Nanotechnology for Effective Epilation: Assessment of the Application of a Protease-Containing Microemulsion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation
2.2.2. Activity of Protease Loaded Microemulsion
2.2.3. Structural Characterization of the Microemulsions Using Dynamic Light Scattering (DLS)
2.2.4. Study Subjects
2.2.5. Treatments
2.2.6. Study Outline
2.2.7. Hair Density Determination
2.2.8. Statistical Analysis
3. Results
3.1. Droplet Size Determination by Dynamic Light Scattering (DLS)
3.2. Enzyme Activity in the Microemulsion
3.3. Reduction in Apparent Hair Density
3.4. Increase in Epilation Interval Duration
3.5. Study Participants’ Subjective Experience and Rating
3.5.1. Product Handling
3.5.2. Effects on the Epilation Outcome
3.5.3. Effects on the Skin Condition
3.5.4. Effects on Epilation Side Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, A.C.; Arnocky, S. An evolutionary perspective on appearance enhancement behavior. Arch. Sex. Behav. 2020, 51, 3–37. [Google Scholar] [CrossRef] [PubMed]
- Bakhshi, S. Women’s body image and the role of culture: A review of the literature. Eur. J. Psychol. 2011, 7, 374–394. [Google Scholar] [CrossRef]
- Olsen, E.A. Methods of hair removal. J. Am. Acad. Dermat. 1999, 40, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Ridley, C.M. A critical evaluation of the procedures available for the treatment of hirsutism. Br. J. Dermatol. 1969, 81, 146–153. [Google Scholar]
- Natow, A.J. Chemical removal of hair. Cutis 1986, 38, 91–92. [Google Scholar] [PubMed]
- Bertolini, M.; Gherardini, J.; Chéret, J.; Alam, M.; Sulk, M.; Botchkareva, N.V.; Biro, T.; Funk, W.; Grieshaber, F.; Paus, R. Mechanical epilation exerts complex biological effects on human hair follicles and perifollicular skin: An ex vivo study approach. Int. J. Cosmet. Sci. 2024, 46, 175–198. [Google Scholar] [CrossRef] [PubMed]
- Seiberg, M.; Wisniewski, S.; Cauwenbergh, G.; Shapiro, S.S. Trypsin-induced follicular papilla apoptosis results in delayed hair growth and pigmentation. Dev. Dyn. 1997, 208, 553–564. [Google Scholar] [CrossRef]
- Protopapa, E.E.; Xenakis, A.; Avramiotis, S.; Prodromou, E.V.; Koukaki, S.M. The epilatory effects of trypsin on human skin, applied via lecithin reverse micelles. Ep. Klin. Farmakol. Kai Farmakokinet. Int. Ed. 1998, 12, 101–104. [Google Scholar]
- Mrinmayee, K.; Apte, K.; Parab, P.; Dudhbhate, A.; Banerjee, R. Clinical Study to Evaluate Safety and Efficacy of a Topical Hair Minimizing Lotion in Healthy Human Volunteers. J. Clin. Trials Pat. 2017, 2, 4. [Google Scholar]
- Seiberg, M.; Liu, J.-C.; Babiarz, L.; Sharlow, E.; Shapiro, S. Soymilk reduces hair growth and hair follicle dimensions. Exp. Dermatol. 2001, 10, 405–413. [Google Scholar] [CrossRef]
- Chatzidaki, M.D.; Demisli, S.; Zingkou, E.; Liggri, P.G.; Papachristos, D.P.; Balatsos, G.; Karras, V.; Nallet, F.; Michaelakis, A.; Sotiropoulou, G.; et al. Essential oil-in-water microemulsions for topical application: Structural study, cytotoxic effect and insect repelling activity. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 130159. [Google Scholar] [CrossRef]
- Galani, E.; Galatis, D.; Tzoka, K.; Papadimitriou, V.; Sotiroudis, T.G.; Bonos, A.; Xenakis, A.; Chatzidaki, M.D. Natural Antioxidant—Loaded Nanoemulsions for Sun Protection Enhancement. Cosmetics 2023, 10, 102. [Google Scholar] [CrossRef]
- Hoar, T.P.; Schulman, J.H. Transparent Water-in-Oil Dispersions: The Oleopathic Hydro-Micelle. Nature 1943, 152, 102–103. [Google Scholar] [CrossRef]
- Danielson, I.; Lindman, B. The definition of a microemulsion. Colloids Surf. 1981, 3, 391–392. [Google Scholar] [CrossRef]
