Low-Power and Optimized VLSI Implementation of Compact Recursive Discrete Fourier Transform (RDFT) Processor for the Computations of DFT and Inverse Modified Cosine Transform (IMDCT) in a Digital Radio Mondiale (DRM) and DRM+ Receiver
Abstract
:1. Introduction
2. The Proposed Compact RDFT with Prime Factor and Common Factor Algorithms
3. The Proposed Compact RDFT Architecture Design
4. Low Power VLSI Implementation
4.1. Low-Power Optimizations
4.2. Implementation Results
5. Comparison and Discussion
Length | 288 | 256 * | 176 | 112 | 27 * | 480 | 60 |
---|---|---|---|---|---|---|---|
c | 32 | 16 | 16 | 16 | 9 | 32 | 12 |
m | 9 | 16 | 11 | 7 | 3 | 15 | 5 |
A | 9 | 1 | 11 | 7 | 1 | 15 | 5 |
B | 32 | m | 16 | 16 | m | 32 | 12 |
C | 64 | c | 144 | 64 | c | 256 | 36 |
D | 255 | 1 | 33 | 49 | 1 | 255 | 25 |
Method | Multiplications | Additions | ||
---|---|---|---|---|
N = 288 | N = 256 | N = 288 | N = 256 | |
[26] * | 167,616 | 132,608 | 334,080 | 264,192 |
[27] | 41,464 | 32,760 | 85,658 | 67,946 |
[29] | 82,654 | 65,278 | 167,902 | 132,862 |
[30] | 24,768 | 332,928 | 49,536 | 263,168 |
[32] | 12,704 | 332,928 | 25,984 | 263,168 |
Proposed | 11,470 | 8,640 | 22,034 | 14,976 |
Method | Transform length | ||||
---|---|---|---|---|---|
288 | 256 | 176 | 112 | 27 | |
[26] | 41,472 | 32,768 | 15,488 | 6,272 | N/A |
[27] | 431 | 383 | 263 | 167 | N/A |
[29] | 41,327 | 32,639 | 15,399 | 6,215 | 364 |
[30] | 9,594 | 32,896 | 3,124 | 1,960 | N/A |
[32] | 4,842 | 11,137 | 1,594 | 1,006 | N/A |
Proposed | 6,693 | 5,958 | 2,865 | 1,609 | 346 |
Method | Multiplier | Adder | Buffer | ROM | DTPT |
---|---|---|---|---|---|
[26] | 10 | 17 | No | Yes | 1 |
[27] | N + 4 | N + 18 | Yes | Yes | 4 |
[29] | 2 | 13 | No | Yes | 2 |
[30] | 4 | 8 | Yes | Yes | 1 |
[32] | 6 | 18 | Yes | No | 4 |
Proposed | 2 | 4 | No | No | 2 |
Length | 288 | 256 | 176 | 112 | 27 |
---|---|---|---|---|---|
DRM Spec. (ms) | <26.7 | <26.7 | <20 | <16.7 | <2.5 |
Proposed (us) | 267.72 | 238.32 | 114.60 | 64.36 | 13.84 |
RAM_ATPT(us) | 23.04 | 20.48 | 14.08 | 8.96 | 2.16 |
Reduction (%) | 98.91 | 99.03 | 99.36 | 99.56 | 99.36 |
Design | [29 | [30 | [33] | This work | |
---|---|---|---|---|---|
Technology | 0.18 μm | 0.18 μm | 0.18 μm | 0.18 μm | |
Internal/Coeff. word lengths | 24/24 (bits) | 21/16 (bits) | 24/24 (bits) | 24/24 (bits) | |
Data Memory (bits) | Excluded | Excluded | Excluded | 2 × 480 × 32 | |
Coefficient Memory | Excluded | Coeff.-free | Coeff.-free | Coeff.-free | |
Supply Voltage | 1.98 v | 1.98 v | 1.98 v | 1.7 v (opt.) | |
Clock Rate | 25 MHz | 25 MHz | 25 MHz | 25 MHz | |
Supporting DFT | 288, 256, 176, | 288, 256, 176, | 288, 256, 176, | 288, 256, 176, | |
Transform-Length | 112, 212, 106 | 112 | 112, 480, 60 | 112, 480, 60 | |
Executing Time for 288-point | 1.65 ms | 384 μs | 193.68 μs | 267.72 μs | |
Power Consumption | Circuit | 5.98 mW | 8.44 mW | 14.3 mW | 9.62 mW(opt.) |
Data Memory | 5.53 mW * | 5.53 mW* | 5.53 mW * | ||
Core Area | Circuit | 0.154 mm2 | 0.265 mm2 | 0.746 mm2 | 0.714 mm2 |
Data Memory | 0.347 mm2 | 0.347 mm2 | 0.347 mm2 | ||
Normalized DFTs/Energy | 63.71 | 225.56 | 315.05 | 346.34 (opt.) |
6. Conclusions
Acknowledgments
References
- Digital Radio Mondiale; System Specification; ES 201 980 V3.1.1; European Telecommunications Standards Institute (ETSI): Nice, France, August 2009.
