Developing Botanical Formulations for Sustainable Cosmetics
Abstract
:1. Introduction
2. Material and Methods
2.1. Rice Bran Oil
2.2. Formulation Preparation
2.3. Electrospinning Process
2.4. Microstructure Analysis
2.5. Liquid Uptake Capacity
2.6. Weight Loss under Simulated Physiological Conditions
2.7. Encapsulation Efficiency
2.8. Cell Culture
2.8.1. Cell Viability
2.8.2. Statistical Analysis of Cell Viability
2.9. Statistical Analysis of Physicochemical Parameters
3. Results
3.1. Nanostructured Cosmetic Morphology
3.2. Liquid Uptake Performance
3.3. Weight Loss in Simulated Physiological Conditions
3.4. Encapsulation Efficiency
3.5. Cell Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Priyanto, A.; Hapidin, D.A.; Khairurrijal, K. Potential Loading of Virgin Coconut Oil into Centrifugally-Spun Nanofibers for Biomedical Applications. ChemBioEng Rev. 2022, 9, 393–408. [Google Scholar] [CrossRef]
- Mele, E. Electrospinning of Essential Oils. Polymers 2020, 12, 908. [Google Scholar] [CrossRef] [PubMed]
- García-Moreno, P.J.; Stephansen, K.; van der Kruijs, J.; Guadix, A.; Guadix, E.M.; Chronakis, I.S.; Jacobsen, C. Encapsulation of Fish Oil in Nanofibers by Emulsion Electrospinning: Physical Characterization and Oxidative Stability. J. Food Eng. 2016, 183, 39–49. [Google Scholar] [CrossRef]
- Xu, D.; Hao, J.; Wang, Z.; Liang, D.; Wang, J.; Ma, Y.; Zhang, M. Physicochemical Properties, Fatty Acid Compositions, Bioactive Compounds, Antioxidant Activity and Thermal Behavior of Rice Bran Oil Obtained with Aqueous Enzymatic Extraction. LWT 2021, 149, 111817. [Google Scholar] [CrossRef]
- Lai, O.-M.; Jacoby, J.J.; Leong, W.-F.; Lai, W.-T. Nutritional Studies of Rice Bran Oil. In Rice Bran Rice Bran Oil; Academic Press and AOCS Press: Cambridge, MA, USA, 2019; pp. 19–54. ISBN 9780128128282. [Google Scholar]
- Punia, S.; Kumar, M.; Siroha, A.K.; Purewal, S.S. Rice Bran Oil: Emerging Trends in Extraction, Health Benefit, and Its Industrial Application. Rice Sci. 2021, 28, 217–232. [Google Scholar] [CrossRef]
- Wang, Y. Applications of Rice Bran Oil. In Rice Bran and Rice Bran Oil, 1ª ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 159–168. [Google Scholar]
- Pestana, V.R.; Zambiazi, R.C.; Mendonça, C.R.B.; Bruscatto, M.H.; Lerma-García, M.J.; Ramis-Ramos, G. Quality Changes and Tocopherols and γ-Orizanol Concentrations in Rice Bran Oil During the Refining Process. Am. Oil Chem. Soc. 2008, 85, 1013–1019. [Google Scholar] [CrossRef]
- Rohman, A. Rice Bran Oil’s Role in Health and Cooking. In Benefits, Risks and Mechanisms of Whole Grains in Health Promotion; Academic Press: Cambridge, MA, USA, 2014; pp. 481–490. [Google Scholar]
- Bitencourt, R.G.; Rammazzina Filho, W.A.; Paula, J.T.; Garmus, T.T.; Cabral, F.A. Cabral. Solubility of γ-oryzanol in supercritical carbon dioxide and extraction from rice bran. J. Supercrit. Fluids. 2016, 107, 196–200. [Google Scholar] [CrossRef]
- Sahini, M.G.; Mutegoa, E. Extraction, phytochemistry, nutritional, and therapeutical potentials of rice bran oil: A review. Phytomed. Plus 2023, 3, 100453. [Google Scholar] [CrossRef]
- Juchen, P.T.; Araujo, M.N.; Hamerski, F.; Corazza, M.L.; Voll, F.A.P. Extraction of Parboiled Rice Bran Oil with Supercritical CO2 and Ethanol as Co-Solvent: Kinetics and Characterization. Ind. Crops Prod. 2019, 139, 111506. [Google Scholar] [CrossRef]
