Solid Lipid Nanoparticles (SLNs) with Potential as Cosmetic Hair Formulations Made from Otoba Wax and Ultrahigh Pressure Homogenization
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Physicochemical Quality Control and Lipid Composition Profile of Otoba Wax
2.3. Determination of Required HLB for Otoba Wax
2.3.1. Contact Angle
2.3.2. Creaming Index
2.4. Elaboration of SLNs
2.5. Thermal Stability Assays of SLNs
2.5.1. Particle Size
2.5.2. Viscosity
2.5.3. Zeta Potential, Electrical Conductivity, and pH
2.6. Microbiological Test
2.7. Graphs and Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Quality Control and Lipid Composition Profile of Otoba Wax
3.2. Determination of the Required HLB for Otoba Wax
3.3. Thermal Stability Assays of SLNs
3.3.1. Creaming Index (CI)
3.3.2. Particle Size
3.3.3. Viscosity
3.3.4. Zeta Potential, Electrical Conductivity, and pH
3.4. Microbiological Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yadav, N.; Khatak, S.; Singh Sara, U.V. Solid lipid nanoparticles—A review. Int. J. Appl. Pharm. 2013, 5, 8–18. [Google Scholar]
- Radomskasoukharev, A. Stability of lipid excipients in solid lipid nanoparticles☆. Adv. Drug Deliv. Rev. 2007, 59, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Garud, A.; Singh, D.; Garud, N. Solid Lipid Nanoparticles (SLN): Method, Characterization and Applications. Int. Curr. Pharm. J. 2012, 1, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Poliseli-Scopel, F.H.; Hernández-Herrero, M.M.; Guamis, B.; Ferragut, V. Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT 2012, 46, 42–48. [Google Scholar] [CrossRef]
- Rave, M.C.; Echeverri, J.D.; Salamanca, C.H. Improvement of the physical stability of oil-in-water nanoemulsions elaborated with Sacha inchi oil employing ultra-high-pressure homogenization. J. Food Eng. 2020, 273, 109801. [Google Scholar] [CrossRef]
- Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm. 2017, 6, 37–56. [Google Scholar] [CrossRef]
- Dumay, E.; Chevalier-Lucia, D.; Picart-Palmade, L.; Benzaria, A.; Grácia-Juliá, A.; Blayo, C. Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends Food Sci. Technol. 2013, 31, 13–26. [Google Scholar] [CrossRef]
- Pardeshi, C.; Rajput, P.; Belgamwar, V.; Tekade, A.; Patil, G.; Chaudhary, K.; Sonje, A. Solid lipid based nanocarriers: An overview/Nanonosači na bazi čvrstih lipida: Pregled. Acta Pharm. 2012, 62, 433–472. [Google Scholar] [CrossRef]
- Bunjes, H. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J. Pharm. Pharmacol. 2010, 62, 1637–1645. [Google Scholar] [CrossRef]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Kalhapure, R.S.; Suleman, N.; Mocktar, C.; Seedat, N.; Govender, T. Nanoengineered Drug Delivery Systems for Enhancing Antibiotic Therapy. J. Pharm. Sci. 2015, 104, 872–905. [Google Scholar] [CrossRef] [PubMed]
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application. Adv. Pharm. Bull. 2015, 5, 305–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wissing, S.; Kayser, O.; Müller, R. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 2004, 56, 1257–1272. [Google Scholar] [CrossRef] [PubMed]
- Durán-Lobato, M.; González, A.E.; Arevalo, M.F.; Martín-Banderas, L. Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: A practical prediction approach. J. Nanopart. Res. 2013, 15, 1443. [Google Scholar] [CrossRef]
- Müller, R.; Radtke, M.; Wissing, S. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54, S131–S155. [Google Scholar] [CrossRef]
- Weiss, J.; Decker, E.A.; McClements, D.J.; Kristbergsson, K.; Helgason, T.; Awad, T. Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components. Food Biophys. 2008, 3, 146–154. [Google Scholar] [CrossRef]
- Wissing, S. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 2003, 254, 65–68. [Google Scholar] [CrossRef]
- Müller, R.; Petersen, R.; Hommoss, A.; Pardeike, J. Nanostructured lipid carriers (NLC) in cosmetic dermal products☆. Adv. Drug Deliv. Rev. 2007, 59, 522–530. [Google Scholar] [CrossRef]
- Bhacca, N.S.; Stevenson, R. The Constitution of Otobain. J. Org. Chem. 1963, 28, 1638–1642. [Google Scholar] [CrossRef]
- Lopez Tobar, R.; Neill, D.; Torres, B.; Guerra, D. El Doncel (Otoba parvifolia) en Napo Napumanta wapa yura (Otoba parvifolia). Huellas del Sumaco Revista Socio Ambiental de la Amazonía Ecuatoriana 2014, 12, 1. [Google Scholar]
- American Oil Chemists’ Society Official Methods and Recommended Practices; AOCS: Champaign, IL, USA, 2017.