- Tai, S.C.; Wang, C.C.; Wang, J.L. Circuit-Sharing Design between FFT and IMDCT with Pipeline Structure for DAB Receiver. In Proceedings of the 17th International Conference on Advanced Information Networking and Applications, Xi’an, China, 27–29 March 2003; pp. 768–773.
- Tai, S.C.; Wang, C.C.; Lin, C.Y. FFT and IMDCT circuit sharing in DAB receiver. IEEE Trans. Broadcast. 2003, 49, 124–131. [Google Scholar] [CrossRef]
- Wang, C.C.; Lin, C.Y. An Efficient FFT processor for DAB receiver using circuit-sharing pipeline design. IEEE Trans. Broadcast. 2007, 53, 670–677. [Google Scholar] [CrossRef]
- Kim, B.E.; Chung, J.Y.; Hwang, S.Y. An efficient fixed-point IMDCT algorithm for high-resolution audio appliances. IEEE Trans. Consum. Electron. 2008, 54, 1867–1872. [Google Scholar] [CrossRef]
- Radio Broadcasting System: Digital Audio Broadcasting to Mobile Portable and Fixed Receiver; ETS 300 401; European Telecommunications Standards Institute (ETSI): Nice, France, January 2006.
- Digital Audio Broadcasting (DAB): Transport of Advanced Audio Coding (AAC) Audio; ETSI TS 102 563; European Telecommunications Standards Institute (ETSI): Nice, France, February 2007.
- Lai, S.C.; Lei, S.F.; Luo, C.H. Low-Cost and Shared Architecture Design of Recursive DFT/IDFT/IMDCT Algorithms for Digital Radio Mondiale System. In Proceedings of IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP-2010), Darmstadt, Germany, 15–17 October 2010; pp. 276–279.
- Chiang, H.C.; Liu, J.C. Regressive implementations for the forward and inverse MDCT in MPEG audio coding. IEEE Signal Process. Lett. 1996, 3, 116–118. [Google Scholar] [CrossRef]
- Nikolajevic, V.; Fettweis, G. Computation of forward and inverse MDCT using Clenshaw’s recurrence formula. IEEE Trans. Signal Process. 2003, 51, 1439–1444. [Google Scholar] [CrossRef]
- Chen, C.G.; Liu, B.D.; Yang, J.F. Recursive architectures for realizing modified discrete cosine transform and its inverse. IEEE Trans. Circuits Syst. II 2003, 50, 28–45. [Google Scholar]
- Nikolajevič, V.; Fettweis, G. New Recursive Algorithms for the Forward and Inverse MDCT. In Proceedings of the IEEE Workshop on Signal Processing Systems: Design and Implementation (SiPS’2001), Antwerp, Belgium, 26–28 September 2001; pp. 51–57.
