Electric Stimulation at 448 kHz Modulates Proliferation and Differentiation of Follicle Dermal Papilla Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. CRET Treatments
2.3. XTT Viability Assay
2.4. Immunofluorescence for Ki67, p53, β-Catenin, α-SMA, and Collagen III
2.5. Immunoblotting
2.6. Statistical Analysis
3. Results
3.1. Effects of CRET on DPC Viability and Proliferation
3.2. Effects of CRET on the Expression of ERK1/2 and Cyclin D1
3.3. Effects of CRET on p53 and Caspase 3 Expression
3.4. Effects of CRET on β-Catenin Expression and Localization
3.5. Effects of CRET on α-SMA Expression and Localization
3.6. Effects of CRET on Anagen Markers: Versican and PPARγ
3.7. Effects of CRET on Collagen Type III Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gokce, N.; Basgoz, N.; Kenanoglu, S.; Akalin, H.; Ozkul, Y.; Ergoren, M.C.; Beccari, T.; Bertelli, M.; Dundar, M. An Overview of the Genetic Aspects of Hair Loss and Its Connection with Nutrition. J. Prev. Med. Hyg. 2022, 63, E228. [Google Scholar] [CrossRef] [PubMed]
- Almohanna, H.M.; Ahmed, A.A.; Tsatalis, J.P.; Tosti, A. The Role of Vitamins and Minerals in Hair Loss: A Review. Dermatol. Ther. 2019, 9, 51–70. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.L.; Garibyan, L.; Kimball, A.B.; Drake, L.A. Systemic Causes of Hair Loss. Ann. Med. 2016, 48, 393–402. [Google Scholar] [CrossRef]
- Nestor, M.S.; Ablon, G.; Gade, A.; Han, H.; Fischer, D.L. Treatment Options for Androgenetic Alopecia: Efficacy, Side Effects, Compliance, Financial Considerations, and Ethics. J. Cosmet. Dermatol. 2021, 20, 3759–3781. [Google Scholar] [CrossRef]
- Hirshburg, J.M.; Kelsey, P.A.; Therrien, C.A.; Gavino, A.C.; Reichenberg, J.S. Adverse Effects and Safety of 5-Alpha Reductase Inhibitors (Finasteride, Dutasteride): A Systematic Review. J. Clin. Aesthet. Dermatol. 2016, 9, 56–62. [Google Scholar]
- Garcia-Melendo, C.; Cubiró, X.; Puig, L. Inhibidores de JAK: Usos en dermatología. Parte 1: Generalidades, aplicaciones en vitíligo y en alopecia areata. Actas Dermo-Sifiliográficas 2021, 112, 503–515. [Google Scholar] [CrossRef]
- Gupta, A.K.; Carviel, J.L. Meta-Analysis of Efficacy of Platelet-Rich Plasma Therapy for Androgenetic Alopecia. J. Dermatol. Treat. 2017, 28, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Mays, R.R.; Dotzert, M.S.; Versteeg, S.G.; Shear, N.H.; Piguet, V. Efficacy of Non-surgical Treatments for Androgenetic Alopecia: A Systematic Review and Network Meta-analysis. Acad. Dermatol. Venereol. 2018, 32, 2112–2125. [Google Scholar] [CrossRef]
- York, K.; Meah, N.; Bhoyrul, B.; Sinclair, R. A Review of the Treatment of Male Pattern Hair Loss. Expert Opin. Pharmacother. 2020, 21, 603–612. [Google Scholar] [CrossRef]
- Balazic, E.; Muskat, A.; Kost, Y.; Cohen, J.L.; Kobets, K. The Role of Laser and Energy-Assisted Drug Delivery in the Treatment of Alopecia. Lasers Med. Sci. 2024, 39, 73. [Google Scholar] [CrossRef]
- Sibbald, C. Alopecia Areata: An Updated Review for 2023. J. Cutan. Med. Surg. 2023, 27, 241–259. [Google Scholar] [CrossRef]
