Foeniculum vulgare Mill. Aerial Parts (Italian ‘Finocchio di Isola Capo Rizzuto’ PGI): Valorization of Agri-Food Waste as a Potential Source of Lipase Inhibitors and Antioxidants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Extraction
2.3. HPLC-DAD Analyses
2.4. ESI-MS/MS Analyses
2.5. DPPH Free Radical Scavenging Activity
2.6. β-Carotene Bleaching Activity
2.7. Inhibition of Nitric Oxide (NO) Production
2.8. Pancreatic Lipase Inhibition
2.9. Statistical Analyses
3. Results
3.1. Extraction Yields and Phenolics
3.2. Antioxidant Activity
3.3. In Vitro Inhibitory Properties of Nitric Oxide Production
3.4. Pancreatic Lipase Inhibition
3.5. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiocchio, I.; Mandrone, M.; Tomasi, P.; Marincich, L.; Poli, F. Plant secondary metabolites: An opportunity for circular economy. Molecules 2021, 26, 495. [Google Scholar] [CrossRef]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef]
- Ingrao, C.; Faccilongo, N.; Di Gioia, L.; Messineo, A. Food waste recovery into energy in a circular economy perspective: A comprehensive review of aspects related to plant operation and environmental assessment. J. Clean. Prod. 2018, 184, 869–892. [Google Scholar] [CrossRef]
- Baiano, A.; Romaniello, R.; Giametta, F.; Fiore, A. Optimization of Process Variables for the Sustainable Extraction of Phenolic Compounds from Chicory and Fennel By-Products. Appl. Sci. 2023, 13, 4191. [Google Scholar] [CrossRef]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H. Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed Res. Int. 2014, 2014, 842674. [Google Scholar] [CrossRef]
- Rather, M.A.; Dar, B.A.; Sofi, S.N.; Bhat, B.A.; Qurishi, M.A. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arab. J. Chem. 2016, 9, S1574–S1583. [Google Scholar] [CrossRef]
- Ghasemian, A.; Al-Marzoqi, A.H.; Mostafavi, S.K.S.; Alghanimi, Y.K.; Teimouri, M. Chemical composition and antimicrobial and cytotoxic activities of Foeniculum vulgare Mill essential oils. J. Gastrointest. Cancer 2020, 51, 260–266. [Google Scholar] [CrossRef]
- Oktay, M.; Gülçin, İ.; Küfrevioğlu, Ö.İ. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT-Food Sci. Technol. 2003, 36, 263–271. [Google Scholar] [CrossRef]
- Choi, E.M.; Hwang, J.K. Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia 2004, 75, 557–565. [Google Scholar] [CrossRef]
- Anitha, T.; Balakumar, C.; Ilango, K.B.; Jose, C.B.; Vetrivel, D. Antidiabetic activity of the aqueous extracts of Foeniculum vulgare on streptozotocin-induced diabetic rats. Int. J. Adv. Pharm. Biol. Chem. 2014, 3, 487–494. [Google Scholar]
- Al-Okbi, S.Y.; Hussein, A.M.; Elbakry, H.F.; Fouda, K.A.; Mahmoud, K.F.; Hassan, M.E. Health benefits of fennel, rosemary volatile oils and their nano-forms in dyslipidemic rat model. Pak. J. Biol. Sci. 2018, 21, 348–358. [Google Scholar] [CrossRef]
- Elghazaly, N.A.; Radwan, E.H.; Zaatout, H.H.; Elghazaly, M.M.; El din Allam, N. Beneficial effects of fennel (Foeniculum vulgare) in treating obesity in rats. J. Obes. Manag. 2019, 1, 16–33. [Google Scholar] [CrossRef]
- Shahat, A.A.; Ahmed, H.H.; Hammouda, F.M.; Ghaleb, H. Regulation of obesity and lipid disorders by Foeniculum vulgare extracts and Plantago ovata in high-fat diet-induced obese rats. Am. J. Food Technol. 2012, 7, 622–632. [Google Scholar] [CrossRef]