- Nikolajevič, V.; Fettweis, G. New recursive algorithms for the unified forward and inverse MDCT/MDST. J. VLSI Signal Process. Syst. 2003, 34, 203–208. [Google Scholar] [CrossRef]
- Fox, W.; Carriera, A. Goertzel Implementations of the Forward and Inverse Modified Discrete Cosine Transform. In Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE’2004), Niagara Falls, Canada, 2–5 May 2004; pp. 2371–2374.
- Chen, C.H.; Wu, C.B; Liu, B.D.; Yang, J.F. Recursive Architectures for the Forward and Inverse Modified Discrete Cosine Transform. In Proceedings of the IEEE Workshop on Signal Processing Systems: Design and Implementation (SiPS’2000), Lafayette, LA, USA, 11–13 October 2000; pp. 50–59.
- Cheng, Z.Y.; Chen, C.H.; Liu, B.D.; Yang, J.F. Unified Selectable Fixed-Coefficient Recursive Structures for Computing DCT, IMDCT and Subband Synthesis Filtering. In Proceedings of the IEEE International Symposium on Circuits and Systems, Vancouver, Canada, 23–26 May 2004; pp. 557–560.
- Lei, S.F.; Lai, S.C.; Hwang, Y.T.; Luo, C.H. A High-Precision Algorithm for the Forward and Inverse MDCT Using the Unified Recursive Architecture. In Proceedings of the IEEE International Symposium on Consumer Electronics, Vilamoura, Algarve, 14–16 April 2008; pp. 1–4.
- Lai, S.C.; Lei, S.F.; Luo, C.H. Common architecture design of novel recursive MDCT and IMDCT algorithms for application to AAC, AAC in DRM, and MP3 codecs. IEEE Trans. Circuits Syst. II 2009, 56, 793–797. [Google Scholar] [CrossRef]
- Lei, S.F.; Lai, S.C.; Cheng, P.Y.; Luo, C.H. Low complexity and fast computation for recursive MDCT and IMDCT algorithms. IEEE Trans. Circuits Syst. II 2010, 57, 571–575. [Google Scholar] [CrossRef]
- Wolkotte, P.T.; Smit, G.J.M.; Smit, L.T. Partitioning of a DRM Receiver. In Proceedings of the 9th International OFDM-Workshop, Dresden, Germany, 15–16, September 2004; pp. 299–304.
- Goertzel, G. An algorithm for the evaluation of finite trigonometric series. Am. Math. 1958, 65, 34–35. [Google Scholar] [CrossRef]
- Yang, J.F.; Chen, F.K. Recursive discrete Fourier transform with unified IIR filter stluclures. Signal Process. 2002, 82, 31–41. [Google Scholar] [CrossRef]
- Van, L.D.; Yang, C.C. High-Speed Area-Efficient Recursive DFT/IDFT Architectures. In Proceedings of the IEEE International Symposium Circuits and System, Vancouver, Canada, 23–26 May 2004; pp. 357–360.
- Van, L.D.; Yu, Y.C.; Huang, C.N.; Lin, C.T. Low Computation Cycle and High Speed Recursive DFT/IDFT: VLSI Algorithm and Architecture. In Proceedings of the IEEE Workshop on Signal Processing Systems, Athens, Greece, 2–4 November 2005; pp. 579–584.
- Fan, C.P.; Su, G.A. Efficient recursive discrete Fourier transform design with low round-off error. Int. J. Electr. Eng. 2006, 13, 9–20. [Google Scholar]
- Van, L.D.; Lin, C.T.; Yu, Y.C. VLSI architecture for the low-computation cycle and power-efficient recursive DFT/IDFT design. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2007, E90-A, 1644–1652. [Google Scholar]
- Meher, P.K.; Patra, J.C.; Vinod, A.P. Novel Recursive Solution for Area-Time Efficient Systolization of Discrete Fourier Transform. In Proceedings of the IEEE International Symposium on Signals, Circuits and Systems, Lasi, Romania, 12–13 July 2007; pp. 193–196.