- Bonjorno, A.R.; Gomes, T.B.; Pereira, M.C.; De Carvalho, C.M.; Gabardo, M.C.L.; Kaizer, M.R.; Zielak, J.C. Radiofrequency Therapy in Esthetic Dermatology: A Review of Clinical Evidences. J. Cosmet. Dermatol. 2020, 19, 278–281. [Google Scholar] [CrossRef]
- Hernández-Bule, M.L.; Paíno, C.L.; Trillo, M.Á.; Úbeda, A. Electric Stimulation at 448 kHz Promotes Proliferation of Human Mesenchymal Stem Cells. Cell. Physiol. Biochem. 2014, 34, 1741–1755. [Google Scholar] [CrossRef]
- Hernández-Bule, M.L.; Toledano-Macías, E.; Naranjo, A.; De Andrés-Zamora, M.; Úbeda, A. In Vitro Stimulation with Radiofrequency Currents Promotes Proliferation and Migration in Human Keratinocytes and Fibroblasts. Electromagn. Biol. Med. 2021, 40, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.F.; De Oliveira, P.; Silva, F.K.B.A.; Da Costa, A.C.S.; Pereira, C.R.A.; Casenave, S.; Valentim Silva, R.M.; Araújo-Neto, L.G.; Santos-Filho, S.D.; Aizamaque, E.; et al. Radiofrequency Treatment Induces Fibroblast Growth Factor 2 Expression and Subsequently Promotes Neocollagenesis and Neoangiogenesis in the Skin Tissue. Lasers Med. Sci. 2017, 32, 1727–1736. [Google Scholar] [CrossRef] [PubMed]
- Sadick, N.; Rothaus, K.O. Aesthetic Applications of Radiofrequency Devices. Clin. Plast. Surg. 2016, 43, 557–565. [Google Scholar] [CrossRef]
- Oliveira Paggiaro, A.; Pinheiro, R.; Soares, K.; Fernandes Carvalho, V.; Gemperli, R. Evaluation of the Evidence Level for the Use of Radiofrequency in Aesthetic Treatments: A Systematic Review and Meta-analysis. J. Cosmet. Dermatol. 2021, 20, 2691–2702. [Google Scholar] [CrossRef]
- Tan, Y.; Wei, L.; Zhang, Y.; Goren, A.; McCoy, J.; Stanimirovic, A.; Lotti, T.; Kovacevic, M. Non-Ablative Radio Frequency for the Treatment of Androgenetic Alopecia. Acta Dermatovenerol. Alp. Pannonica Adriat. 2019, 28, 169–171. [Google Scholar] [CrossRef]
- Takahashi, K.; Suyama, T.; Onodera, M.; Hirabayashi, S.; Tsuzuki, N.; Li, Z.-S. Clinical Effects of Capacitive Electric Transfer Hyperthermia Therapy for Lumbago. J. Phys. Ther. Sci. 1999, 11, 45–51. [Google Scholar] [CrossRef]
- Kumaran, B.; Watson, T. Treatment Using 448 kHz Capacitive Resistive Monopolar Radiofrequency Improves Pain and Function in Patients with Osteoarthritis of the Knee Joint: A Randomised Controlled Trial. Physiotherapy 2019, 105, 98–107. [Google Scholar] [CrossRef] [PubMed]
- García Pablo, N. First Assessment of the Proionic Effects Resulting from Non-Thermal Application of 448 kHz Monopolar Radiofrequency for Reduction of Edema Caused by Fractional CO2 Laser Facial Rejuvenation Treatments. J. Surg. 2015, 3, 21–24. [Google Scholar] [CrossRef]
- Pablo, N. Radiofrequency Current at 448 Khz For Female Pattern Hair Loss: Cellular Bases For Redensification Improvement. J. Dermatol. Res. 2022, 3, 1–24. [Google Scholar] [CrossRef]
- Martínez-Pascual, M.A.; Sacristán, S.; Toledano-Macías, E.; Naranjo, P.; Hernández-Bule, M.L. Effects of RF Electric Currents on Hair Follicle Growth and Differentiation: A Possible Treatment for Alopecia. Int. J. Mol. Sci. 2024, 25, 7865. [Google Scholar] [CrossRef]