- Dina, A.G.; Mazin, Y.A.; Reem, M.; Tasnim, O.E.; Yosra, A.M.; Tarig, M.H.; Ali, A.S. Investigation of anti-obesity activity of ethanolic extract of Foeniculum vulgare seeds, in vivo and in silico models. World J. Pharm. Pharm. Sci. 2019, 8, 111–124. [Google Scholar]
- Hong, S.J.; Yoon, S.; Jo, S.M.; Jeong, H.; Youn, M.Y.; Kim, Y.J.; Kim, J.K.; Shin, E.C. Olfactory Stimulation by Fennel (Foeniculum vulgare Mill.) Essential Oil Improves Lipid Metabolism and Metabolic Disorders in High Fat-Induced Obese Rats. Nutrients 2022, 14, 741. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, K.S.; Choi, Y.M.; Kang, B.G.; Yoon, Y.S.; Oh, M.S.; Yoon, I.J.; Shin, S.U. A clinical study of decrease appetite effects by aromatherapy using Foeniculum vulgare Mill (fennel) to female obese patients. J. Korean Med. Obes. Res. 2005, 5, 9–20. [Google Scholar]
- Bava, R.; Castagna, F.; Palma, E.; Musolino, V.; Carresi, C.; Cardamone, A.; Lupia, C.; Marrelli, M.; Conforti, F.; Roncada, P.; et al. Phytochemical Profile of Foeniculum vulgare subsp. piperitum Essential Oils and Evaluation of Acaricidal Efficacy against Varroa destructor in Apis mellifera by In Vitro and Semi-Field Fumigation Tests. Vet. Sci. 2022, 9, 684. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.I.; Chang, K.S.; Ahn, Y.J. Repellent activity of constituents identified in Foeniculum vulgare fruit against Aedes aegypti (diptera: Culicidae). J. Agric. Food Chem. 2002, 50, 6993–6996. [Google Scholar] [CrossRef]
- Aboelhadid, S.M.; Arafa, W.M.; Abdel-Baki, A.A.S.; Sokmen, A.; Al-Quraishy, S.; Hassan, A.O.; Kamel, A.A. Acaricidal activity of Foeniculum vulgare against Rhipicephalus annulatus is mainly dependent on its constituent from trans-anethone. PLoS ONE 2021, 16, e0260172. [Google Scholar] [CrossRef]
- Safaei-Cherehh, A.; Rasouli, B.; Alaba, P.A.; Seidavi, A.; Hernández, S.R.; Salem, A.Z. Effect of dietary Foeniculum vulgare Mill. extract on growth performance, blood metabolites, immunity and ileal microflora in male broilers. Agrofor. Syst. 2020, 94, 1269–1278. [Google Scholar] [CrossRef]
- Seyed, H.M.; Mohammadabadi, M.; Khezria, A.; Stavetska, R.V.; Oleshko, V.P.; Babenko, O.I.; Yemets, Z.; Kalashnik, O.M. Effects of diets with different levels of fennel (Foeniculum vulgare) seed powder on DLK1 gene expression in brain, adipose tissue, femur muscle and rumen of Kermani lambs. Small Rumin. Res. 2020, 193, 106276. [Google Scholar]
- Al-Elwany, O.A.; Mohamed, A.M.; Abdelbaky, A.S.; Tammam, M.A.; Hemida, K.A.; Hassan, G.H.; El-Saadony, M.T.; El-Tarabily, K.A.; AbuQamar, S.F.; Abd El-Mageed, T.A. Application of bio-organic amendments improves soil quality and yield of fennel (Foeniculum vulgare Mill.) plants in saline calcareous soil. Sci. Rep. 2023, 13, 19876. [Google Scholar] [CrossRef]
- Fortis, M.; Sartori, A.; Corradini, S. Il Tesoro Agricolo del Mezzogiorno; VP, Vita e pensiero, Cranec: Milano, Italy, 2020. [Google Scholar]
- Official Journal of the European Union L 218 of 23.08.2022. Reg. UE 2022/1416 of 16.08.2022. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX:32022R1416 (accessed on 4 April 2024).
- Arsacweb. Available online: https://www.arsacweb.it/finocchioisolacaporizzuto-i-g-p/ (accessed on 10 February 2024).
- Finocchio di Isola Capo Rizzuto. Available online: https://finocchioigp.it (accessed on 4 April 2024).