- Azeem, A.; Rizwan, M.; Ahmad, F.J.; Khan, Z.I.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Emerging Role of Microemulsions in Cosmetics. Recent Pat. Drug Deliv. Formul. 2008, 2, 275–289. [Google Scholar] [CrossRef]
- Fanun, M. (Ed.) Microemulsions: Properties and Applications; Surfactant Science Series 144; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Gradzielski, M.; Duvail, M.; de Molina, P.M.; Simon, M.; Talmon, Y.; Zemb, T. Using microemulsions: Formulation based on knowledge of their mesostructure. Chem. Rev. 2021, 121, 5671–5740. [Google Scholar] [CrossRef] [PubMed]
- Benigni, M.; Pescina, S.; Grimaudo, M.A.; Padula, C.; Nicoli, S. Development of microemulsions of suitable viscosity for cyclosporine skin delivery. Int. J. Pharm. 2018, 545, 197–205. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Murthy, R.S.R. Microemulsions: A potential drug delivery system. Curr. Drug Deliv. 2006, 3, 167–180. [Google Scholar] [CrossRef]
- Talegaonkar, S.; Azeem, A.; Ahmad, F.J.; Khar, R.K.; Pathan, S.A.; Khan, Z.I. Microemulsions: A novel approach to enhanced drug delivery. Recent Pat. Drug Deliv. Formul. 2008, 2, 238–257. [Google Scholar] [CrossRef]
- Date, A.A.; Patravale, V.B. Microemulsions: Applications in transdermal and dermal delivery. Crit. Rev. Ther. Drug Carrier Syst. 2007, 24, 547–596. [Google Scholar] [CrossRef]
- Mok, Z.H. The effect of particle size on drug bioavailability in various parts of the body. Pharm. Sci. Adv. 2023, 2, 100031. [Google Scholar] [CrossRef]
- Kozaka, S.; Tahara, Y.; Wakabayashi, R.; Nakata, T.; Ueda, T.; Kamiya, N.; Goto, M. Transcutaneous cancer vaccine using a reverse micellar antigen carrier. Mol. Pharm. 2019, 17, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Szumała, P.; Jungnickel, C.; Kozłowska-Tylingo, K.; Jacyna, B.; Cal, K. Transdermal transport of collagen and hyaluronic acid using water in oil microemulsion. Int. J. Pharm. 2019, 572, 118738. [Google Scholar] [CrossRef] [PubMed]
- Kozaka, S.; Kashima, A.; Wakabayashi, R.; Nakata, T.; Ueda, T.; Goto, M. Effective transcutaneous delivery of hyaluronic acid using an easy-to-prepare reverse micelle formulation. Cosmetics 2020, 7, 52. [Google Scholar] [CrossRef]
- Xenakis, A.; Zoumpanioti, M.; Stamatis, H. Enzymatic reactions in structured surfactant-free microemulsions. Curr. Opin. Colloid Interface Sci. 2016, 22, 41–45. [Google Scholar] [CrossRef]
- Luisi, P.L.; Giomini, M.; Pileni, M.P.; Robinson, B.H. Reverse micelles as hosts for proteins and small molecules. Biochim. Biophys. Acta 1988, 24, 209–246. [Google Scholar] [CrossRef] [PubMed]
- Larsson, K.M.; Adlercreutz, P.; Matiasson, B.; Olsson, U. Enzymatic catalysis in microemulsions: Enzyme reuse and product recovery. Biotechnol. Bioeng. 1990, 36, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Cadogan, P.C.; Hahn, C.H.; Rausch, M.H.; Froba, A.P. Study on the applicability of dynamic light scattering (DLS) to microemulsions including supercritical carbon dioxide-swollen micelles. J. Colloid Interface Sci. 2017, 499, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Bian, Q.; Zhou, Y.; Huang, Q.; Gao, J. Hair follicle-targeting drug delivery strategies for the management of hair follicle-associated disorders. Asian J. Pharm. Sci. 2022, 17, 333–352. [Google Scholar] [CrossRef]
- Radtke, M.; Patzelt, A.; Knorr, F.; Lademann, J.; Netz, R.R. Ratchet effect for nanoparticle transport in hair follicles. Eur. J. Pharm. Biopharm. 2017, 116, 125–130. [Google Scholar] [CrossRef]