- Driskell, R.R.; Clavel, C.; Rendl, M.; Watt, F.M. Hair Follicle Dermal Papilla Cells at a Glance. J. Cell Sci. 2011, 124, 1179–1182. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Bule, M.L.; Trillo, M.A.; Cid, M.A.; Leal, J.; Ubeda, A. In Vitro Exposure to 0.57-MHz Electric Currents Exerts Cytostatic Effects in HepG2 Human Hepatocarcinoma Cells. Int. J. Oncol. 2007, 30, 583–592. [Google Scholar] [CrossRef]
- Hernández-Bule, M.L.; Martínez-Botas, J.; Trillo, M.Á.; Paíno, C.L.; Úbeda, A. Antiadipogenic Effects of Subthermal Electric Stimulation at 448 kHz on Differentiating Human Mesenchymal Stem Cells. Mol. Med. Rep. 2016, 13, 3895–3903. [Google Scholar] [CrossRef]
- Yang, C.-C.; Cotsarelis, G. Review of Hair Follicle Dermal Cells. J. Dermatol. Sci. 2010, 57, 2–11. [Google Scholar] [CrossRef]
- Katsuoka, K.; Mauch, C.; Schell, H.; Hornstein, O.P.; Krieg, T. Collagen-Type Synthesis in Human-Hair Papilla Cells in Culture. Arch. Dermatol. Res. 1988, 280, 140–144. [Google Scholar] [CrossRef]
- Legué, E.; Nicolas, J.-F. Hair Follicle Renewal: Organization of Stem Cells in the Matrix and the Role of Stereotyped Lineages and Behaviors. Development 2005, 132, 4143–4154. [Google Scholar] [CrossRef] [PubMed]
- Elliott, K.; Messenger, A.G.; Stephenson, T.J. Differences in Hair Follicle Dermal Papilla Volume Are Due to Extracellular Matrix Volume and Cell Number: Implications for the Control of Hair Follicle Size and Androgen Responses. J. Investig. Dermatol. 1999, 113, 873–877. [Google Scholar] [CrossRef]
- Oshimori, N.; Fuchs, E. Paracrine TGF-β Signaling Counterbalances BMP-Mediated Repression in Hair Follicle Stem Cell Activation. Cell Stem Cell 2012, 10, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Rendl, M.; Lewis, L.; Fuchs, E. Molecular Dissection of Mesenchymal–Epithelial Interactions in the Hair Follicle. PLoS Biol. 2005, 3, e331. [Google Scholar] [CrossRef] [PubMed]
- Stenn, K.S.; Paus, R. Controls of Hair Follicle Cycling. Physiol. Rev. 2001, 81, 449–494. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.J.; Jeong, K.H.; Kim, J.E.; Kang, H. Various Wavelengths of Light-Emitting Diode Light Regulate the Proliferation of Human Dermal Papilla Cells and Hair Follicles via Wnt/β-Catenin and the Extracellular Signal-Regulated Kinase Pathways. Ann. Dermatol. 2017, 29, 747. [Google Scholar] [CrossRef]
- Guo, Y.; Qu, Q.; Chen, J.; Miao, Y.; Hu, Z. Proposed Mechanisms of Low-Level Light Therapy in the Treatment of Androgenetic Alopecia. Lasers Med. Sci. 2021, 36, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Lee, H.; Lee, J.; Lee, M.; Cho, S.; Kim, T.; Kim, H. Micro-Current Stimulation Has Potential Effects of Hair Growth-Promotion on Human Hair Follicle-Derived Papilla Cells and Animal Model. Int. J. Mol. Sci. 2021, 22, 4361. [Google Scholar] [CrossRef]
- Han, J.H.; Kwon, O.S.; Chung, J.H.; Cho, K.H.; Eun, H.C.; Kim, K.H. Effect of Minoxidil on Proliferation and Apoptosis in Dermal Papilla Cells of Human Hair Follicle. J. Dermatol. Sci. 2004, 34, 91–98. [Google Scholar] [CrossRef]
- Kwack, M.H.; Kang, B.M.; Kim, M.K.; Kim, J.C.; Sung, Y.K. Minoxidil Activates β-Catenin Pathway in Human Dermal Papilla Cells: A Possible Explanation for Its Anagen Prolongation Effect. J. Dermatol. Sci. 2011, 62, 154–159. [Google Scholar] [CrossRef]