- Huang, Z.-R.; Lin, Y.-K.; Fang, J.-Y. Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. Molecules 2009, 14, 540–554. [Google Scholar] [CrossRef]
- Manosroi, A.; Chutoprapat, R.; Abe, M.; Manosroi, W.; Manosroi, J. Anti-Aging Efficacy of Topical Formulations Containing Niosomes Entrapped with Rice Bran Bioactive Compounds. Pharm. Biol. 2012, 50, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Ilias, N.N.; Mohd Rozalli, N.H.; Mohamad Kassim, M.H. Characterizations of Rice Bran Nanofibers Produced by Enzymatic Treatment and Their Role in Stabilizing Oil-in-Water Pickering Emulsions. Waste Biomass Valorization 2023, 14, 1–13. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Preparation and Antibacterial Activity of Litsea Cubeba Essential Oil/Dandelion Polysaccharide Nanofiber. Ind. Crops Prod. 2019, 140, 111739. [Google Scholar] [CrossRef]
- Lima, L.L.; Bierhalz, A.C.K.; Moraes, Â.M. Influence of the Chemical Composition and Structure Design of Electrospun Matrices on the Release Kinetics of Aloe Vera Extract Rich in Aloin. Polym. Degrad. Stab. 2020, 179, 109233. [Google Scholar] [CrossRef]
- Singh, P.; Bhat, S.S.; Singh, N.; Venkanna, B.U.; Mohamed, R.; Rao, R.P. Cell-Based Model Systems for Validation of Various Efficacy-Based Claims for Cosmetic Ingredients. Cosmetics 2022, 9, 107. [Google Scholar] [CrossRef]
- Teno, J.; Pardo-Figuerez, M.; Hummel, N.; Bonin, V.; Fusco, A.; Ricci, C.; Donnarumma, G.; Coltelli, M.B.; Danti, S.; Lagaron, J.M. Preliminary Studies on an Innovative Bioactive Skin Soluble Beauty Mask Made by Combining Electrospinning and Dry Powder Impregnation. Cosmetics 2020, 7, 96. [Google Scholar] [CrossRef]
- Holsback, V.S.S.; Lima, L.L.; d’Ávila, M.A.; Leonardi, G.R. Perspectives of Using Electrospun Nanofibers for Dermatological Application. Int. J. Dermatol. 2022, 61, 1552–1554. [Google Scholar] [CrossRef]
- Godakanda, V.U.; Li, H.; Alquézar, L.; Zhao, L.; Zhu, L.M.; da Silva, R.; de Silva, K.N.; Williams, G.R. Ajustable drug release from polyvinylpyrrolidone-ethylcellulose nanofibers. Int. J. Pharm. 2019, 562, 172–179. [Google Scholar] [CrossRef]
- Leung, V.; Ko, F. Biomedical applications of nanofibers. Polym. Adv. Technol. 2011, 22, 350–365. [Google Scholar] [CrossRef]
- Zhang, Q.; Welch, J.; Park, H.; Wu, C.-Y.; Sigmund, W.; Marijnissen, J.C.M. Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. J. Aerosol Sci. 2010, 41, 230–236. [Google Scholar] [CrossRef]
- Decostere, B.; Daels, N.; De Vrieze, S.; Dejans, P.; Van Camp, T.; Audenaert, W.; Hogie, J.; Westbroek, P.; De Clerck, K.; Van Hulle, S.W.H. Performance assessment of electrospun nanofibers for filter applications. Desalination 2009, 249, 942–948. [Google Scholar]
- Lim, C.T. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci. 2017, 70, 1–17. [Google Scholar]
- Lin, T.-K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Rigo, L.A.; da Silva, C.R.; de Oliveira, S.M.; Cabreira, T.N.; de Bona da Silva, C.; Ferreira, J.; Beck, R.C.R. Nanoencapsulation of Rice Bran Oil Increases Its Protective Effects against UVB Radiation-Induced Skin Injury in Mice. Eur. J. Pharm. Biopharm. 2015, 93, 11–17. [Google Scholar] [CrossRef]
- 10993–5: 2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Mirabelli, P.; Coppola, L.; Salvatore, M. Cancer cell lines are useful model systems for medical research. Cancers 2019, 11, 1098. [Google Scholar] [CrossRef] [PubMed]