- USP <191> Identification Tests—General. United State Pharmacopeial. Available online: https://www.uspnf.com/notices/usp-nf-online-gc-191-pub-correction (accessed on 3 June 2020).
- Kwok, D.; Neumann, A. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 1999, 81, 167–249. [Google Scholar] [CrossRef]
- Liu, W.; Pi, S. AC magnetic nanothermometry: The influence of particle size distribution. In Proceedings of the 2016 10th International Conference on Sensing Technology (ICST), Nanjing, China, 11–13 November 2016; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2016; pp. 1–3. [Google Scholar]
- USP <61> Microbiological examination of Nonsterile Products: Microbial Enumeration Tests. Available online: https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/q05b_pf_ira_34_6_2008.pdf (accessed on 3 June 2020).
- Baughman, W.F.; Jamieson, G.S.; Brauns, D.H. An analysis of otoba butter. J. Am. Chem. Soc. 1921, 43, 199–204. [Google Scholar] [CrossRef]
- Mccoy, J.; Ziering, C.; Biology, A.; Ste, F. Botanical Extracts for the Treatment of Androgenetic Alopecia. Int. J. Life Sci. Pharma Res. 2012, 2, 31–38. [Google Scholar]
- Dhariwala, M.; Ravikumar, P. An overview of herbal alternatives in androgenetic alopecia. J. Cosmet. Dermatol. 2019, 18, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Kronberg, B.; Costas, M.; Silvestonti, R. Understanding the hydrophobic effect. J. Dispers. Sci. Technol. 1994, 15, 333–351. [Google Scholar] [CrossRef]
- Zamora, A.; Ferragut, V.; Jaramillo, P.; Guamis, B.; Trujillo, A.-J. Effects of Ultra-High Pressure Homogenization on the Cheese-Making Properties of Milk. J. Dairy Sci. 2007, 90, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Xing, X.; Li, Y.; Ngai, T.; Jin, F. Charging and discharging of single colloidal particles at oil/water interfaces. Sci. Rep. 2014, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Marinova, K.; Alargova, R.G.; Denkov, N.D.; Velev, O.D.; Petsev, D.N.; Ivanov, I.B.; Borwankar, R.P. Charging of Oil−Water Interfaces Due to Spontaneous Adsorption of Hydroxyl Ions. Langmuir 1996, 12, 2045–2051. [Google Scholar] [CrossRef]
- Hunter, R.J. Zeta Potential in Colloid Science: Principles and Applications; Academic Press: Cambridge, MA, USA, 2013; ISBN 9781483214085. [Google Scholar]
- Mook, W.G. Chemistry of carbonic acid in water. In Environmental Isotopes in the Hydrological Cycle; International Atomic Energy Agency and United Nations Educational, Scientific and Cultural Organization: Amsterdam, The Netherlands, 2000. [Google Scholar]
Profile of Lipid Composition (Saturated Fatty Acids) | |||
---|---|---|---|
Common Name | IUPAC Name | Shorthand | Value (%) |
Caproic acid | Hexanoic acid | 6:0 | 0.01 |