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Front. Nutr. 2020, 7, 60. [Google Scholar] [CrossRef]
- Conforti, F.; Marrelli, M.; Statti, G.; Menichini, F. Antioxidant and cytotoxic activities of methanolic extract and fractions from Senecio gibbosus subsp. gibbosus (GUSS) DC. Nat. Prod. Res. 2006, 20, 805–812. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH radical scavenging assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Marrelli, M.; Menichini, F.; Conforti, F. Hypolipidemic and antioxidant properties of hot pepper flower (Capsicum annuum L.). Plant Foods Hum. Nutr. 2016, 71, 301–306. [Google Scholar]
- Menichini, G.; Alfano, C.; Marrelli, M.; Toniolo, C.; Provenzano, E.; Statti, G.A.; Nicoletti, M.; Menichini, F.; Conforti, F. Hypericum perforatum L. subsp. perforatum induces inhibition of free radicals and enhanced phototoxicity in human melanoma cells under ultraviolet light. Cell Prolif. 2013, 46, 193–202. [Google Scholar] [CrossRef]
- Ivanov, V.M. The 125th anniversary of the Griess reagent. J. Anal. Chem. 2004, 59, 1002–1005. [Google Scholar]
- Bryan, N.S.; Grisham, M.B. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic. Biol. Med. 2007, 43, 645–657. [Google Scholar] [CrossRef]
- Marrelli, M.; Giordano, F.; Statti, G.; Panno, M.L. Rapid solid-liquid dynamic extraction of Cachrys pungens Jan ex Guss. aerial parts: Influence on the photobiological and antioxidant properties. Nat. Prod. Res. 2023, 1–6. [Google Scholar] [CrossRef]
- Marrelli, M.; Morrone, F.; Argentieri, M.P.; Gambacorta, L.; Conforti, F.; Avato, P. Phytochemical and biological profile of Moricandia arvensis (L.) DC.: An inhibitor of pancreatic lipase. Molecules 2018, 23, 2829. [Google Scholar] [PubMed]
- Kim, T.K. Understanding one-way ANOVA using conceptual figures. Korean J. Anesthesiol. 2017, 70, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Conforti, F.; Marrelli, M.; Carmela, C.; Menichini, F.; Valentina, P.; Uzunov, D.; Statti, G.A.; Duez, P.; Menichini, F. Bioactive phytonutrients (omega fatty acids, tocopherols, polyphenols), in vitro inhibition of nitric oxide production and free radical scavenging activity of non-cultivated Mediterranean vegetables. Food Chem. 2011, 129, 1413–1419. [Google Scholar] [CrossRef]
- Beyazen, A.; Dessalegn, E.; Mamo, W. Phytochemical screening and biological activities of leaf of Foeniculum vulgare (Ensilal). World J. Agric. Sci. 2017, 13, 1–10. [Google Scholar]
- Crescenzi, M.A.; D’Urso, G.; Piacente, S.; Montoro, P. LC-ESI/LTQOrbitrap/MS metabolomic analysis of fennel waste (Foeniculum vulgare Mill.) as a byproduct rich in bioactive compounds. Foods 2021, 10, 1893. [Google Scholar] [CrossRef]
- Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F. The protective ability of Mediterranean dietary plants against the oxidative damage: The role of radical oxygen species in inflammation and the polyphenol, flavonoid and sterol contents. Food Chem. 2009, 112, 587–594. [Google Scholar] [CrossRef]
- Faudale, M.; Viladomat, F.; Bastida, J.; Poli, F.; Codina, C. Antioxidant activity and phenolic composition of wild, edible, and medicinal fennel from different Mediterranean countries. J. Agric. Food Chem. 2008, 56, 1912–1920. [Google Scholar] [CrossRef]
- Prieto, M.A.; Rodríguez-Amado, I.; Vázquez, J.A.; Murado, M.A. β-Carotene assay revisited. Application to characterize and quantify antioxidant and prooxidant activities in a microplate. J. Agric. Food Chem. 2012, 60, 8983–8993. [Google Scholar] [CrossRef]
