, M.B.; Fradin, F.Y.; Pearson, J.E.; Tserkovnyak, Y.; Wang, K.L.; Heinonen, O.; et al. Blowing magnetic skyrmion bubbles. Science 2015, 349, 283–286. [Google Scholar]
- Tang, J.; He, C.; Tang, J.; Yue, K.; Zhang, Q.; Liu, Y.; Wang, Q.; Wang, S.; Li, N.; Shen, C.; et al. A reliable all-2D materials artificial synapse for high energy-efficient neuromorphic computing. Adv. Funct. Mater. 2021, 31, 2011083. [Google Scholar]
- Kim, S.; Choi, S.; Lee, H.G.; Jin, D.; Kim, G.; Kim, T.; Lee, J.S.; Shim, W. Neuromorphic van der Waals crystals for substantial energy generation. Nat. Commun. 2021, 12, 47. [Google Scholar]
- Sun, Y.; Li, M.; Ding, Y.; Wang, H.; Wang, H.; Chen, Z.; Xie, D. Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption. InfoMat 2022, 4, e12317. [Google Scholar]
- Grollier, J.; Querlioz, D.; Camsari, K.Y.; Everschor-Sitte, K.; Fukami, S.; Stiles, M.D. Neuromorphic spintronics. Nat. Electron. 2019, 3, 360–370. [Google Scholar]
- Zabihi, M.; Chowdhury, Z.I.; Zhao, Z.; Karpuzcu, U.R.; Wang, J.; Sapatnekar, S.S. In-memory processing on the spintronic cram: From hardware design to application mapping. IEEE Trans. Comput. 2019, 68, 1159–1174. [Google Scholar]
- Shumilin, A.; Neha, P.; Benini, M.; Rakshit, R.; Singh, M.; Graziosi, P.; Cecchini, R.; Gnoli, L.; Prezioso, M.; Bergenti, I.; et al. Glassy synaptic time dynamics in molecular La0.7Sr0.3MnO3/Gaq3/AlOx/Co spintronic crossbar devices. Adv. Electron. Mater. 2024, 10, 2300887. [Google Scholar]
- Kumari, S.; Pradhan, D.K.; Pradhan, N.R.; Rack, P.D. Recent developments on 2D magnetic materials: Challenges and opportunities. Emergent Mater. 2021, 4, 827–846. [Google Scholar]
- Lin, Z.; Peng, Y.; Wu, B.; Wang, C.; Luo, Z.; Yang, J. Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications. Chin. Phys. B 2022, 31, 087506. [Google Scholar]
- Hao, Q.; Dai, H.; Cai, M.; Chen, X.; Xing, Y.; Chen, H.; Zhai, T.; Wang, X.; Han, J.-B. 2D magnetic heterostructures and emergent spintronic devices. Adv. Electron. Mater. 2022, 8, 2200164. [Google Scholar]
- Wang, H.; Liu, Y.; Wu, P.; Hou, W.; Jiang, Y.; Li, X.; Pandey, C.; Chen, D.; Yang, Q.; Wang, H.; et al. Above room-temperature ferromagnetism in wafer-scale two-dimensional van der Waals Fe3GeTe2 tailored by a topological insulator. ACS Nano 2020, 14, 10045–10053. [Google Scholar]
- Ansari, M.S.; Othman, M.H.D.; Ansari, M.O.; Ansari, S.; Abdullah, H. Progress in Fe3O4-centered spintronic systems: Development, architecture, and features. Appl. Mater. Today 2021, 25, 101181. [Google Scholar] [CrossRef]
- Dieny, B.; Prejbeanu, I.L.; Garello, K.; Gambardella, P.; Freitas, P.; Lehndorff, R.; Raberg, W.; Ebels, U.; Demokritov, S.O.; Akerman, J.; et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 2020, 3, 446–459. [Google Scholar] [CrossRef]
Device | Efficiency | Scalability | Temp. (K) | Switch Speed | Footprint | Leakage | Error Rate | Refs. |
---|---|---|---|---|---|---|---|---|
MTJ | 10–100 fJ/bit | >1 Tb/in2 | 300 | 1–10 ns | 20–50 nm | NA | 10 | [86,87] |
SOT Devices | 10–20 fJ/bit | Sub 10 nm | 300 | <1 ns | <50 nm | NA | 10 | [88,89] |
Spin Valves | 10 J/event | 10 nm | 300 | <10 ns | 50 nm | NA | 10 | [90,91] |
Skyrmions | 0.3–1 fJ/event | Sub 100 nm | 300 | 100 m/s | <100 nm | NA | 10 | [69,92] |
vdW HS | 2.5 fJ/event | ∼10 nm | 300 | ∼40 ns | <10 nm | NA | 10 | [8,93,94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plummer, D.Z.; D’Alessandro, E.; Burrowes, A.; Fleischer, J.; Heard, A.M.; Wu, Y. 2D Spintronics for Neuromorphic Computing with Scalability and Energy Efficiency. J. Low Power Electron. Appl. 2025, 15, 16. https://doi.org/10.3390/jlpea15020016
Plummer DZ, D’Alessandro E, Burrowes A, Fleischer J, Heard AM, Wu Y. 2D Spintronics for Neuromorphic Computing with Scalability and Energy Efficiency. Journal of Low Power Electronics and Applications. 2025; 15(2):16. https://doi.org/10.3390/jlpea15020016
Chicago/Turabian StylePlummer, Douglas Z., Emily D’Alessandro, Aidan Burrowes, Joshua Fleischer, Alexander M. Heard, and Yingying Wu. 2025. "2D Spintronics for Neuromorphic Computing with Scalability and Energy Efficiency" Journal of Low Power Electronics and Applications 15, no. 2: 16. https://doi.org/10.3390/jlpea15020016
APA StylePlummer, D. Z., D’Alessandro, E., Burrowes, A., Fleischer, J., Heard, A. M., & Wu, Y. (2025). 2D Spintronics for Neuromorphic Computing with Scalability and Energy Efficiency. Journal of Low Power Electronics and Applications, 15(2), 16. https://doi.org/10.3390/jlpea15020016