Caprylic acid | Octanoic acid | 8:0 | 0.96 |
Capric acid | Decanoic acid | 10:0 | 1.00 |
Lauric acid | Dodecanoic acid | 12:0 | 34.67 |
Myristic acid | Tetradecanoic acid | 14:0 | 44.94 |
Pentadecylic acid | Pentadecanoic acid | 15:0 | 0.02 |
Palmitic acid | Hexadecanoic acid | 16:0 | 5.72 |
Stearic acid | Octadecanoic acid | 18:0 | 1.42 |
Arachidic acid | Icosanoic acid | 20:0 | 0.24 |
Behenic acid | Docosanoic acid | 22:0 | 0.05 |
Lignoceric acid | Tetracosanoic acid | 24:0 | 0.04 |
Total: | 89.07 | ||
Profile of Lipid Composition (Unsaturated Fatty Acids) | |||
Common Name | IUPAC Name | Shorthand | Value (%) |
Palmitoleic acid | (Z)-hexadec-9-enoic acid | 16:1n-7 | 0.07 |
Oleic acid | (Z)-octadec-9-enoic acid | 18:1n-9 | 8.24 |
Linoleic acid | (9Z,12Z)-octadeca-9,12-dienoic acid | 18:2n-6 | 1.92 |
α-Linolenic acid | (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid | 18:3n-3 | 0.07 |
Gadoleic acid | (Z)-icos-9-enoic acid | 20:1n-11 | 0.62 |
Total: | 10.92 | ||
Physicochemical Parameter | Value | ||
Melting point (°C) | 34–35 | ||
Refractive index | 1.418 (20 °C) and 1.4720 (40 °C) | ||
Saponification value (mg KOH/g) | 235.56 | ||
Peroxide value (meq O/kg) | 0.30 | ||
Iodine value (g I2/100 g) | 11.2 | ||
Acid index (% oleic acid) | 4.55 |
SLNs | Microorganism Tested | |||||
---|---|---|---|---|---|---|
Mesophilic Aerobes (CFU/g) | Escherichia coli (CFU/g) | Enterobacteriaceae | Coagulase-positive Staphylococcus (CFU/g) | Fungi | Yeasts | |
Low internal proportion | <10 | Absent | Absent | Absent | Absent | <10 |
High internal proportion | 69 | Absent | Absent | Absent | Absent | 36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubiano, S.; Echeverri, J.D.; Salamanca, C.H. Solid Lipid Nanoparticles (SLNs) with Potential as Cosmetic Hair Formulations Made from Otoba Wax and Ultrahigh Pressure Homogenization. Cosmetics 2020, 7, 42. https://doi.org/10.3390/cosmetics7020042
Rubiano S, Echeverri JD, Salamanca CH. Solid Lipid Nanoparticles (SLNs) with Potential as Cosmetic Hair Formulations Made from Otoba Wax and Ultrahigh Pressure Homogenization. Cosmetics. 2020; 7(2):42. https://doi.org/10.3390/cosmetics7020042
Chicago/Turabian StyleRubiano, Sandra, Juan D. Echeverri, and Constain H. Salamanca. 2020. "Solid Lipid Nanoparticles (SLNs) with Potential as Cosmetic Hair Formulations Made from Otoba Wax and Ultrahigh Pressure Homogenization" Cosmetics 7, no. 2: 42. https://doi.org/10.3390/cosmetics7020042
APA StyleRubiano, S., Echeverri, J. D., & Salamanca, C. H. (2020). Solid Lipid Nanoparticles (SLNs) with Potential as Cosmetic Hair Formulations Made from Otoba Wax and Ultrahigh Pressure Homogenization. Cosmetics, 7(2), 42. https://doi.org/10.3390/cosmetics7020042