- Lee, S.-H.; Yoon, J.; Shin, S.H.; Zahoor, M.; Kim, H.J.; Park, P.J.; Park, W.-S.; Min, D.S.; Kim, H.-Y.; Choi, K.-Y. Valproic Acid Induces Hair Regeneration in Murine Model and Activates Alkaline Phosphatase Activity in Human Dermal Papilla Cells. PLoS ONE 2012, 7, e34152. [Google Scholar] [CrossRef]
- Pestell, R.G. New Roles of Cyclin D1. Am. J. Pathol. 2013, 183, 3–9. [Google Scholar] [CrossRef]
- Xu, X.; Lyle, S.; Liu, Y.; Solky, B.; Cotsarelis, G. Differential Expression of Cyclin D1 in the Human Hair Follicle. Am. J. Pathol. 2003, 163, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, F.; Jahanpour, S.; Hazem, K.; Aghbali, A.; Baradran, B.; Vahid Pakdel, S.M. Garlic (Allium Sativum) Fresh Juice Induces Apoptosis in Human Oral Squamous Cell Carcinoma: The Involvement of Caspase-3, Bax and Bcl-2. J. Dent. Res. Dent. Clin. Dent. Prospect. 2015, 9, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, X.; Bai, M.; Suo, Y.; Zhang, G.; Cao, X. Matrine Inhibited Proliferation and Increased Apoptosis in Human Breast Cancer MCF-7 Cells via Upregulation of Bax and Downregulation of Bcl-2. Int. J. Clin. Exp. Pathol. 2015, 8, 14793–14799. [Google Scholar]
- Mousa, A.M.; Al-Fadhli, A.S.; Rao, M.S.; Kilarkaje, N. Gestational Lead Exposure Induces Developmental Abnormalities and Up-Regulates Apoptosis of Fetal Cerebellar Cells in Rats. Drug Chem. Toxicol. 2015, 38, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Botchkarev, V.A.; Komarova, E.A.; Siebenhaar, F.; Botchkareva, N.V.; Sharov, A.A.; Komarov, P.G.; Maurer, M.; Gudkov, A.V.; Gilchrest, B.A. P53 Involvement in the Control of Murine Hair Follicle Regression. Am. J. Pathol. 2001, 158, 1913–1919. [Google Scholar] [CrossRef]
- Hu, X.-M.; Li, Z.-X.; Zhang, D.-Y.; Yang, Y.-C.; Fu, S.; Zhang, Z.-Q.; Yang, R.-H.; Xiong, K. A Systematic Summary of Survival and Death Signalling during the Life of Hair Follicle Stem Cells. Stem Cell Res. Ther. 2021, 12, 453. [Google Scholar] [CrossRef]
- Toledano-Macías, E.; Martínez-Pascual, M.A.; Hernández-Bule, M.L. Electric Currents of 448 kHz Upregulate Anti-senescence Pathways in Human Dermal Fibroblasts. J. Cosmet. Dermatol. 2024, 23, 687–700. [Google Scholar] [CrossRef]
- Manse, Y.; Luo, F.; Kato, K.; Okazaki, A.; Okada-Nishida, E.; Yanagida, M.; Nakamura, S.; Morikawa, T. Ent-Kaurane-Type Diterpenoids from Isodonis Herba Activate Human Hair Follicle Dermal Papilla Cells Proliferation via the Akt/GSK-3β/β-Catenin Transduction Pathway. J. Nat. Med. 2021, 75, 326–338. [Google Scholar] [CrossRef]
- Andl, T.; Reddy, S.T.; Gaddapara, T.; Millar, S.E. WNT Signals Are Required for the Initiation of Hair Follicle Development. Dev. Cell 2002, 2, 643–653. [Google Scholar] [CrossRef]
- Maretto, S.; Cordenonsi, M.; Dupont, S.; Braghetta, P.; Broccoli, V.; Hassan, A.B.; Volpin, D.; Bressan, G.M.; Piccolo, S. Mapping Wnt/β-Catenin Signaling during Mouse Development and in Colorectal Tumors. Proc. Natl. Acad. Sci. USA 2003, 100, 3299–3304. [Google Scholar] [CrossRef]