- Drexler, H.G.; Dirks, W.G.; MacLeod, R.A. Many are called MDS cell lines: One is chosen. Leuk. Res. 2009, 33, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- Raghuvanshi, R.; Bharate, S.B. Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections. J. Med. Chem. 2022, 65, 893–921. [Google Scholar] [CrossRef] [PubMed]
- Bekerman, E.; Neveu, G.; Shulla, A.; Brannan, J.; Pu, S.Y.; Wang, S.; Xiao, F.; Barouch-Bentov, R.; Bakken, R.R.; Mateo, R.; et al. Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. J. Clin. Investig. 2017, 127, 1338–1352. [Google Scholar] [CrossRef]
- Williams, D.P.; Shipley, R.; Ellis, M.J.; Webb, S.; Ward, J.; Gardner, I.; Creton, S. Novel in vitro and mathematical models for the prediction of chemical toxicity. Toxicol. Res. 2013, 2, 40–59. [Google Scholar] [CrossRef]
- Asic, A.; Kurtovic-Kozaric, A.; Besic, L.; Mehinovic, L.; Hasic, A.; Kozaric, M.; Hukic, M.; Marjanovic, D. Chemical toxicity and radioactivity of depleted uranium: The evidence from in vivo and in vitro studies. Environ. Res. 2017, 156, 665–673. [Google Scholar] [CrossRef]
- Klein, R.; Müller, E.; Kraus, B.; Brunner, G.; Estrine, B.; Touraud, D.; Heilmann, J.; Kellermeier, M.; Kunz, W. Biodegradability and cytotoxicity of choline soaps on human cell lines: Effects of chain length and the cation. RSC Adv. 2013, 3, 23347–23354. [Google Scholar] [CrossRef]
Polymer 10%(w/v) | EC + PVP (9:1) |
Bioactive agent | 1%, 5%, 10% RBO |
Solvent | Ethanol absolute |
Needle diameter | 0.33–0.7µm |
Flow rate | 0.1–20 mL/h |
Voltage | 5–15 kV |
Temperature | 20–25 °C |
Relative humidity | 45–55% |
Distance between needle and collector | 7–25 cm |
Formulations | Diameters (µm) ± SD |
---|---|
RBO 0% | 0.216 ± 0.127 A |
RBO 1% | 0.297 ± 0.093 B |
RBO 5% | 0.252 ± 0.089 A,B |
RBO 10% | 0.371 ± 0.130 C |
Formulations | EE (mg/g) ± SD | EE (%) ± SD |
---|---|---|
RBO 1% | <LD | <LD A |
RBO 5% | 48.47 ± 2.16 | 97 ± 4 B |
RBO 10% | 85.34 ± 4.05 | 85 ± 4 *C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, L.L.; Bispo-dos-Santos, K.; Trevisan, I.M.C.; Rapôso, C.; Velho, P.E.N.F.; Bagatin, E.; Rezende, R.A.; da Silva, J.V.L.; Ricci Leonardi, G. Developing Botanical Formulations for Sustainable Cosmetics. Cosmetics 2023, 10, 159. https://doi.org/10.3390/cosmetics10060159
Lima LL, Bispo-dos-Santos K, Trevisan IMC, Rapôso C, Velho PENF, Bagatin E, Rezende RA, da Silva JVL, Ricci Leonardi G. Developing Botanical Formulations for Sustainable Cosmetics. Cosmetics. 2023; 10(6):159. https://doi.org/10.3390/cosmetics10060159
Chicago/Turabian StyleLima, Lonetá Lauro, Karina Bispo-dos-Santos, Ingrid Mayara Cavalcante Trevisan, Catarina Rapôso, Paulo Eduardo Neves Ferreira Velho, Ediléia Bagatin, Rodrigo Alvarenga Rezende, Jorge Vicente Lopes da Silva, and Gislaine Ricci Leonardi. 2023. "Developing Botanical Formulations for Sustainable Cosmetics" Cosmetics 10, no. 6: 159. https://doi.org/10.3390/cosmetics10060159
APA StyleLima, L. L., Bispo-dos-Santos, K., Trevisan, I. M. C., Rapôso, C., Velho, P. E. N. F., Bagatin, E., Rezende, R. A., da Silva, J. V. L., & Ricci Leonardi, G. (2023). Developing Botanical Formulations for Sustainable Cosmetics. Cosmetics, 10(6), 159. https://doi.org/10.3390/cosmetics10060159