- Barros, L.; Heleno, S.A.; Carvalho, A.M.; Ferreira, I.C. Systematic evaluation of the antioxidant potential of different parts of Foeniculum vulgare Mill. from Portugal. Food Chem. Toxicol. 2009, 47, 2458–2464. [Google Scholar] [CrossRef] [PubMed]
- Majdoub, N.; el-Guendouz, S.; Rezgui, M.; Carlier, J.; Costa, C.; Kaab, L.B.B.; Miguel, M.G. Growth, photosynthetic pigments, phenolic content and biological activities of Foeniculum vulgare Mill., Anethum graveolens L. and Pimpinella anisum L. (Apiaceae) in response to zinc. Ind. Crops Prod. 2017, 109, 627–636. [Google Scholar] [CrossRef]
- Kumar, A.; Chauhan, S. Pancreatic lipase inhibitors: The road voyaged and successes. Life Sci. 2021, 271, 119115. [Google Scholar] [CrossRef] [PubMed]
- Henness, S.; Perry, C.M. Orlistat: A review of its use in the management of obesity. Drugs 2006, 66, 1625–1656. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Perri, V.; Menichini, F.; Marrelli, M.; Uzunov, D.; Statti, G.A.; Menichini, F. Wild Mediterranean dietary plants as inhibitors of pancreatic lipase. Phytother. Res. 2012, 26, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Allegrini, A.; Salvaneschi, P.; Schirone, B.; Cianfaglione, K.; Di Michele, A. Multipurpose plant species and circular economy: Corylus avellana L. as a study case. Front. Biosci. Landmark 2022, 27, 11. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, F.; Carpena, M.; Fraga-Corral, M.; Echave, J.; Rajoka, M.S.R.; Barba, F.J.; Cao, H.; Xiao, J.; Prieto, M.A.; Simal-Gandara, J. Valorization of kiwi agricultural waste and industry by-products by recovering bioactive compounds and applications as food additives: A circular economy model. Food Chem. 2022, 370, 131315. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, M.P.S.; Wadhwa, M.; Makkar, H.P. Waste to worth: Vegetable wastes as animal feed. CABI Rev. 2016, 11, 012. [Google Scholar] [CrossRef]
- Rochfort, S.; Parker, A.J.; Dunshea, F.R. Plant bioactives for ruminant health and productivity. Phytochemistry 2008, 69, 299–322. [Google Scholar] [CrossRef]
- Caipang, C.M.A.; Mabuhay-Omar, J.; Gonzales-Plasus, M.M. Plant and fruit waste products as phytogenic feed additives in aquaculture. Aquac. Aquar. Conserv. Legis. 2019, 12, 261–268. [Google Scholar]
- Bruckdorfer, R. The basics about nitric oxide. Mol. Asp. Med. 2005, 26, 3–31. [Google Scholar] [CrossRef]
- Soneja, A.; Drews, M.; Malinski, T. Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol. Rep. 2005, 57, 108. [Google Scholar]
- Yucel, A.A.; Gulen, S.; Dincer, S.; Yucel, A.E.; Yetkin, G.I. Comparison of two different applications of the Griess method for nitric oxide measurement. J. Exp. Integr. Med. 2012, 2, 167–171. [Google Scholar] [CrossRef]
- Kino, M.; Yamato, T.; Aomine, M. Simultaneous measurement of nitric oxide, blood glucose, and monoamines in the hippocampus of diabetic rat: An in vivo microdialysis study. Neurochem. Int. 2004, 44, 65–73. [Google Scholar] [CrossRef]
- Tsikas, D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the L-arginine/nitric oxide area of re-search. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 851, 51–70. [Google Scholar] [CrossRef]
Peak | Compound | Aerial Parts | Bulb |
---|---|---|---|
μg/g DW | |||
1 | Neochlorogenic acid | 0.064 ± 0.012 g | - |
2 | Chlorogenic acid | 1.957 ± 0.045 b | 0.149 ± 0.001 f |
3 | Feruloyl quinic acid | 0.699 ± 0.010 d | 0.062 ± 0.002 g |
4 | Quercetin-3-glucuronide | 3.421 ± 0.061 a | - |