- Enshell-Seijffers, D.; Lindon, C.; Kashiwagi, M.; Morgan, B.A. β-Catenin Activity in the Dermal Papilla Regulates Morphogenesis and Regeneration of Hair. Dev. Cell 2010, 18, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Taghiabadi, E.; Nilforoushzadeh, M.A.; Aghdami, N. Maintaining Hair Inductivity in Human Dermal Papilla Cells: A Review of Effective Methods. Ski. Pharmacol. Physiol. 2020, 33, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Soma, T.; Tajima, M.; Kishimoto, J. Hair Cycle-Specific Expression of Versican in Human Hair Follicles. J. Dermatol. Sci. 2005, 39, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Weon, S.; Nam, B.; Jang, M.-A.; Kang, H.; Kim, T.-J.; Park, Y.-S.; Kim, T.-H. WNT16 Elevation Induced Cell Senescence of Osteoblasts in Ankylosing Spondylitis. Arthritis Res. Ther. 2021, 23, 301. [Google Scholar] [CrossRef]
- Reynolds, A.J.; Chaponnier, C.; Jahoda, C.A.B.; Gabbiani, G. A Quantitative Study of the Differential Expression of Alpha-Smooth Muscle Actin in Cell Populations of Follicular and Non-Follicular Origin. J. Investig. Dermatol. 1993, 101, 577–583. [Google Scholar] [CrossRef]
- Bito, T.; Tashiro, Y.; Suzuki, Y.; Kajiwara, Y.; Zeidan, H.; Kawagoe, M.; Sonoda, T.; Nakayama, Y.; Yokota, Y.; Shimoura, K.; et al. Acute Effects of Capacitive and Resistive Electric Transfer (CRet) on the Achilles Tendon. Electromagn. Biol. Med. 2019, 38, 48–54. [Google Scholar] [CrossRef]
- Yokota, Y.; Tashiro, Y.; Suzuki, Y.; Tasaka, S.; Matsushita, T.; Matsubara, K.; Kawagoe, M.; Sonoda, T.; Nakayama, Y.; Hasegawa, S.; et al. Effect of Capacitive and Resistive Electric Transfer on Tissue Temperature, Muscle Flexibility, and Blood Circulation. J. Nov. Physiother. 2017, 7, 325. [Google Scholar] [CrossRef]
- Valentim da Silva, R.M.; Barichello, P.A.; Medeiros, M.L.; de Mendonça, W.C.M.; Dantas, J.S.C.; Ronzio, O.A.; Froes, P.M.; Galadari, H. Effect of Capacitive Radiofrequency on the Fibrosis of Patients with Cellulite. Dermatol. Res. Pract. 2013, 2013, 715829. [Google Scholar] [CrossRef]
- Naranjo, P.; Lopez-Estebaranz, J.; Shoaib, T.; Pinto, H. Non-Ablative Capacitive Resistive 448 kHz Radiofrequency for Wrinkle Reduction Pilot Study. Aesthetic Med. 2020, 6, 41–48. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Pascual, M.A.; Sacristán, S.; Toledano-Macías, E.; Hernández-Bule, M.L. Electric Stimulation at 448 kHz Modulates Proliferation and Differentiation of Follicle Dermal Papilla Cells. Cosmetics 2024, 11, 187. https://doi.org/10.3390/cosmetics11060187
Martínez-Pascual MA, Sacristán S, Toledano-Macías E, Hernández-Bule ML. Electric Stimulation at 448 kHz Modulates Proliferation and Differentiation of Follicle Dermal Papilla Cells. Cosmetics. 2024; 11(6):187. https://doi.org/10.3390/cosmetics11060187
Chicago/Turabian StyleMartínez-Pascual, María Antonia, Silvia Sacristán, Elena Toledano-Macías, and María Luisa Hernández-Bule. 2024. "Electric Stimulation at 448 kHz Modulates Proliferation and Differentiation of Follicle Dermal Papilla Cells" Cosmetics 11, no. 6: 187. https://doi.org/10.3390/cosmetics11060187
APA StyleMartínez-Pascual, M. A., Sacristán, S., Toledano-Macías, E., & Hernández-Bule, M. L. (2024). Electric Stimulation at 448 kHz Modulates Proliferation and Differentiation of Follicle Dermal Papilla Cells. Cosmetics, 11(6), 187. https://doi.org/10.3390/cosmetics11060187