- Su, R.; Fan, W.; Yu, Q.; Dong, X.; Qi, J.; Zhu, Q.; Zhao, W.; Wu, W.; Chen, Z.; Li, Y.; et al. Size-dependent penetration of nanoemulsions into epidermis and hair follicles: Implications for transdermal delivery and immunization. Oncotarget 2017, 8, 38214–38226. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.V.; Philpott, M.; Trigiante, G. Targeted hair follicle delivery of hydrophilic molecules. J. Investig. Dermatol. 2019, 139, S320. [Google Scholar] [CrossRef]
- Papadimitriou, V.; Xenakis, A.; Evangelopoulos, A.E. Proteolytic activity in various w/o microemulsions as related to the polarity of the reaction medium. Colloids Surf. B. Biointerfaces 1993, 1, 295–303. [Google Scholar] [CrossRef]
- Fitzpatrick, T.B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 1988, 124, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Likert, R. A technique for the measurements of attitudes. Arch. Psychol. 1932, 140, 5–55. [Google Scholar]
- Pany, A.; Klang, V.; Brunner, M.; Ruthofer, J.; Schwarz, E.; Valenta, C. Effect of physical and chemical hair removal methods on skin barrier function in vitro: Consequences for a hydrophilic model permeant. Skin Pharmacol. Physiol. 2018, 32, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Suhail, N.; Alzahrani, A.K.; Bash, W.J.; Kizibash, N.; Zaidi, A.; Ambreen, J.; Khachfe, H.M. Microemulsions: Unique Properties, Pharmacological Applications, and Targeted Drug Delivery. Front. Nanotech. 2021, 3, 754889. [Google Scholar] [CrossRef]
- Chatzidaki, M.D.; Mitsou, E.; Yaghmur, A.; Xenakis, A.; Papadimitriou, V. Formulation and characterization of food-grade microemulsions as carriers of natural phenolic antioxidants. Col. Surf. A 2015, 483, 130–136. [Google Scholar] [CrossRef]
- Protopapa, E.E.; Gaissert, H.; Avramiotis, S.; Stavrianeas, N.; Sekeris, C.E.; Schenkel, J.; Alonso, A. The effect of proteolytic enzymes on hair follicles of transgenic mice expressing the lac Z-protein in cells of the bulge region. J. Eur. Acad. Dermatol. Venereol. 1999, 13, 28–35. [Google Scholar] [CrossRef]
- Dasgupta, A.; Das, D.; Das, P.D. Reactivity of trypsin in reverse micelles: Neglected role of aggregate size compared to water-pool components. Biochimie 2005, 87, 1111–1119. [Google Scholar] [CrossRef]
- Meyer-Hoffert, U. Reddish, scaly, and itchy: How proteases and their inhibitors contribute to inflammatory skin diseases. Arch. Immunol. Ther. Exp. 2009, 57, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Nastiti, C.M.R.R.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical Nano and Microemulsions for Skin Delivery. Pharmaceutics 2017, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Cano, A.; Martins-Gomez, C.; Coutinho, T.E.; Zielinska, A.; Silva, A.M. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering 2022, 9, 158. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skórka, M.; Gahrtz, M.; Chatzidaki, M.D.; Xenakis, A.; Whitfield, T. Nanotechnology for Effective Epilation: Assessment of the Application of a Protease-Containing Microemulsion. Cosmetics 2024, 11, 85. https://doi.org/10.3390/cosmetics11030085
Skórka M, Gahrtz M, Chatzidaki MD, Xenakis A, Whitfield T. Nanotechnology for Effective Epilation: Assessment of the Application of a Protease-Containing Microemulsion. Cosmetics. 2024; 11(3):85. https://doi.org/10.3390/cosmetics11030085
Chicago/Turabian StyleSkórka, Monika, Manfred Gahrtz, Maria D. Chatzidaki, Aristotelis Xenakis, and Thomas Whitfield. 2024. "Nanotechnology for Effective Epilation: Assessment of the Application of a Protease-Containing Microemulsion" Cosmetics 11, no. 3: 85. https://doi.org/10.3390/cosmetics11030085
APA StyleSkórka, M., Gahrtz, M., Chatzidaki, M. D., Xenakis, A., & Whitfield, T. (2024). Nanotechnology for Effective Epilation: Assessment of the Application of a Protease-Containing Microemulsion. Cosmetics, 11(3), 85. https://doi.org/10.3390/cosmetics11030085