5 | 3,5-Dicaffeoylquinic acid | 1.129 ± 0.022 c | 0.053 ± 0.003 g |
6 | Quercetin-4′-O-glucoside | 0.295 ± 0.011 e | - |
7 | 4,5-Dicaffeoylquinic acid | 0.260 ± 0.032 e | - |
Peak | Name | UV (λ max, nm) | ms1 | ms2 |
---|---|---|---|---|
m/z (%) | ||||
1 | Neochlorogenic acid | 328, 296 sh, 244 | 353 (100) [M-H]− | 191.05(100) [M-162-H]−, [quinic acid-H]− 179.03(1) [M-174-H]− [caffeic acid-H]− |
2 | Chlorogenic acid | 326, 296 sh, 242 | 353 (100) [M-H]− | 191.05(100) [M-162-H]−, [quinic acid-H]− 179.03(1) [M-174-H]− [caffeic acid-H]− 173.04(3) [quinic acid-H2O-H]− |
3 | Feruloyl quinic acid | 324, 296 sh, 238 | 367 (100) [M-H]− | 191.05(100) [M-176-H]− 173.04(6) [quinic acid-H2O-H]− |
4 | Quercetin-3-glucuronide | 354, 300 sh, 264, 234 | 477 (100) [M-H]− | 301.03(100) [M-176-H]−, [Aglycone-H]− |
5 | 3,5-Dicaffeoylquinic acid | 328, 298 sh, 244 | 515 (100) [M-H]− | 353.08 (2) [M-162 (caffeoyl)-H]− 191.05 (100) [M-354–H]− [quinic acid-H]− 179.03 (7) [caffeic acid-H]− |
6 | Quercetin-4′-O-glucoside | 348, 298, 266 | 463 (100) [M-H]− | 301.03(100) [M-162-H]−, [Aglycone-H]− |
7 | 4,5-Dicaffeoylquinic acid | 326, 300 sh, 244 | 515 (100) [M-H]− | 353.08 (2) [M-162 (caffeoyl)-H]− 191.05 (100) [M-354-H]− [quinic acid-H]− 179.03 (7) [caffeic acid-H]- |
Sample | IC50 (µg/mL) | ||
---|---|---|---|
DPPH Test | β-Carotene Bleaching Test | ||
30 min | 60 min | ||
Aerial parts | 293.13 ± 22.98 b | 43.26 ± 1.90 b | 79.77 ± 1.75 c |
Ascorbic acid * | 2.00 ± 0.01 a | - | - |
Propyl gallate * | - | 1.00 ± 0.02 a | 1.00 ± 0.02 a |
Concentration (µg/mL) | Bulb | Aerial Parts |
---|---|---|
NO Inhibition % | ||
1000 | 14.26 ± 0.47 b | 31.12 ± 1.51 a |
500 | 9.34 ± 0.66 c | 9.19 ± 0.44 c |
Concentration (mg/mL) | Bulb | Aerial Parts |
---|---|---|
Lipase Inhibition % | ||
5 | 35.37 ± 0.79 c | 57.02 ± 1.91 a |
2.5 | 17.35 ± 0.73 d | 43.43 ± 1.20 b |
1 | 8.88 ± 0.23 e | 21.54 ± 1.37 d |
0.5 | 0 | 13.40 ± 0.65 d,e |
0.25 | 0 | 0 |
0.125 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrelli, M.; Lupia, C.; Argentieri, M.P.; Bava, R.; Castagna, F.; Cozza, N.; Mollace, V.; Palma, E.; Statti, G. Foeniculum vulgare Mill. Aerial Parts (Italian ‘Finocchio di Isola Capo Rizzuto’ PGI): Valorization of Agri-Food Waste as a Potential Source of Lipase Inhibitors and Antioxidants. Resources 2024, 13, 89. https://doi.org/10.3390/resources13070089
Marrelli M, Lupia C, Argentieri MP, Bava R, Castagna F, Cozza N, Mollace V, Palma E, Statti G. Foeniculum vulgare Mill. Aerial Parts (Italian ‘Finocchio di Isola Capo Rizzuto’ PGI): Valorization of Agri-Food Waste as a Potential Source of Lipase Inhibitors and Antioxidants. Resources. 2024; 13(7):89. https://doi.org/10.3390/resources13070089
Chicago/Turabian StyleMarrelli, Mariangela, Carmine Lupia, Maria Pia Argentieri, Roberto Bava, Fabio Castagna, Nadia Cozza, Vincenzo Mollace, Ernesto Palma, and Giancarlo Statti. 2024. "Foeniculum vulgare Mill. Aerial Parts (Italian ‘Finocchio di Isola Capo Rizzuto’ PGI): Valorization of Agri-Food Waste as a Potential Source of Lipase Inhibitors and Antioxidants" Resources 13, no. 7: 89. https://doi.org/10.3390/resources13070089
APA StyleMarrelli, M., Lupia, C., Argentieri, M. P., Bava, R., Castagna, F., Cozza, N., Mollace, V., Palma, E., & Statti, G. (2024). Foeniculum vulgare Mill. Aerial Parts (Italian ‘Finocchio di Isola Capo Rizzuto’ PGI): Valorization of Agri-Food Waste as a Potential Source of Lipase Inhibitors and Antioxidants. Resources, 13(7), 89. https://doi.org/10.3390/resources13070089