- Meher, P.K.; Patra, J.C.; Vinod, A.P. Efficient systolic designs for 1- and 2-dimensional DFT of general transform-lengths for high-speed wireless communication applications. J. Signal Process. Syst. 2010, 60, 1–14. [Google Scholar] [CrossRef]
- Lai, S.C.; Lei, S.F.; Chang, C.L.; Lin, C.C.; Luo, C.H. Low computational complexity, low power, and low area design for the implementation of recursive DFT and IDFT algorithms. IEEE Trans. Circuits Syst. II 2009, 56, 921–925. [Google Scholar] [CrossRef]
- Lai, S.C.; Juang, W.H.; Chang, C.L.; Lin, C.C.; Luo, C.H.; Lei, S.F. Low-computation cycle, power-efficient, and reconfigurable design of recursive DFT for portable digital radio mondiale receiver. IEEE Trans. Circuits Syst. II 2010, 57, 647–651. [Google Scholar] [CrossRef]
- Lai, S.C.; Lei, S.F.; Juang, W.H.; Luo, C.H. A low-cost, low-complexity and memory-free architecture of novel recursive DFT and IDFT algorithms for DTMF application. IEEE Trans. Circuits Syst. II 2010, 57, 711–715. [Google Scholar] [CrossRef]
- Lai, S.C.; Juang, W.H.; Lin, C.C.; Luo, C.H.; Lei, S.F. High-throughput, power-efficient, coefficient-free and reconfigurable green design for recursive DFT in a portable DRM receiver. Int. J. Electr. Eng. 2011, 18, 137–145. [Google Scholar]
- Hsiao, C.F.; Chen, Y.; Lee, C.Y. A generalized mixed-radix algorithm for memory-based FFT processors. IEEE Trans. Circuits Syst. II 2010, 57, 26–30. [Google Scholar] [CrossRef]
- Munch, M.; Wurth, B.; Mehra, R.; Sproch, J.; Wehnl, N. Automating RT-Level Operand Isolation to Minimize Power Consumption in Datapaths. In Proceedings of the IEEE Design Automation and Test, Paris, France, 27–30 March 2000; pp. 624–631.
- Baas, B.M. A low-power, high-performance, 1024-Point FFT processor. IEEE J. Solid-State Circuits 1999, 34, 380–387. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lai, S.-C.; Lee, Y.-S.; Lei, S.-F. Low-Power and Optimized VLSI Implementation of Compact Recursive Discrete Fourier Transform (RDFT) Processor for the Computations of DFT and Inverse Modified Cosine Transform (IMDCT) in a Digital Radio Mondiale (DRM) and DRM+ Receiver. J. Low Power Electron. Appl. 2013, 3, 99-113. https://doi.org/10.3390/jlpea3020099
Lai S-C, Lee Y-S, Lei S-F. Low-Power and Optimized VLSI Implementation of Compact Recursive Discrete Fourier Transform (RDFT) Processor for the Computations of DFT and Inverse Modified Cosine Transform (IMDCT) in a Digital Radio Mondiale (DRM) and DRM+ Receiver. Journal of Low Power Electronics and Applications. 2013; 3(2):99-113. https://doi.org/10.3390/jlpea3020099
Chicago/Turabian StyleLai, Shin-Chi, Yueh-Shu Lee, and Sheau-Fang Lei. 2013. "Low-Power and Optimized VLSI Implementation of Compact Recursive Discrete Fourier Transform (RDFT) Processor for the Computations of DFT and Inverse Modified Cosine Transform (IMDCT) in a Digital Radio Mondiale (DRM) and DRM+ Receiver" Journal of Low Power Electronics and Applications 3, no. 2: 99-113. https://doi.org/10.3390/jlpea3020099
APA StyleLai, S. -C., Lee, Y. -S., & Lei, S. -F. (2013). Low-Power and Optimized VLSI Implementation of Compact Recursive Discrete Fourier Transform (RDFT) Processor for the Computations of DFT and Inverse Modified Cosine Transform (IMDCT) in a Digital Radio Mondiale (DRM) and DRM+ Receiver. Journal of Low Power Electronics and Applications, 3(2), 99-113. https://doi.org/10.3390/jlpea3020099